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Abstract—This paper addresses extended multi-target tracking
in clutter, i.e. tracking targets that may produce more than one
measurement on each scan. We propose a new algorithm for
solving this problem, that is capable of initiating and maintaining
labelled estimates of the target kinematics, measurement rates
and extents. Our proposed technique is based on modelling
the multi-target state as a generalised labelled multi-Bernoulli
(GLMB), combined with the gamma Gaussian inverse Wishart
(GGIW) distribution for a single extended target. Previously,
probability hypothesis density (PHD) and cardinalised PHD
(CPHD) filters based on GGIW mixtures have been proposed to
solve the extended target tracking problem. Although these are
computationally cheaper, they involve significant approximations,
as well as lacking the ability to maintain target tracks over time.
Here, we compare our proposed GLMB-based approach to the
extended target PHD/CPHD filters, and show that the GLMB
has improved performance.

Index Terms—Multi-target tracking, extended targets, random
finite sets, inverse Wishart

I. INTRODUCTION

The goal of multiple target tracking is to estimate the

number of targets and their states, based on noisy sensor

measurements in the presence of missed detections and false

alarms. To achieve this, tracking algorithms require models

that describe how the observed measurements are related to

the underlying target states. In most cases, the standard ‘point

target’ model is used, which imposes the constraints that each

measurement originates from at most one target, and each

target gives rise to at most one measurement on each scan.

This model greatly simplifies the development of multi-target

tracking algorithms, but it is often unrealistic in practical

situations.

Non-standard measurement models are capable of handling

more realistic measurement generation processes by relaxing

the aforementioned constraints, usually at the expense of

increased computation. One example of this is when a group

of targets gives rise to a single measurement, known as

an unresolved target (or merged measurement) model [1].

Such a model is useful when dealing with low-resolution

sensors that are incapable of generating seperate detections

for closely spaced targets. On the other hand, in the case of

higher resolution sensors, each target may give rise to multiple

measurements on each scan. This is known as an extended

target model [2], and is the subject of this paper.

An extended target measurement model usually requires two

basic ingredients; a model for the number of measurements

generated by each target, and a model for how those mea-

surements are distributed. Clearly, these models will depend

strongly on the type of targets being tracked. For example,

in a radar application, some targets may posess many scatter

points, each of which generates a distinct detection. However,

other targets may be more stealthy and reflect most of the

energy away from the receiver, therefore generating very few

detections, or none at all. In general, when the targets are far

enough away from the sensor, the detections from a single

target can usually be characterised as a cluster of points

that exhibits no specific geometric structure. In this case,

the number of measurements is usually modelled as Poisson,

which was the approach taken in [2] and [3].

Despite the lack of any specific target structure, it is still

possible to estimate the size and shape of a target (known

as the target extent), based on the spatial distribution of

the measurements it generates. An approach to this, which

assumes an elliptical target extent, was proposed by Koch in

[4]. In that work, the extent was modelled as a multivariate

Gaussian, parameterised by a random covariance matrix with

an inverse Wishart distribution. This was termed as a Gaussian

inverse Wishart (GIW), and this approach enables on-line

estimation of the target extent, rather than requiring it to be

specified a-priori. Further applications and improvements to

this technique have appeared in [5], [6] and [7]. Alternative

methods for estimating target extent have also been proposed,

see for example [8]–[10].

The GIW method has been applied using filters based

on the random finite set (RFS) framework. A probability

hypothesis density (PHD) filter [11] for extended multi-target

filtering was originally proposed by Mahler in [12], and an

implementation based on the GIW model (GIW-PHD filter)

was developed in [13]. This was generalised in [14] to the

cardinalised PHD (CPHD) filter, in which the GIW approach

was modified using a technique developed in [15], that enables

estimation of target measurement rates. This method treats

the rate parameter of the Poisson pdf (which characterises
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the number of measurements generated by a target) as a

random variable. The distribution of this random variable is

modelled as a gamma pdf, and the resulting algorithm was

called the gamma Gaussian inverse Wishart CPHD (GGIW-

CPHD) filter. Extended target PHD and CPHD filter have also

been presented in [29], [30].

The (C)PHD filters use approximations that drastically

reduce the complexity of the Bayes multi-target filter. While

such approximations avoid the data association problem,

which leads to fast implementations, they also induce a number

of limitations. One such limitation is that they do not produce

target tracks, thus in applications requiring tracks, it is neces-

sary to perform post-processing of the filter output. The PHD

filter is also known to involve a significant approximation of

the multi-target posterior, which gives rise to highly uncertain

cardinality estimates [11], [17]. Another limitation is the so-

called ‘spooky’ effect [18], in which a target misdetection may

cause a false estimate to spontaneously appear in a different

part of the state space. An extended object Bernoulli filter was

proposed in [19], which does not suffer from these issues,

however, it is limited to the case of a single target in clutter.

These limitations can be alleviated by a method called the

generalised labelled multi-Bernoulli (GLMB) filter, which was

proposed in [20], [21]. This algorithm has been shown to

outperform both PHD and CPHD, with the added advantage

of producing labelled track estimates, albeit with a higher

computational cost. An approximate version of this filter that

is computationally cheaper was proposed in [22], called the

labelled multi-Bernoulli filter (LMB). Also, the first GLMB

filter for a non-standard measurement model was developed

in [1]. This filter used a model that includes measurement

merging, a problem which can be viewed as the dual of the

extended target tracking problem.

In this paper, we develop a GLMB filter based on the GGIW

extended target model. To our knowledge, this is the first

time that an extended target model has been applied using

a tracking algorithm based on labelled random finite sets. The

resulting algorithm (GGIW-GLMB) is capable of estimating

the kinematics and extents of multiple extended targets in

clutter, with the advantage of producing full target tracks.

II. BACKGROUND: LABELLED RFS-BASED TRACKING

WITH STANDARD SENSOR MODEL

The goal of multi-object Bayesian estimation is to estimate

a finite set of states Xk ⊂ X, called the multi-object state, at

each time k. The multi-object states Xk and multi-object ob-

servations Zk ⊂ Z are modelled as random finite sets (RFS),

and finite set statistics (FISST) is a framework for working

with RFSs [23] based on a notion of integration/density that

is consistent with point process theory [24].

At the previous time step k − 1, the multi-object state is

assumed to be distributed according to a multi-object density

πk−1 (·|Z1:k−1), where Z1:k−1 is an array of finite sets of

measurements received up to time k− 1. Each Zk is assumed

to be generated through a process of thinning of misdetected

objects, Markov shifts of detected objects, and superposition

of false measurements. The multi-object prediction to time k

is given by the Chapman-Kolmogorov equation

πk|k−1 (Xk|Z1:k−1) =

∫

fk|k−1 (Xk|X)πk−1 (X|Z1:k−1) δX,

(1)

where fk|k−1 (Xk|X) is the multi-object transition kernel from

time k − 1 to time k, and the integral is the set integral,

∫

f (X) δX =
∞
∑

i=0

1

i!

∫

Xi

f ({x1, . . . , xi}) d (x1, . . . , xi)

(2)

for any function f that takes F (X), the collection of all finite

subsets of X, to the real line. A new set of observations

Zk is received at time k, which is modelled by a multi-

object likelihood function gk (Zk|Xk). Thus the multi-object

posterior at time k is given by Bayes rule

πk (Xk|Z1:k) =
gk (Zk|Xk)πk|k−1 (Xk|Z1:k−1)

∫

gk (Zk|X)πk|k−1 (X|Z1:k−1) δX
. (3)

Collectively, (1) and (3) are referred to as the multi-object

Bayes filter. In general, computing the exact multi-object

posterior is numerically intractable, and approximations are

required to derive practical algorithms.

One of the first RFS-based algorithms to be proposed was

the probability hypothesis density (PHD) filter [23], which

tractably approximates the full multi-object Bayes recursion

by propagating only the first moment of the density. This

was followed by the cardinalised PHD (CPHD) filter [25],

which propagates the probability distribution of the number

of targets, in addition to the first moment. Another type of

algorithm based on RFS techniques involves approximating

the density as a multi-Bernoulli RFS, known as multi-object

multi-Bernoulli (MeMBer) filtering [26]. Neither the PHD

nor the multi-Bernoulli approaches require explicit data as-

sociation, which has been a key reason for their popularity.

However, they only provide a set of unlabelled point estimates

at each time step, hence, for applications that require target

trajectories, additional post-processing is necessary to produce

the tracks. A recently proposed technique for addressing this

problem is the concept of labelled random finite sets [20]. This

technique involves assigning a distinct label to each element

of the target set, so that the history of each object’s trajectory

can be naturally identified, without the requirement for post-

processing.

In [20], an algorithm was proposed for solving the multi-

object tracking problem under the standard point-detection

likelihood model, based on a type of labelled RFS called ‘gen-

eralised labelled multi-Bernoulli’ (GLMB). We now review

the main points of this technique, and in the section to follow

we propose a generalisation which will enable it to handle

extended targets.

We begin by introducing some notation and definitions relat-

ing to labelled random finite sets. The multi-object exponential

of a real valued function h raised to a set X is defined as

[h (·)]X =
∏

x∈X

h (x) (4)
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where h∅ = 1, and the elements of X may be of any type

such as scalars, vectors, or sets, provided that the function

h(·) takes an argument of that type. The generalised Kronecker

delta function is defined as

δY (X) =

{

1, if Y = X

0, otherwise
(5)

where again, X and Y may be of any type, such as scalars,

vectors, or sets. Also, the set inclusion function is defined as

1Y (X) ,

{

1, if X ⊆ Y

0, otherwise
. (6)

Definition 1. A labelled RFS X with state space X and

discrete label space L, is an RFS on X × L, such that the

labels within each realisation are always distinct. That is, if

L (X) is the set of unique labels in X , and we define the

distinct label indicator function as

∆(X) =

{

1, if |L (X)| = |X|

0, if |L (X)| 6= |X|
(7)

then a labelled RFS X always satisfies ∆(X) = 1.

Definition 2. A generalised labelled multi-Bernoulli (GLMB)

RFS is a labelled RFS with state space X and discrete label

space L, which satisfies the probability distribution

π (X) = ∆ (X)
∑

c∈C

w(c) (L (X))
[

p(c) (·)
]X

(8)

where C is an arbitrary index set, and w(c) (L (X)) and

p(c) (x, l) satisfy
∑

c∈C

w(c) (L) = 1 (9)

∫

x∈X

p(c) (x, l) dx = 1. (10)

A. Multi-object Transition Kernel

Let X be the labeled RFS of objects at the current time with

label space L. A particular object (x, l) ∈ X has probability

pS (x, l) of surviving to the next time with state (x+, l+)
distributed according to f (x+|x, l) δl (l+), and probability

qS (x, l) = 1 − pS (x, l) of being terminated. The set S of

surviving objects at the next time is distributed according to

fS (S|X) = ∆ (S)∆ (X) 1L(X) (L (S)) [Φ (S; ·)]X (11)

where

Φ (S;x, l) =
∑

(x+,l+)∈S

δl (l+) pS (x, l) f (x+|x, l)

+
(

1− 1L(S) (l)
)

qS (x, l) , (12)

and f (x+|x, l) is the single target transition kernel. Now let

B be the labelled RFS of new born objects with label space

B, where L∩B = ∅. Since the births must have distinct labels,

and assuming that their states are independent, B is distributed

according to

fB (B) = ∆ (B)wB (L (B)) [pB (·)]B (13)

where pB (·) is the single target birth density, and wB (L)
is the birth weight. The overall multi-object state at the next

time step is the union of surviving and new born objects, i.e.

X+ = S ∪ B. The label spaces L and B are disjoint, and

the states of new born objects are independent of surviving

objects, hence S and B are independent. It was shown in [20]

that the transition kernel for a labelled multi-object density is

given by

f (X+|X) = fS (X+ ∩ (X× L) |X)fB (X+ − X× L) ,
(14)

and that a GLMB density of the form (8) is closed under the

Chapman-Kolmogorov prediction equation with this transition

kernel.

B. Standard Multi-object Observation Model

Let X be the labelled RFS of objects that exist at the ob-

servation time. A particular object (x, l) ∈ X has probability

pD (x, l) of generating a detection z with likelihood g (z|x),
and probability qD (x, l) = 1−pD (x, l) of being misdetected.

Since the detections are conditionally independent, we model

the set of detections D as a multi-Bernoulli RFS. Using

the notation {(r (x) , p (x)) |x ∈ X} (·) to denote a multi-

Bernoulli density with existence probabilities r and single-

object densities p, then the density of D can be expressed

as

πD (D|X) = {(pD (x, l) , g (·|x)) ; (x, l) ∈ X} (D) . (15)

Let K be the set of clutter observations, which are independent

of the target detections. We model K as a Poisson RFS with

rate λ and spatial distribution c(·), hence K is distributed

according to

πK (K) = e−λ [λc (·)]K . (16)

The overall multi-object observation is the union of target

detections and clutter observations, i.e. Z = D ∪K. Since D

and K are independent, it was shown in [23] that the multi-

object likelihood function is given by

g (Z|X) = e−λ [λc (·)]Z
∑

θ∈Θ

[ψZ (·; θ)]X (17)

where Θ is the set of all one-to-one mappings of labels in X

to measurement indices in Z,

Θ = {θ : L (X) → {0 : |Z|}} (18)

such that [θ (i) = θ (j) > 0] ⇒ [i = j], and ψZ (·; θ) is given

by

ψZ (x, l; θ) =







pD(x,l)g(zθ(l)|x,l)
λc(zθ(l))

, θ (l) > 0

qD (x, l) , θ (l) = 0
(19)

It was shown in [20] that a GLMB density of the form (8) is

closed under the Bayes update with likelihood function (17).
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III. LABELLED RFS-BASED EXTENDED TARGET

TRACKING

In this section, we present an extended multi-target obser-

vation model, and a state space model for a single extended

target, which includes the single target prediction and mea-

surement update. Based on these models, we then propose a

GLMB filter for tracking multiple extended targets in clutter.

A. Extended Multi-object Observation Model

Let X = {ξ1, . . . , ξn} be the labelled RFS of extended

objects that exist at the observation time. A particular object

(ξ, l) ∈ X has probability pD of generating a set of detections

W with likelihood g̃ (W |ξ, l), and probability qD = 1−pD of

being misdetected. Let D be the set of target detections. As

shown in [23] , D is distributed according to

πD (D|X) =
∑

W1⊎···⊎Wm=D

π (W1|ξ1) . . . π (Wn|ξn) , (20)

where each π (W |ξi) is an RFS distribution defined by

π (W |ξi) ∝

{

qD, W = ∅

pD.g̃ (W |ξi) , otherwise
(21)

and the symbol ⊎ denotes that the summation is taken over all

mutually disjoint subsets of D, such that W1∪· · ·∪Wm = D.

The set K of clutter observations, which is independent of the

target detections, is modelled as a Poisson RFS with rate λ

and spatial distribution c (·), hence it is distributed according

to (16).

The overall multi-object observation is the union of target

detections and clutter observations, i.e. Z = D ∪K. Since D

and K are independent, the multi-object likelihood is given

by the convolution

g (Z|X) =
∑

D⊆Z

πD (D|X)πK (Z −D) . (22)

This function can be equivalently expressed as a double

summation over partitions of Z up to size |X| + 1, and

mappings of measurement groups to targets as follows

g (Z|X) = e−λ [λc (·)]Z
|X|+1
∑

i=1

∑

U(Z)∈Pi(Z)
θ∈Θ(U(Z))

[

ψU(Z) (·; θ)
]X

,

(23)

where Pi (Z) is the set of all partitions1 of Z containing

exactly i groups, and Θ(U (Z)) is the set of all one-to-

one mappings θ : L (X) → {0, 1, . . . , |U (Z)|} taking the

labels in X to either a group of measurements in U (Z), or a

misdetection. Finally ψU(Z) (ξ; θ) is given by

ψU(Z) (ξ, l; θ) =







pD.g̃(U(Z)
θ(l)|ξ,l)

[λc(·)]
U
θ(l)(Z) , θ (l) > 0

qD, θ (l) = 0
(24)

where Uθ(l) (Z) is the group of measurements in partition

U (Z) that was assigned to label l under the mapping θ, and

1A partition of an arbitrary set A is defined as a disjoint collection of
non-empty sets, whose union is equal to A.

g̃ (W |ξ, l) is the likelihood that a single extended target with

state (ξ, l) generates measurement set W .

In general, computing the exact likelihood function in (23)

will be numerically intractable, as the sets of measurement

partitions and group-to-target mappings can potentially be-

come extremely large. However, it has been shown that in

many practical situations, it is only necessary to consider a

small subset of these partitions to achieve good performance

[13], [16]. In addition, the set of group-to-target mappings can

be significantly reduced using a ranked assignment algorithm,

thereby cutting down the number of terms in the likelihood

even further.

B. Extended Target State-space Model

In this section we describe a family of distributions which

can be used to model a single extended target. We begin by

introducing the following notation:

• R
+ is the space of positive reals

• R
n is the space of real n-dimensional vectors

• S
n
++ is the space of n× n positive definite matrices

• S
n
+ is the space of n× n positive semi-definite matrices

• GAM (γ;α, β) is the gamma pdf defined on γ > 0, with

shape α > 0, and inverse scale β > 0:

GAM (γ;α, β) =
βα

Γ (α)
γα−1e−βγ

• N (x;m,P ) is the multivariate Gaussian pdf defined on

x ∈ R
n, with mean m ∈ R

n and covariance P ∈ S
n
+

N (x;m,P ) =
1

√

(2π)
n |P |

e−
1
2 (x−m)TP−1(x−m)

• IWd(χ; v, V ) is the inverse Wishart distribution defined

on χ ∈ S
d
++, with degrees of freedom v > 2d, and scale

matrix V ∈ S
d
++ [31]

IWd (χ; v, V ) =
2−

v−d−1
2 |V |

v−d−1
2

Γd

(

v−d−1
2

)

|χ|
v

2
e−

1
2 tr(V χ−1)

where Γd (·) is the multivariate gamma function, and tr (·)
takes the trace of a matrix.

• A⊗B is the Kronecker product of matrices A and B

We model the extended target state as the triple

ξk = (γk, xk, χk) ∈ R
+ × R

nx × S
d
++, (25)

where γk ∈ Z
+ is the Poisson rate of the number of

measurements generated by the target, and xk ∈ R
nx and

χk ∈ S
d
++ are the mean and covariance of the Gaussian

spatial distribution of these measurements. The distribution of

the state of an extended target is a gamma Gaussian inverse

Wishart (GGIW) density on R
+ × R

nx × S
d
++, given by

p (ξk|Z1:k) = p (γk|Z1:k) p (xk|χk, Z1:k) p (χk|Z1:k)

= GAM
(

γk;αk|k, βk|k
)

×N
(

xk;mk|k, Pk|k ⊗ χk

)

× IWd

(

χk; vk|k, Vk|k
)

, GGIW
(

ξk; ζk|k
)

(26)
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where ζk|k =
(

αk|k, βk|k,mk|k, Pk|k, vk|k, Vk|k
)

is an array

containing the GGIW density parameters. In what follows,

we describe the prediction and update procedures for a single

extended target with a GGIW distribution.

1) Prediction : To compute the predicted extended tar-

get density p (ξk+1|Z1:k), we need to solve the following

Champan-Kolmogorov equation

p (ξk+1|Z1:k) =

∫

f (ξk+1|ξk) p (ξk|Z1:k) dξk, (27)

where p (ξk|Z1:k) is the posterior density at time k, and

f (ξk+1|ξk) is the transition density. However, this has no

closed form solution for the GGIW defined in (26). To obtain

a tractable approximation, we start by making the simplifying

assumption that the transition density can be expressed as the

product [14]

p (ξk+1|ξk) ≈

pγ (γk+1|γk) px (xk+1|χk+1, xk) pχ (χk+1|χk) , (28)

which leads to the following expression for the predicted

GGIW

p (ξk+1|Z1:k) ≈

∫

GAM
(

γk;αk|k, βk|k
)

pγ (γk+1|γk) dγk

×

∫

N
(

xk;mk|k, Pk|k ⊗ χk+1

)

px (xk+1|χk+1, xk) dxk

×

∫

IWd

(

χk; vk|k, Vk|k
)

pX (χk+1|χk) dχk. (29)

Under a linear Gaussian motion model, the kinematic compo-

nent can be solved in closed form:
∫

N (xk;mk|k,Pk|k ⊗ χk+1)px (xk+1|χk+1, xk) dxk

= N
(

xk+1;mk+1|k, Pk+k|k ⊗ χk+1

)

, (30)

mk+1|k =
(

Fk+1|k ⊗ Id
)

mk|k, (31)

Pk+1|k = Fk+1|kPk|kF
T
k+1|k +Qk+1|k. (32)

However, the measurement rate and target extension compo-

nents still do not permit closed form solutions. As was done

in [4] and [14], we make the following approximations:
∫

GAM
(

γk;αk|k, βk|k
)

pγ (γk+1|γk) dγk

≈ GAM
(

γk+1;αk+1|k, βk+1|k

)

, (33)

αk+1|k =
αk|k

µk
, βk+1|k =

βk|k

µk
, (34)

and
∫

IWd

(

χk; vk|k, Vk|k
)

pχ (χk+1|χk) dχk

≈ IWd

(

χk+1; vk|k+1, Vk|k+1

)

, (35)

vk+1|k = e−T/τvk|k, (36)

Vk+1|k =
vk+1|k − d− 1

vk|k − d− 1
Vk|k. (37)

In the above, µk = 1
1−1/w is an exponential forgetting factor

with window length w > 1, and τ is a temporal decay constant.

This leads to an approximate predicted density in the form

of a GGIW, pk+1|k (ξk+1|Z1:k) ≈ GGIW
(

ξk+1; ζk|k+1

)

,

where ζk|k+1 is the array of predicted parameters defined by

equations (31), (32), (34), (36) and (37).

2) Update: Each extended target will undergo measurement

updates using subsets of the overall measurement set. When

updating a target with predicted GGIW density pk|k−1 (with

parameters ζk|k−1), using a particular subset W ⊆ Zk,

the posterior GGIW density for that target is computed as

follows. We start by calculating the mean and scale matrix

for the measurement subset, the innovation, innovation factor,

innovation matrix and gain vector:

z̄k =
1

|W |

∑

z
(i)
k

∈W

z
(i)
k , (38)

Ψk =
∑

z
(i)
k

∈W

(

z
(i)
k − z̄k

)(

z
(i)
k − z̄k

)T

, (39)

ǫk|k−1 = z̄k − (Hk ⊗ Id)mk|k−1, (40)

Sk|k−1 = HkPk|k−1H
T
k +

1

|W |
, (41)

Nk|k−1 =
(

Sk|k−1

)−1
ǫk|k−1ǫ

T
k|k−1, (42)

Kk|k−1 = Pk|k−1H
T
k

(

Sk|k−1

)−1
. (43)

The parameters of the posterior GGIW are now given by:

αk|k = αk|k−1 + |W | , (44)

βk|k = βk|k−1 + 1, (45)

mk|k = mk|k−1 +
(

Kk|k−1 ⊗ Id
)

ǫk|k−1, (46)

Pk|k = Pk|k−1 −Kk|k−1Sk|k−1K
T
k|k−1, (47)

vk|k = vk|k−1 + |W | , (48)

Vk|k = Vk|k−1 +Nk|k−1 +Ψk. (49)

Finally, the Bayes normalising constant (which is required in

the next section to compute the weights of the posterior GLMB

density) is given by the product of the following two terms,

ηγ
(

W ; pk|k−1

)

=
1

|W |!

Γ
(

αk|k

) (

βk|k−1

)αk|k−1

Γ
(

αk|k−1

) (

βk|k
)αk|k

, (50)

ηx,χ
(

W ; pk|k−1

)

=

(

π|W | |W |
)− d

2
∣

∣Vk|k−1

∣

∣

v
k|k−1

2 Γd

( vk|k

2

)

(

Sk|k−1

)
d

2
∣

∣Vk|k
∣

∣

v
k|k
2 Γd

( vk|k−1

2

)

.

(51)

Note that the measurement rate component (50) corresponds to

a negative-binomial pdf, and the kinematics-extension compo-

nent (51) is proportional to a matrix variate Generalized Beta

type II pdf [13].

C. Extended Target GLMB Filter

We now present the extended target GLMB filter using the

likelihood function described in the previous sections. Firstly,

we note that the prediction is identical to that of the standard

GLMB filter derived in [20], which we shall revisit here for
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the sake of completeness. For simplicity, we assume that the

survival probability is state independent, i.e. pS (ξ, l) = pS .

If the multi-object density at time k − 1 is a GLMB of the

form (8), then the predicted multi-object density at time k is

a GLMB given by

πk (Xk) = ∆ (Xk)
∑

c∈C

w
(c)
k (L (Xk))

[

p
(c)
k (·)

]Xk

(52)

where

w
(c)
k (L) = wB (L− L)w

(c)
S (L ∩ L) , (53)

p
(c)
k (ξ, l) = 1L (l) p

(c)
S (ξ, l) + (1− 1L (l)) pB (ξ, l) , (54)

p
(c)
S (ξ, l) =

∫

f (ξ|ξk−1, l) p
(c) (ξk−1, l) dξk−1, (55)

w
(c)
S (J) = [pS ]

J
∑

I⊆L

1I (J) [qS ]
I−J

w(c) (I) , (56)

The function f (ξ|ξk−1, l) is the single-object transition kernel,

which in this case is the GGIW transition defined in Section

III-B1.

Proposition 3. If the prior is a GLMB of the form (8), then

under the extended multi-object likelihood function (23), the

posterior is also a GLMB, given by

π (X|Z) = ∆ (X)
∑

c∈C

|X|+1
∑

i=1

∑

U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w
(c,θ)
U(Z) (L (X))

×
[

p(c,θ) (·|U (Z))
]X

(57)

where

w
(c,θ)
U(Z) (L) =

w(c) (L)
[

η
(c,θ)
U(Z)

]L

∑

c∈C

∑

J⊆L

|J|+1
∑

i=1

∑

U(Z)∈Pi(Z)
θ∈Θ(U(Z))

w(c) (J)
[

η
(c,θ)
U(Z)

]J
,

(58)

p(c,θ) (ξ, l|U (Z)) =
p(c) (ξ, l)ψU(Z) (ξ, l; θ)

η
(c,θ)
U(Z) (l)

, (59)

η
(c,θ)
U(Z) (l) =

pDηγ
(

Uθ(l) (Z) ; p
(c)

)

ηx,χ
(

Uθ(l) (Z) ; p
(c)

)

[λc (·)]Uθ(l)(Z)
,

(60)

in which ψU(Z) (ξ, l; θ), ηγ (·) and ηx,χ (·) are given by (24),

(50) and (51) respectively.

Note that Proposition 3 means that the GLMB can be

regarded as a conjugate prior with respect to the extended

multi-target measurement likelihood function.

IV. IMPLEMENTATION

To compute the predicted GLMB density, we first predict the

individual target pdfs forward using (29)-(37). Then, using the

target survival probabilities in combination with a k-shortest

paths algorithm, we generate the GLMB density for surviving

targets. This density is then multipled by the GLMB for

spontaneous births, to arrive at the overall prediction. See [1],

[21] for more details on these procedures.

The measurement update step begins with generating a

feasible collection of partitions of the current measurement

set. As is the case for the extended target (C)PHD filter, the

main barrier to computing the full extended target GLMB

posterior in (57), is the fact that it involves a sum over

all possible partitions of the measurement set. Even when

the set of measurements is relatively small, performing an

exhaustive enumeration of the partitions is clearly infeasible,

because the number of possibilities (which is given by the Bell

number) grows combinatorially with the number of elements.

Therefore, for the filter to be computationally tractable, it

is imperative that the number of partitions is reduced to a

more managable level. To minimise the truncation error in the

posterior density, it is necessary to ensure that the retained

partitions are those that will give rise to GLMB components

with the highest posterior weights. Although it is difficult

to establish a method that can guarantee this, the use of

clustering techniques to generate the most likely partitions

has been shown to produce favourable results [13], [16]. In

our implementation of the GGIW-GLMB filter, we use a

combination of distance-based clustering and the expecation-

maximisation algorithm to generate a set of feasible partitions

of the measurements, in a similar manner to [13] and [16].

After generating the feasible partitions, each group of

measurements that appears in a partition is then used to

update the single target pdfs in the GLMB density, using (38)-

(49). We then use Murty’s algorithm to create new posterior

components, by generating highly weighted assignments of

measurement groups to targets. After computing the poste-

rior components, labelled target estimates from the posterior

GLMB density are extracted and used to update the track

output. Finally, the posterior GLMB is pruned, retaining the

top N components with highest weights.

Due to length restrictions, we have not provided pseudo-

code for the GGIW-GLMB filter in this paper. However, this

will be presented in future work.

V. SIMULATION RESULTS

The proposed GGIW-GLMB filter is compared to GGIW-

mixture implementations of an extended target PHD filter [13],

[15] and an extended target CPHD filter [14]. The cardinality

estimation error (estimated cardinality minus true cardinality)

and the optimal subpattern assignment (OSPA) metric [28] are

computed for all three filters. The OSPA used in this study is a

weighted combination of three metrics; the absolute value for

the measurement rates, the Euclidean norm for the kinematic

vectors, and the Frobenius norm for the extension matrices.

Further implementation details can be found in [14, Section

VI].

Two scenarios were simulated, both of which were used in

[14] to compare the performance of the GGIW-PHD filter and

the GGIW-CPHD filter. Scenario 1 is 200 time steps long and

has four targets that appear/disappear from the surveillance
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area at different times. The measurements were simulated with

probability of detection pD = 0.8 and the Poisson rate for the

clutter measurements was set to 30 per time step. This scenario

is primarily used to compare the three filters’ cardinality es-

timation, as targets appearing/disappearing, lower probability

of detection, and higher clutter rate, are all challenging for

the cardinality estimation. The true target tracks are shown in

Figure 1.
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Figure 1. Simulated true target tracks. In scenario 1 (left) all tracks start in
the origin. In scenario 2 (right) the tracks start on the left.

Scenario 2 is 100 time steps long and has two targets that

are present during all 100 time steps. The two targets are

spatially separated at the beginning, then move in parallel at

close distance, before separating again. Measurements were

simulated with probability of detection pD = 0.98 and clutter

Poisson rate of 10. This scenario is primarily used to compare

how the three filters handle targets that are spatially close.

Spatially close targets are challenging because the true target

measurements will also be spatially close, appearing as a

single cluster in the sensor data, rather than two separate

clusters which is typically the case for spatially separated

targets. Previous work has shown that tracking spatially close

targets can be challenging [13], [16].

For each scenario, 1000 Monte Carlo runs were carried out.

The mean OSPA metrics are shown in Figure 2, and the mean

cardinality errors are shown in Figure 3. For the sake of clarity,

uncertainty regions (mean ± one standard deviation) are only

shown for the CPHD and GLMB filters.

For both scenarios, the PHD filter has the worst perfor-

mance, both in terms of the OSPA metric and the cardinality

error. The PHD filter’s cardinality estimate has a high variance,

and the filter is therefore sensitive to missed detections and

clutter, which explains the larger cardinality error. The larger

OSPA metric that can be seen in scenario 2 is due to the fact

that a missed detection typically leads to a lost target estimate,

and in subsequent time steps the two spatially close targets are

treated as a single target. This does not happen for the GLMB

and CPHD filters because they have cardinality estimates with

lower variance, and hence do not lose estimates.

Comparing the CPHD and GLMB filters, for scenario 2

the mean OSPA metrics are approximately equal, however

for scenario 1 the GLMB filter gives a smaller OSPA metric.

The mean cardinality errors are approximately equal in both

scenarios, however the uncertainty region for the GLMB filter

is smaller than for the CPHD filter, which indicates that the

GLMB filter’s cardinality estimate has lower variance.

For scenario 1, the algorithm execution times (mean ± one

standard deviation) are 5.89 ± 4.53s for the GLMB filter,

2.20 ± 0.47s for the CPHD filter, and 0.73 ± 0.31s for the

PHD filter. The simulation study shows that, compared to the

PHD and CPHD filter, the GLMB filter has a better cardinality

estimate (lower variance), and shows that when the probability

of detection is lower and the clutter rate is higher, the GLMB

filter has lower OSPA metric. The improved estimation perfor-

mance comes at the cost of higher computational complexity.

VI. CONCLUSION

In this paper we have developed an adaptation to the

generalised labelled multi-Bernoulli filter, enabling it to track

multiple extended targets in clutter. The proposed filter is

based on modelling the target kinematics and their extents

using gamma Gaussian inverse Wishart distributions. A simu-

lation study showed that the proposed filter outperforms prior

work on multiple extended target tracking.
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Figure 2. OSPA metric for scenario 1 (top) and scenario 2 (bottom). The
thick lines show the Monte Carlo mean, the colored regions show the Monte
Carlo mean ± one standard deviation.
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Figure 3. Cardinality errors for scenario 1 (top) and scenario 2 (bottom). The
thick lines show the Monte Carlo mean, the colored regions show the Monte
Carlo mean ± one standard deviation.
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