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Abstract—The multi-Bernoulli (MB) filter for extended targets
has been derived recently. However, the implementation of the
extended target (ET) MB filter for nonlinear non-Gaussian
models has not been presented. In this paper, we propose the
sequential Monte Carlo (SMC) implementation of the ET-MB
filter for estimating multiple extended targets by using the SMC
technique and measurement partitioning algorithm. Simulation
results demonstrate that the estimation performance of the SMC-
ET-MB filter is superior to that of the standard SMC-MB filter
for extended target measurement models.

Index Terms—Random finite set, multi-Bernoulli filter, extend-
ed targets, sequential Monte Carlo

I. INTRODUCTION

In multi-target tracking, the objective is to simultaneously

estimate the number of targets and their states from a sequence

of noisy measurements. Generally, each target is assumed to

be a point which produces at most one measurement per

scan. This assumption is valid when the target is far away

from the sensor or the resolution of sensors is low. For the

high resolution sensor, or the distance between the target and

sensor is small, the sensor may be able to resolve individual

features on the target. Each target may generate more than

one measurement per scan, and the assumption of point targets

is not appropriate. Hence extended target tracking arises. An

extended target is defined as a target that potentially generates

more than one measurement per scan [1].

Extended target tracking has attracted more attention in

recent years. Among various extended target tracking ap-

proaches, we are interested in the random finite set (RFS)

approach. The RFS approach provides another kind of methods

for target tracking [2],[3],[4]. In the RFS approach, targets’

states and measurements are treated as RFSs. With RFS

models, Mahler has proposed the multi-target Bayes filter

that propagates the multi-target posterior density recursively

[2],[5]. Since the optimal multi-target Bayes filter is generally

intractable, some approximated multi-target Bayes filters have

been proposed, such as the probability hypothesis density

(PHD) filter [5] which propagates the first order moment of the

multi-target density, cardinality PHD (CPHD) filter [6] which

propagates the first order moment and cardinality distribution

of the multi-target density, and the multi-Bernoulli (MB) filter

[2],[7] which propagates the parameters of an MB distribution

to approximate the multi-target density. These filters have been

implemented by using Gaussian mixture (GM) and sequential

Monte Carlo (SMC) techniques [7],[8],[9],[10]. The PHD,

CPHD, and MB filters are usually considered for estimating

multiple point targets. Using a Poisson model of extended

target measurements [11], Mahler has derived the PHD filter

for extended targets [12]. The GM implementation of the

ET-PHD filter has been presented in [1],[13]. A Gaussian

inverse Wishart implementation of the ET-PHD filter has been

proposed to jointly estimate targets’ states and extensions. The

CPHD filter for extended targets has been derived in [14], and

the GM implementation of the ET-CPHD filter was presented

in [15]. Subsequently, a Gamma Gaussian inverse Wishart

implementation of the ET-CPHD filter was proposed to jointly

estimate targets’ states and extensions in [16].

Recently, the MB filter for extended targets has been pro-

posed in [17]. A GM implementation of the ET-MB filter

for linear Gaussian models was proposed in [18]. However,

the GM-ET-MB filter cannot be directly applied to nonlinear

non-Gaussian models. With the assumption of point targets,

the SMC-MB filter has been proposed for nonlinear models,

which obtains higher estimation accuracy than SMC-PHD and

SMC-CPHD filters, as the SMC-MB filter does not need the

extra clustering method to extract target states. Hence, in this

paper we propose the SMC implementation of ET-MB filter

for extended targets. Using SMC techniques and the existing

measurement partitioning algorithm, the SMC-ET-MB filter

for estimating multiple extended targets is presented in this

paper.

The rest of this paper is organized as follows. Section

II reviews the ET-MB filter for extended targets. The SMC

implementation of the ET-MB filter is presented in Section

III. Numerical results for a simulation scenario are offered in

Section IV. Finally, the conclusion is drawn in Section V.

II. THE ET-MB FILTER

The MB filter propagates parameters of an MB distribution

to approximate the multi-target Bayes filter. It propagates a

time varying number of target tracks in time. Initially, the

MB filter was proposed for handing point targets. Recently,

based on a Poisson model measurement likelihood proposed

by Gilholm [11], Zhang [17] has derived the MB filter for

extended targets. In this section, the ET-MB filter is reviewed,

for more details see [17]. The ET-MB filter consists of

prediction and update.
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Prediction: If at time k−1, the posterior multi-target density

πk−1 = {(r
(i)
k−1, p

(i)
k−1(xk−1))}

Mk−1

i=1 (1)

is given, where r
(i)
k−1 denotes the existing probability of the

ith hypothesized track, p
(i)
k−1(·) denotes the probability density

of the ith hypothesized track, and Mk−1 is the total number

of hypothesized tracks at time k−1, then the predicted multi-

target density is described by

πk|k−1 ={(r
(i)
P,k|k−1, p

(i)
P,k|k−1(xk))}

Mk−1

i=1 ∪

{(r
(i)
Γ,k, p

(i)
Γ,k(xk))}

MΓ,k

i=1 (2)

where

r
(i)
P,k|k−1 = r

(i)
k−1〈p

(i)
k−1(xk−1), pS,k(xk−1)〉 (3)

p
(i)
P,k|k−1(xk) =

〈

fk|k−1(xk|xk−1), p
(i)
k−1(xk−1)pS,k(xk−1)

〉

〈

p
(i)
k−1(xk−1), pS,k(xk−1)

〉

(4)

〈·, ·〉 denotes a inner product defined between two real-

valued functions α and β by 〈α, β〉 =
∫

α(x)β(x)dx (or
∑∞

i=0 α(i)β(i), when α and β are sequences), fk|k−1(·|xk−1)
denotes a single target transition density given state xk−1 at

time k, pS,k(·) is the survival probability of a target at time k,

and {(r
(i)
Γ,k, p

(i)
Γ,k(xk))}

MΓ,k

i=1 are the parameters of birth targets

at time k.

Update: If at time k, the predicted multi-target density is

πk|k−1 = {(r
(i)
k|k−1, p

(i)
k|k−1(xk))}

Mk|k−1

i=1 (5)

then the posterior multi-target density

πk ={(r
(i)
L,k, p

(i)
L,k(xk))}

Mk|k−1

i=1 ∪

{(rU,k(Wk), pU,k(xk;Wk))}Wk∈℘∠Zk
(6)

can be computed as follows.

The legacy components:

r
(i)
L,k =r

(i)
k|k−1×

1−
〈

p
(i)
k|k−1(xk), (1− e−γk(xk))pD,k(xk)

〉

1− r
(i)
k|k−1

〈

p
(i)
k|k−1(xk), (1 − e−γk(xk))pD,k(xk)

〉

(7)

p
(i)
L,k(xk) =p

(i)
k|k−1(xk)×

1− (1− e−γk(xk))pD,k(xk)

1−
〈

p
(i)
k|k−1(xk), (1− e−γk(xk))pD,k(xk)

〉

(8)

The measurement-updated components:

rU,k(Wk) =
ω℘

dWk

×

Mk|k−1
∑

i=1

r
(i)
k|k−1(1− r

(i)
k|k−1)〈p

(i)
k|k−1(xk), ψWk

(xk)〉

(1− r
(i)
k|k−1〈p

(i)
k|k−1(xk), (1− e−γk(xk))pD,k(xk)〉)2

(9)

pU,k(xk;Wk) =

∑Mk|k−1

i=1

r
(i)

k|k−1

1−r
(i)

k|k−1

p
(i)
k|k−1(xk)ψWk

(xk)

∑Mk|k−1

i=1

r
(i)

k|k−1

1−r
(i)

k|k−1

〈p
(i)
k|k−1(xk), ψWk

(xk)〉

(10)

ω℘ =

∏

Wk∈℘ dWk
∑

℘∠Zk

∏

Wk∈℘ dWk

(11)

dWk
= δ|Wk|,1+ (12)

Mk|k−1
∑

i=1

r
(i)
k|k−1〈p

(i)
k|k−1(xk), ψWk

(xk)〉

1− r
(i)
k|k−1〈p

(i)
k|k−1(xk), (1 − e−γk(xk))pD,k(xk)〉

(13)

ψWk
(xk) = pD,k(xk)e

(−γk(xk))γk(xk)
|Wk|

∏

zk∈Wk

gk(zk|xk)

κk(zk)

(14)

where the notation ℘∠Zk denotes that ℘ partitions the mea-

surement set Zk into nonempty cells Wk, the notation Wk ∈ ℘
denotes that the set Wk is a cell in the partition, |Wk| is

the number of elements in Wk , δi,j is the Kronecker delta

function, Zk is the measurement set at time k, γk(·) is the

expected number of measurements generated from each target,

gk(·|xk) is the single measurement likelihood given state xk

at time k, pD,k(xk) is the detection probability given state xk

at time k, and κk(·) is the clutter intensity at time k.

III. THE SMC-ET-MB FILTER

The ET-MB filter has been derived in [17], but its implemen-

tations were not presented. Recently, a GM implementation of

the ET-MB filter for linear Gaussian models was proposed in

[18]. However, the GM-ET-MB filter does not directly apply

to nonlinear system models. For nonlinear models, Vo [7] has

proposed SMC-MB filter for multiple point targets estimation.

The SMC-MB filter has higher estimation accuracy than the

SMC-PHD and SMC-CPHD filters. Hence, in this section

we propose the SMC implementation of the ET-MB filter

for multiple extended targets estimation. Since the prediction

of the SMC-ET-MB filter is exactly the same as that of the

standard SMC-MB filter [7], the prediction is omitted. The

update of the SMC-ET-MB filter is very easily derived. For

clarity, the derivation of the update of the SMC-ET-MB filter

is given in Appendix. The update of the SMC-ET-MB filter is

described as follows.

A. Update

If at time k − 1, the predicted multi-target density is

specified by πk|k−1 = {(r
(i)
k|k−1, p

(i)
k|k−1(xk))}

Mk|k−1

i=1 , and

each p
(i)
k|k−1(xk) is composed of a set of weighted particles,

i.e.

p
(i)
k|k−1(xk) =

L
(i)

k|k−1
∑

j=1

w
(i,j)
k|k−1δ(xk − x

(i,j)
k|k−1) (15)
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then the updated multi-target density

πk ={(r
(i)
L,k, p

(i)
L,k(xk))}

Mk|k−1

i=1 ∪

{(rU,k(Wk), pU,k(xk;Wk))}Wk∈℘∠Zk
(16)

can be computed as follows.

The legacy components are

r
(i)
L,k = r

(i)
k|k−1

1− ̺
(i)
L,k

1− r
(i)
k|k−1̺

(i)
L,k

(17)

p
(i)
L,k =

L
(i)

k|k−1
∑

j=1

w
(i,j)
L,k δ(xk − x

(i,j)
k|k−1) (18)

where

̺
(i)
L,k =

L
(i)

k|k−1
∑

j=1

(1− e
−γk(x

(i,j)

k|k−1
)
)pD,k(x

(i,j)
k|k−1)w

(i,j)
k|k−1 (19)

w̃
(i,j)
L,k =

w
(i,j)
k|k−1(1 − (1− e

(−γk(x
(i,j)

k|k−1
))
)pD,k(x

(i,j)
k|k−1))

1− ̺
(i)
L,k

(20)

w
(i,j)
L,k =

w̃
(i,j)
L,k

∑L
(i)

k|k−1

j=1 w̃
(i,j)
L,k

(21)

The measurement-updated components are

rU,k(Wk) =
ω℘

dWk

Mk|k−1
∑

i=1

r
(i)
k|k−1(1− r

(i)
k|k−1)̺

(i)
U,k(Wk)

(1 − r
(i)
k|k−1̺

(i)
L,k)

2
(22)

pU,k(xk;Wk) =

Mk|k−1
∑

i=1

L
(i)

k|k−1
∑

j=1

w
(i,j)
U,k (Wk)δ(xk − x

(i,j)
k|k−1)

(23)

where

ω℘ =

∏

Wk∈℘ dWk
∑

℘∠Zk

∏

Wk∈℘ dWk

(24)

dWk
= δ|Wk|,1 +

Mk|k−1
∑

i=1

r
(i)
k|k−1̺

(i)
U,k(Wk)

1− r
(i)
k|k−1̺

(i)
L,k

(25)

̺
(i)
U,k(Wk) =

L
(i)

k|k−1
∑

j=1

w
(i,j)
k|k−1pD,k(x

(i,j)
k|k−1)e

(−γk(x
(i,j)

k|k−1
))×

γk(x
(i,j)
k|k−1)

|Wk|
∏

zk∈Wk

gk(zk|x
(i,j)
k|k−1)

κk(zk)

(26)

w̃
(i,j)
U,k (Wk) =

r
(i)
k|k−1

1− r
(i)
k|k−1

w
(i,j)
k|k−1pD,k(x

(i,j)
k|k−1)e

(−γk(x
(i,j)

k|k−1
))×

γk(x
(i,j)
k|k−1)

|Wk|
∏

zk∈Wk

gk(zk|x
(i,j)
k|k−1)

κk(zk)

∑Mk|k−1

i=1

r
(i)

k|k−1

1−r
(i)

k|k−1

̺
(i)
U,k(Wk)

(27)

w
(i,j)
U,k (Wk) =

w̃
(i,j)
U,k (Wk)

∑Mk|k−1

i=1

∑L
(i)

k|k−1

j=1 w̃
(i,j)
U,k (Wk)

(28)

B. Measurement Set Partitioning Algorithm

Similar to the ET-PHD and ET-CPHD filters

[1],[13],[16],[19], the ET-MB filter also requires partitioning

algorithms that partitions the measurement set into non-empty

cells. As the number of possible partitions grows very large

with the increase of the number of measurements. It is

computationally infeasible to consider all the partitions, hence

some approximated partitioning algorithms were developed

[1]. The distance partitioning, K-means++ clustering, and

distance partitioning with subpartitioning methods have been

successfully applied to the GM-ET-PHD filter for estimating

multiple extended targets [1],[13]. These partitioning

algorithms have been shown to reduce the number of

partitions with little impact on tracking performance [1],[13].

The distance partitioning method shows a better estimation

performance than the K-means++ clustering method [1],

hence the distance partitioning method is considered in this

paper.

C. Resampling and Multi-Target State Extraction

To reduce the effect of degeneracy of the particles, the

resampling is performed for each hypothesized track. The

resampling and multi-target state extraction approaches are the

same as that of the standard SMC-MB filter, for details see

[7].

IV. SIMULATION RESULTS

A. Scenario

Consider a two dimensional scenario with a time-varying

number of extended targets observed in clutter and missed

detection. The surveillance region is [0, π] rad × [0, 2000] m.

A maximum of 6 extended targets appears in the scenario, and

targets appear and terminate at a random time. The true target

tracks are shown in Fig. 1.

The kinematic state xk = [px,k, ṗx,k, py,k, ṗy,k, ωk]
T con-

sists of the position component (px,k, py,k), velocity compo-

nent (ṗx,k, ṗy,k), and the turn rate ωk. Assume that each target

follows a coordinated turn (CT) dynamical model [20], i.e.

xk = Fk−1(ωk−1)xk−1 + wk−1 (29)
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the process noise wk−1 is a zero mean Gaussian noise with

the known covariance Qk−1, where

F (ωk−1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 sinωk−1T

ωk−1
0 − 1−cosωk−1T

ωk−1
0

0 cosωk−1T 0 − sinωk−1T 0

0
1−cosωk−1T

ωk−1
1

sinωk−1T

ωk−1
0

0 sinωk−1T 0 cosωk−1T 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(30)

Qk−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

T 3

3 q̃w
T 2

2 q̃w 0 0 0
T 2

2 q̃w T q̃w 0 0 0

0 0 T 3

3 q̃w
T 2

2 q̃w 0

0 0 T 2

2 q̃w T q̃w 0
0 0 0 0 T q̃ω

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(31)

The sampling period is T = 1 s. q̃w = 25 m2/s3 and q̃ω =
3.05× 10−4 rad2/s3 are related to process noise intensities.

The measurement model is a noisy bearing and range

measurement, which is described by

zk =

[

arctan
(

px,k−pSe,x

py,k−pSe,y

)

√

(px,k − pSe,x)2 + (py,k − pSe,y)2

]

+ vk, (32)

where (pSe,x, pSe,y) = (0, 0) m is the position of the sensor,

The measurement noise vk follows a zero mean Gaussian

distribution with the known covariance Rk = diag{σθ, σr}
2,

where σθ = 2π/180 rad and σr = 20 m are the standard

deviation of measurements for bearing and range portions,

respectively.

Clutter is modeled as a Poisson RFS with intensity [8]

κk = λcV u(zk), (33)

where λc is the average clutter intensity, V is the volume of

the surveillance area, and u(·) is the uniform density over the

surveillance area. The clutter density is set to λc = 1.6 ×
10−3(rad m)

−1
(an average of 10 clutter measurements per

scan).

The birth process is modeled as an MB-RFS, which is set

to

πΓ,k = {(r
(i)
Γ,k, p

(i)
Γ,k(xk))}

4
i=1

where

r
(1)
Γ,k = r

(2)
Γ,k = 0.02

r
(3)
Γ,k = r

(4)
Γ,k = 0.03

p
(i)
Γ,k(xk) = N (xk;m

(i)
Γ,k, P

(i)
Γ,k)

m
(1)
Γ,k = [−1500, 0, 250, 0, 0]T , m

(2)
Γ,k = [−250, 0, 1000, 0, 0]T ,

m
(3)
Γ,k = [250, 0, 750, 0, 0]T , m

(4)
Γ,k = [1000, 0, 1500, 0, 0]T ,

and P
(i)
Γ,k = diag{30, 30, 30, 30, 3π/180}2. The survival prob-

ability is pS,k = 0.99, and the detection probability is pD,k =
0.99. The expected number of generated measurements is set

to γk = 10 for each target. At each time step, a maximum

of Lmax = 1000 and minimum of Lmax = 300 particles are

imposed for each hypothesized track. Each hypothesized track
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Fig. 1. True target tracks in rθ plane (the start/end positions for each track
are denoted by ◦/△, and the sensor is denoted by �)
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Fig. 2. True tracks and measurements in xy positions versus time.

is pruned with a threshold of Tr = 10−4, and the maximum

of hypothesized tracks is set to 100.

B. The Metric

The optimal sub-pattern assignment (OSPA) metric [21] is

considered for evaluating the filtering performance, since it

can jointly capture difference in cardinality and individual

elements between two finite sets. For two arbitrary finite

sets X = {x1, · · · , xm} and Y = {y1, · · · , yn}, the OSPA

distance is defined as follows.

d̄(c)p (X,Y ) :=
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

1
n

(

minπ∈Πn

∑m
i=1 d

(c)(xi, yπ(i)
)p + cp(n−m)

))
1
p

,

m ≤ n

d̄(c)p (Y,X), m > n
0, m = n = 0

(34)
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Fig. 3. True tracks and estimates in xy positions versus time for the SMC-
ET-MB filter.
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Fig. 4. True tracks and estimates in xy positions versus time for the SMC-
MB filter.

where d(c)(x, y) := min (c, ‖x− y‖), ‖·‖ is the Euclidean nor-

m, and Πn denotes the set of permutations on {1, 2, · · · , n}.

The order parameter p determines the sensitivity to outliers,

and the cut-off parameter c determines the relative weighting

of the penalties assigned to cardinality and localization errors,

see [21] for more details. In this paper the parameters are set

to p = 2 and c = 200.

C. Monte Carlo Runs

To verify the effectiveness of the SMC-ET-MB filter for

extended targets, 200 Monte Carlo (MC) runs are performed.

In each MC simulation, the target trajectories are the same,

but measurements (stem from targets and clutter) are inde-

pendently generated. Fig. 2 shows the true target tracks and

measurements versus time. Figs. 3 and 4 plot the true tracks

and estimates for the SMC-ET-MB and SMC-MB filters,
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Fig. 5. The cardinality statistics versus time for (a) SMC-ET-MB filter, (b)
SMC-MB filter.
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Fig. 6. The OSPA distance.

respectively. In Figs. 3 and 4 it can be seen that the SMC-

ET-MB filter can estimate the number and states of multiple

extended targets correctly, and the SMC-ET-MB filter shows

better estimation performance than the standard SMC-MB

filter. Fig. 5shows the cardinality statistics for SMC-ET-MB

and SMC-MB filters. From Fig. 5 we can see that the average

cardinality of the SMC-ET-MB filter converges to the true

value, while the standard SMC-MB filter shows a significant

bias in the number of targets. Fig. 6 plots the OSPA distance

for the SMC-ET-MB and SMC-MB filters. It is shown that

SMC-ET-MB filer greatly outperforms the standard SMC-MB

filter for extended target models.

V. CONCLUSION

This paper proposes the SMC implementation of the ET-MB

filter for estimating extended targets. It is shown that the SMC-

ET-MB filter is able to estimate multiple extended targets
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correctly. In this paper, we adopt the existing partitioning

algorithm and consider a simple scenario. The measurement

partitioning algorithm still needs further studies for multiple

extended targets estimation, specifically for complex scenarios,

such as multiple crossed tracks, multiple parallel tracks and

so on [1],[19]. The SMC-ET-MB filter can be extended to

multiple model for maneuvering extended targets. The targets’

extensions are not considered in the ET-MB filter, in future

work the joint estimation of the targets’ kinematic states and

extensions will be considered. These have been implemented

for ET-PHD and ET-CPHD filters [19],[16].

APPENDIX

Substituting (15) into
〈

p
(i)
k|k−1(xk), (1 −

e−γk(xk))pD,k(xk)
〉

, then

〈

p
(i)
k|k−1(xk), (1 − e−γk(xk))pD,k(xk)

〉

=
〈

L
(i)
k

∑

j=1

w
(i,j)
k|k−1δ(xk − x

(i,j)
k|k−1), (1− e−γk(xk))pD,k(xk)

〉

=

L
(i)
k

∑

j=1

w
(i,j)
k|k−1

∫

δ(xk − x
(i,j)
k|k−1)(1 − e−γk(xk))pD,k(xk)dxk

=

L
(i)
k

∑

j=1

w
(i,j)
k|k−1(1− e

−γk(x
(i,j)

k|k−1
)
)pD,k(x

(i,j)
k|k−1) (35)

and (19) is obtained. Substituting (35) into (7), then (17) is

obtained.

Substituting (15),(35) into (8), then

p
(i)
L,k(xk)

=

L
(i)
k

∑

j=1

w
(i,j)
k|k−1δ(xk − x

(i,j)
k|k−1)

1− (1 − e−γk(xk))pD,k(xk)

1− ̺
(i)
L,k

=

L
(i)
k

∑

j=1

1− (1− e
−γk(x

(i,j)

k|k−1
)
)pD,k(x

(i,j)
k|k−1)

1− ̺
(i)
L,k

w
(i,j)
k|k−1×

δ(xk − x
(i,j)
k|k−1) (36)

and (20),(21) are obtained.

Substituting (15) and (14) into p
(i)
k|k−1(xk)ψWk

(xk), then

p
(i)
k|k−1(xk)ψWk

(xk)

=

L
(i)
k

∑

j=1

w
(i,j)
k|k−1δ(xk − x

(i,j)
k|k−1)pD,k(xk)e

(−γk(xk))γk(xk)
|Wk|×

∏

zk∈Wk

gk(zk|xk)

κk(zk)

=

L
(i)
k

∑

j=1

w
(i,j)
k|k−1pD,k(x

(i,j)
k|k−1)e

(−γk(x
(i,j)

k|k−1
))γk(x

(i,j)
k|k−1)

|Wk|×

∏

zk∈Wk

gk(zk|x
(i,j)
k|k−1)

κk(zk)
δ(xk − x

(i,j)
k|k−1) (37)

Integrate (37), then

〈p
(i)
k|k−1(xk), ψWk

(xk)〉

=

L
(i)
k

∑

j=1

w
(i,j)
k|k−1pD,k(x

(i,j)
k|k−1)e

(−γk(x
(i,j)

k|k−1
))γk(x

(i,j)
k|k−1)

|Wk|×

∏

zk∈Wk

gk(zk|x
(i,j)
k|k−1)

κk(zk)

(38)

and (26) is obtained. Substituting (35), (38) into (9),(12), and

(22), (25) are obtained.

Substituting (37),(38) into (10), then

pU,k(xk;Wk) =

Mk|k−1
∑

i=1

r
(i)
k|k−1

1− r
(i)
k|k−1

L
(i)
k

∑

j=1

w
(i,j)
k|k−1pD,k(x

(i,j)
k|k−1)e

(−γk(x
(i,j)

k|k−1
))×

γk(x
(i,j)
k|k−1)

|Wk|
∏

zk∈Wk

gk(zk|x
(i,j)
k|k−1)

κk(zk)
δ(xk − x

(i,j)
k|k−1)

∑Mk|k−1

i=1

r
(i)

k|k−1

1−r
(i)

k|k−1

̺
(i)
U,k(Wk)

(39)

and (27),(28) are obtained.
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