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Abstract—Conventional tracking algorithms rely upon the
hypothesis of one detection per target for each frame. However,
very fine spatial resolution radars represent widespread systems
that provides data for which this hypothesis could be no longer
valid. This problem is often called in the literature extended
target tracking.

In this paper we propose to use the well-established random
matrix theory to deal with this issue. A suitable measurement
model to address the radar’s measurement noise and its con-
version into Cartesian coordinates is proposed. The benefits of
the proposed converted measurements - extended target tracking
with regard to the problem of the targets’ size estimation are
demonstrated by using both simulated and real data acquired by
an X-band marine radar. Average gains of 75% in the estimation
of the targets’ cross-range size and 31% for the along-range size
are observed by comparing the proposed approach with the one
that neglects the sensor’s noises.

I. INTRODUCTION

Conventional tracking algorithms rely on the point target

hypothesis, i.e. there is at most one detection provided by a

target per frame. In many cases a target can be represented

by a cloud of detections thanks to, for instance, a fine spatial

resolution of acquisition systems. Thus, the above-mentioned

point target hypothesis is no longer valid. This problem is often

called extended target tracking (ETT), and some powerful

approaches have already been developed in the literature, see

e.g. [1]–[5].

A well-established and used ETT framework, under the

hypothesis of elliptical target shape, is provided by Koch in [6]

where an approximate Bayesian solution to the extended target

tracking problem is proposed. Random matrices are exploited

to model the ellipsoidal object extensions, which are treated

as additional state variables to be estimated. The target kine-

matic states are modeled using a Gaussian distribution, while

the ellipsoidal target extension is modeled using an inverse

Wishart distribution. Random matrices are also used to model

extended targets under kinematic constraints in [7]. In [8],

[9], the authors integrate the use of random matrices into the

Fig. 1. The X-band marine radar is installed in the Gulf of La Spezia, Italy.
The sensor’s field of view is shown in red.

probabilistic multi-hypothesis tracking framework to address

the multi-target tracking problem. Multi-target tracking using

random matrices is also addressed in [10], [11].

In [12] a new random matrix approach is derived to over-

come some of the weaknesses in [6], such as sensor inaccura-

cies that are not taken into account in the original framework.

Indeed, if the sensor noise is large in comparison to target

size, the lack of modeling may lead to an overestimation

of target size as already remarked in [13]. An integration

between random matrices and the interacting multiple model

estimator is provided in [12]. New measurement and time

updates for [12] are proposed in [14] and [15], respectively.

An application using real-world radar data, acquired during

the recovery operations of the Costa Concordia wreckage in

October 2013, and the random matrices framework is reported

in [16].

In radar signal processing a very crucial point is the data

conversion. The radar measurement of the target are usually
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given in polar coordinates, while the target position and

dynamics typically are modeled in Cartesian coordinates. The

effects of the polar to Cartesian data conversion have to be

properly taken into consideration, otherwise the performance

of the target tracking may suffer.

In this paper, we investigate how the conversion between

polar and Cartesian coordinates can be integrated into the ex-

tended target model presented in [12]. A comparison between

the proposed approach, the original framework presented

in [6], and the one in [12], where the sensor inaccuracies

are taken into consideration, is provided. The advantages of

the proposed model are demonstrated using simulated data as

well as three real world datasets acquired by an X-band marine

radar installed in the Gulf of La Spezia, Italy. The radar’s field

of view is depicted in Fig. I.

The presented estimation results show that, while no con-

siderable gains in the estimation of the targets’ kinematic

parameters can be found, a great improvement in the targets’

size estimation is evident. For targets that sail along a radial

path, average gains of 75% in the estimation of the targets’

width (cross range size) and 31% for the length (along range

size) are observed by comparing the proposed approach with

one that does not model the sensor’s noise.

The paper is outlined as follows. Sect. II describes the

Bayesian extended target modeling, including a coordinate

conversion model approach. Sect. III presents the filtering

equations that the modeling lead to. The experimental results

on both simulated and real data are shown in Sect. IV. Finally,

conclusions are drawn in Sect. V.

II. BAYESIAN EXTENDED TARGET MODELING

This section is devoted to the description of the proposed

measurement model using converted measurements and its in-

tegration into the Bayesian extended target tracking framework

presented first in [6], and later improved in [12] with the

consideration of the sensors’ measurement errors. It is worth

pointing out that the above-mentioned papers concentrate

attention on the track filtering. Estimations under observation-

to-track association uncertainty with possible presence of

missed detections and false alarms are out-of-scope. The same

assumption is made in this paper.

A. State model

The extended target kinematics (position and velocity) are

defined in 2D Cartesian coordinates and modeled by the vector

x� ≜ [��, �̇�, ��, �̇�]
�

, where ��, �� and �̇�, �̇� are the

position and velocity components along the � , � directions,

respectively, and [⋅]� is the transpose operator. The extended

target’s extent (shape and size) is assumed elliptic and is

modeled by the positive definite matrix X�.

Let Z� = {Z�}��=0
denote all the measurement sets up to

and including frame �. The extended target state, i.e. x� and

X�, is Gaussian inverse Wishart distributed,

�(x�,X�∣Z
�) = � (x�; x̂�∣�,P�∣�)ℐ�(X�;��∣�, X̂�∣�) (1)

where x̂�∣� and P�∣� are the expected value and covariance

of the Gaussian distribution, and X̂�∣� and ��∣� are the

expected value and degrees of freedom of the inverse Wishart

distribution.

B. Dynamic Model

The target’s motion is described by a nearly constant

velocity model [17]. The state-update equation is as follows

x� = F x�−1 + Γ w� (2)

where F = F̃ ⊗ I�, I� is the identity matrix with dimension

�×� (i.e. 2×2 in our case), ⊗ denotes the Kronecker product,

F̃ =

[
1 ��

0 1

]
, (3)

�� is the sampling time, Γ = Γ̃⊗ I�,

Γ̃ = ���� ⋅

[
� 2

� /2
��

]
, (4)

and ���� represents the process noise (equal in both � and �
directions). The process noise w� takes into account the target

acceleration and the unmodeled dynamics and it is assumed to

be Gaussian with zero-mean and identity covariance matrix.

The time evolution of the extent X� is modeled as approx-

imately constant over time. This model is accurate for targets

that can be assumed to move linearly, i.e. targets that do not

turn significantly (a turn causes the extension to rotate). For

the scenarios considered in this paper this assumption is true.

Motion models for turning targets can be found in related

literature, see e.g. [15].

C. Measurement Model Using Converted Measurements

Measurements of the target’s positions are usually provided

in polar coordinates (i.e. in range and azimuth) for data

acquired by radar systems. However, the target motion is

typically modeled in Cartesian coordinates. Hence, a conven-

tional linear Kalman filter can be exploited only after the

measurements have been converted from polar to Cartesian

coordinates. It is important for the tracking results that the

effects of this conversion are properly taken into consideration.

The components of the �th measurement vector at frame

� are defined as �
�
� ≜

[
���, �

�
�

]�
, where ��� and ��� are the

�th range and azimuth radar measurements at frame �, re-

spectively. These measurements are modeled as the true range

and azimuth values, plus measurement errors that are zero-

mean Gaussian distributed with standard deviations equal to

�� and ��, respectively. To convert measurements from polar

to Cartesian coordinates we employ the standard coordinate

conversion,

z
�
� ≜

[
��
�, ���

]�
=

[
��� cos �

�
�, ��� sin �

�
�

]�
(5)

Taking the first order terms of the Taylor series expansion of

the standard coordinate conversion, i.e. using linearization, we
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obtain the Cartesian coordinate errors, which have zero-mean

and covariance matrix [17]

R(��
�) = J(��

�)diag([�2

� , �
2

� ])J
� (��

�), (6)

where

J(��
�) =

[
cos ��� −��� sin �

�
�

sin ��� ��� cos �
�
�

]
(7)

is the Jacobian matrix, and diag(⋅) indicates a diagonal matrix.

For the radar data used in this paper the standard coordinate

conversion was empirically found to be sufficient. Other

conversions, such as the unbiased one [17], [18], exist and

can be exploited if necessary. The proposed approach can

be easily generalized to other conversion rules, e.g. the ones

shown in [17], [18].

We assume, as done in [6], [12], that at each frame there

is a set of �� independent Cartesian position measurements,

denoted Z� = {z��}. The detection set likelihood is

�(Z�∣��,x�,X�) =

��∏

�=1

�(z��∣x�,X�). (8)

Each detection z
�
� is modeled as a noisy measurement of a

reflection point y
�
� located somewhere on the extended target.

Further, each reflection point is modeled as a point randomly

sampled from the target’s extension. The detection likelihood

is thus

�(z��∣x�,X�) =

∫
�(z��∣y

�
�,x�,X�)�(y

�
�∣x�,X�)dy

�
� (9)

In other words, the detection likelihood (9) is the marginaliza-

tion of the reflection point y out of the estimation problem.

For the type of radar systems considered here the measure-

ment noise is accurately modeled as zero mean Gaussian,

�(z��∣y
�
�,x�,X�) = � (z��;y

�
�,R(y�

�)), (10)

where R(y) is the covariance matrix (6) obtained when

converting polar radar detections to Cartesian coordinates. Fur-

ther, the reflection points are accurately modeled as uniform

samples from the target shape (valid independently of the

targets’ extent and of the distance between targets and radar),

�(y�
�∣x�,X�) = �(y�

�;x�,X�). (11)

As suggested by Feldmann et al [12], for an elliptically

shaped target the uniform distribution (11) is approximated

by the following Gaussian distribution

�(y�
�∣x�,X�) = � (y�

�;Hx�, �X�) (12)

where � is a scaling factor. Here H is a measurement model

that selects the position components in the state vector (i.e.

H = [I�,0�] where 0� indicates the null matrix with � = 2 in

our case). In a simulation study Feldmann et al showed that

� = 1/4 is a good parameter setting. In the results section we

will address what is an appropriate parameter setting when

using real radar data.

Finally, by combining equations (9), (10) and (12), the

likelihood is

�(z��∣x�,X�) =

∫
� (z��;y

�
�,R(y�

�))� (y�
�;Hx�, �X�)dy

�
�.

(13)

III. EXTENDED TARGET FILTERING

In this section we present the time update and measurement

update for the models presented in the previous section.

A. Time Update

With the assumed independence between the estimates

for centroid kinematics and extension and further assuming

independent dynamic models for both of them, the standard

Kalman filter prediction equations can be exploited [12], [17]:

x̂�∣�−1 = Fx̂�−1∣�−1, (14)

P�∣�−1 = FP�−1∣�−1F
� + Γ. (15)

The prediction of the target’s extension comes directly from

the hypothesis that the extension does not tend to change over

time, i.e.

X̂�∣�−1 = X̂�−1∣�−1. (16)

Finally, the prediction of the degrees of freedom parameter

��∣�−1 is given as [12]

��∣�−1 = 2 + exp (−��/�)
(
��−1∣�−1 − 2

)
, (17)

where � is a time constant related to the agility with which

the target may change its extension over time.

B. Measurement update

The marginalization (13) is analytically intractable. To

achieve a computationally efficient measurement update we

make two assumptions. First, assume that in (10) the mea-

surement noise covariance can be approximated as R(y�
�) ≈

R(Hx�), i.e.

�(z��∣y
�
�,x�,X�) ≈ � (z��;y

�
�,R(Hx�)). (18)

Remark: In general, this approximation is less accurate the

larger the distance is between the reflection point y and

the target’s position, as given by Hx. This implies that the

approximation is less accurate the larger the target is, since

a large target means that the distance between the reflection

point and position may be large. For the radar sensors and the

targets that are considered in this paper, we have empirically

found that the approximation is sufficiently accurate. □

Following the assumption, after marginalization (9), we

have

�(z��∣x�,X�) = � (z��;Hx�, �X� +R(Hx�)). (19)

The prior target distribution is Gaussian inverse Wishart,

�(x�,X�∣Z
�−1) =� (x�; x̂�∣�−1,P�∣�−1)

× ℐ�(X�;��∣�−1, X̂�∣�−1). (20)
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Second, assume that the following approximation holds,

�(z��∣x�,X�)�(x�,X�)

=� (z��;Hx�, �X� +R(Hx�))�(x�,X�∣Z
�−1) (21)

≈� (z��;Hx�, �X� +R(Hx̂�∣�−1))�(x�,X�∣Z
�−1), (22)

i.e. we assume that the measurement noise covariance can

be approximated by replacing x� with its predicted expected

value x̂�∣�−1.

Remark: This approximation is trivially satisfied when R(⋅)
is a constant matrix. In general the assumption holds approx-

imately when R(⋅) does not vary too much in the uncertainty

region for the extended target. Empirically we have found

that, for the sensors and targets considered here, the signal

to noise ratio is high enough to make the uncertainty region

small enough. □

Under the two assumptions above the measurement update

is analogous to the measurement update proposed in [12].

The measurement updated expected value and covariance of

the state vector estimate are obtained by a Kalman filter

update [12]

x̂�∣� = x̂�∣�−1 +K�∣�−1(z̄� −Hx̂�∣�−1), (23)

P�∣� = P�∣�−1 −K�∣�−1S�∣�−1K
�
�∣�−1

, (24)

where

S�∣�−1 = HP�∣�−1H
� +

Z�∣�−1

��
, (25)

K�∣�−1 = P�∣�−1H
�S−1

�∣�−1
(26)

are the innovation covariance and the gain, and

Z�∣�−1 = �X̂�∣�−1 +R�(Hx̂�∣�−1) (27)

indicates the predicted covariance of a single measurement.

Note that the posterior of the kinematic state conditioned on

x� is again assumed to be close to a normal distribution.

The updated expected value and degrees of freedom of the

extension estimate X̂�∣� are obtained as follows [12]

X̂�∣� =
��∣�−1X̂�∣�−1 + N̂�∣�−1 + Ẑ�∣�−1

��∣�
, (28)

��∣� = ��∣�−1 + ��, (29)

where

N̂�∣�−1 = X̂
1/2
�∣�−1

S
−1/2
�∣�−1

N�∣�−1

(
S
−1/2
�∣�−1

)� (
X̂

1/2
�∣�−1

)�

, (30)

Ẑ�∣�−1 = X̂
1/2
�∣�−1

Z
−1/2
�∣�−1

Z�

(
Z

−1/2
�∣�−1

)� (
X̂

1/2
�∣�−1

)�

, (31)

N�∣�−1 =
(
z̄� −Hx̂�∣�−1

) (
z̄� −Hx̂�∣�−1

)�
, (32)

and

z̄� =
1

��

��∑

�=1

z
�
�, (33)

Z� =

��∑

�=1

(
z
�
� − z̄�

)(
z
�
� − z̄�

)�

(34)

are the centroid measurement and the measurement spread.

Note that the marginalized prior density of the target extension

is assumed to be an inverse Wishart density [6]. This implies

that the posterior is again of the same form.

IV. RESULTS

In this section we present results using both simulated and

real experimental data. The experiments are conducted on

both simulated and three real datasets acquired by the X-

band marine radar installed in the Gulf of La Spezia, Italy. In

order to assess the performance of the compared approaches,

the automatic identification system (AIS) reports are used as

ground truth [19].

The proposed Bayesian ETT method is compared to two

other approaches: one random matrix-based tracking algorithm

without a model accounting for the sensors’ errors, i.e. with

R = 0, and another random matrix-based approach that

exploits a constant covariance matrix R. The proposed method

is here named converted measurements - ETT (CM-ETT). In

the case of a constant covariance matrix R three different

possibilities are tested. They are calculated using (6) by setting

��� to the azimuth mean value on the surveillance area, and

letting ��� assume one of three values. This gives three different

matrices: R1 calculated for targets that move close to the

sensor around range 0.5 km; R2 calculated for range 2 km,

corresponding to the middle of the considered surveillance

area; and R3 hypothesizes that the target sails in a longer

range area, around 4 km range.

In the experimental results we could not identify any

significant differences for the estimates of the state vector x�,

however there are significant differences for the estimates of

the extent matrix X�. Therefore we will only show estimation

results for the extent matrix and not for the state vector.

A. X-band Marine Radar Experiment

The X-band marine radar is a coherent linear frequency

modulated continuous wave radar [20]. It is a compact and

lightweight system, still maintaining a high performance with

relatively simple electronics, since the transmitted power is

low and constant. The use of pulse compression [21] and a

small transmitted power make the radar a compact, quickly

deployable, and scalable system, used for research in the areas

of target detection and tracking.

The radar has an antenna mounted on a rotor with variable

rotating velocity and the possibility to lock and hold the

position towards a specific direction with 0.1∘ accuracy. The

main radar parameters are shown in Tab. I.

B. Detection strategy

The data frames acquired by the X-band marine radar were

processed by a detector. The detector output is represented by

a cloud of detections that represent a target, and these detection

clouds are used as input for the three compared tracking

algorithms. A conventional maximum likelihood detector is

exploited here, and an assumption of conditional indepen-

dence among the pixels is made. Furthermore, the radar data
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TABLE I
MARINE RADAR SPECIFICATIONS

Parameter Specification

Frequency 9.6 GHz
Bandwidth Adjustable up to 150 MHz
Range resolution Δ� = 1 m
Antenna type Rotating slotted waveguide
Azimuth resolution Δ� = 1∘

Angular aperture elevation 20∘

Gain 32 dBi
Azimuth antenna speed 0 (stopped) up to 40 revolutions per minute
Azimuth angular accuracy 0.1∘

Polarization Linear horizontal
Transmitted power Adjustable 50 mW - 5 W (17 - 37 dBm)
Pulse repetition frequency Adjustable 350 Hz - 10 KHz

TABLE II
PARAMETER SETTINGS REAL CASES

Parameter Value Specification

�� 2/5 s Sampling time
� 10/5 Agility object size

���� 0.2 m s−2 Std. process noise

���� 10 m s−1 Max. velocity
� 1/4 Scaling factor
�� Δ�/2 (see Tab. I) Std. noise range
�� Δ�/2 (see Tab. I) Std. noise azimuth

amplitudes are modeled as exponential distributed with rate

parameters �� > 0 under the target hypothesis and ��� > 0 for

the non-target case. These parameters characterize the whole

exponential distributions and are estimated by the means of

the k-means clustering algorithm [22].

C. Real X-band Marine Radar Data

Experiments were conducted using three different datasets.

Dataset 1 contains detections from Grand Holiday, a Por-

tuguese passenger ship of dimensions 222 m × 32 m with

maritime mobile service identity (MMSI) equal to 255803790.

Dataset 2 contains detections from an Italian vessel called

Palinuro, with length 59 m, width 10 m, and MMSI =
247939000. Lastly, dataset 3 contains detections from a cargo

ship called Fabio Duo. Its size is 80 m× 16 m with MMSI =
247241500. The AIS ground truth and the estimated tracks

provided by the CM-ETT algorithm for the three considered

datasets are depicted in Fig. 2.

Initially, we determine an appropriate value for the param-

eter � (cf. (12)). Two values of � are tested using the CM-

ETT approach. In a simulation study presented by Feldmann

et al [12], it is suggested to use � = 1 to model a Gaussian

spread of the detections, while � = 1/4 models a uniform

distribution. Fig. 3 clearly shows that the CM-ETT with

� = 1/4 performs better obtaining a closer match with the AIS

ship information. This experimental analysis confirms that data

with a uniform detection spread is best modeled by � = 1/4. In

the remainder of the paper, the compared extended target filters

are implemented with � = 1/4. The other tracking parameters

used in the experiments are shown in Tab. II.

Selected results from the Grand Holiday dataset are pro-

vided in Fig. 4. We only compare results using the proposed
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Fig. 2. AIS tracks (solid line with square markers) and target positions
estimated by the CM-ETT (dashed line with triangular markers) for the three
analyzed datasets.
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Fig. 3. (a) Length and (b) width estimation for the CM-ETT using � = 1 (red
solid line) and � = 1/4 (black dashed line) on the Grand Holiday dataset.

approach and using R = 0, because showing all results

makes the figures too cluttered. The advantages of properly

accounting for the polar measurement noise is evident. In this

dataset the target is moving away from the sensor in an almost

radial direction, see Fig. 2. Due to the almost radial target

trajectory the benefits of CM-ETT over R = 0 are only clear

for the estimated width. The benefits are biggest when the

sensor to target range is longer.

Length and width estimates for all the filters for the Grand

Holiday dataset are shown in Fig. 5. There is little difference

when it comes to the length estimates, however for the width

estimates there are considerable differences. Comparing the

proposed approach with the one using R = 0 or the one using

R1 it is clear that the longer the sensor to target range is, the

greater the advantages of the proposed model are. Both R = 0

and R1 result in the width being overestimated. Using R3

gives the opposite behavior, i.e. the width is underestimated.

Finally, R2 gives a performance that underestimates the width,

although the performance is slightly better than R3.

The results for all the three datasets are summarized as

absolute error histograms of the width and length estimates in

Fig. 6. Gaussian approximations of these histograms are also
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Fig. 4. Estimated ellipsoids provided by the CM-ETT, the R = 0 approach, and the ground truth on the Grand Holiday dataset.
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Fig. 5. (a) Length and (b) width estimations for the compared approaches on the Grand Holiday dataset.

shown in the figure. The results for R1 and R3 are worse than

the results for R2, therefore we only compare the proposed

CM-ETT filter to R2 and R = 0. The mean width errors are

9.4 m for the CM-ETT algorithm, 21.4 m for the R2 method,

and 37.5 m in the case of the R = 0 approach. The mean

length errors are 9.3 m, 10.4 m, and 13.4 m, respectively.

It is evident that by properly modeling the polar measure-

ment noise the errors in both width and length are signifi-

cantly reduced. For the data used here, the average gains of

the proposed CM-ETT approach are 75% compared to the

R = 0 approach and 56% with respect to R2 for the targets’

width estimation accuracy, while advantages of 31% and 11%,

respectively, can be observed for the targets’ length estimation

accuracy.

For the considered type of radar the measurement noise is

larger in the cross-range direction compared to the along range

direction. Due to the shape of the La Spezia Gulf, and the radar

position, all of the true tracks mostly follow radial directions.

The sensor’s uncertainty is largest in the cross-range direction,

and it is because of this that we see larger gains for the width

estimates than for the length estimates. To test the performance

of the proposed model for targets that do not follow radial

directions, a radar simulation model was constructed. This is

the topic of the next section.

D. Simulated Data

A ship with length 80 m and width 30 m is simulated

using a nearly constant velocity model [17] with zero-mean

Gaussian noise described by the parameter ����, see Eq. (2).

The detections were simulated using a Gaussian model with

scaling parameter � = 1 and additive zero-mean Gaussian

noise. The noise was simulated in polar coordinates with

standard deviations �� and �� for the range and azimuth

dimensions, respectively. The simulator parameters are shown

in Tab. III.

First, the target is simulated as sailing in a radial direction

from 1 km to 4 km. Fig. 7 shows the length and width

estimation provided by the compared approaches. Because the

simulated trajectory is radial with respect to the radar position,

and the along-range inaccuracy is less than the cross-range

one, no difference is observable for the estimates of the target’s

length. The advantages are instead clear for the estimates of

the target’s width, and the longer the sensor to target range
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(a) (b)

Fig. 6. Histograms of absolute errors in (a) length and (b) width for the R = 0, the R = R2, and the CM-ETT approaches calculated on all the datasets.
The solid lines on the foreground indicate the Gaussian fitting of the histograms.

TABLE III
PARAMETER SETTINGS SIMULATOR

Parameter Value Specification

�� 2 s Sampling time

���� 10−4 m s−2 Std. process noise

Σ

[

0.6653 −0.6453
−0.6453 1.1764

]

⋅ 103 Cov. matrix

���� 400 Num. of frames
�� 2000 Num. detects. frame
�� 0.5 m Std. noise range
�� 0.5∘ Std. noise azimuth

is, the greater the advantages of the proposed model are. With

the exception of the results using R2, these results are similar

to the experimental results in Fig. 5, which shows that the

simulation model can generate detections that are a realistic

model of the real world radar detections.

The second test case simulates the target sailing in an almost

constant range track. Because we simulate an almost constant

range track the opposite width/length estimation results are

expected with respect to the previous test case. Fig. 8 shows

the length and width estimation provided by the compared

approaches. Again, the CM-ETT shows its ability to properly

estimate both the length and width parameters. As expected,

considerable advantages are shown for the cross-range size

estimation (length), while comparable performance can be

pointed out for the estimation of the width parameter (along-

range size).

We therefore conclude that the simulation study shows that

the proposed CM-ETT gives improved performance both for

the cross-range size and the along-range size, regardless of

whether the target sails in a radial track or sails with constant

range.

V. CONCLUSIONS

In this paper we considered extended target tracking using

data from high resolution X-band marine radar. A mea-

surement model that properly takes into account the radar’s

measurement noises and the data conversion from polar to

Cartesian coordinates was proposed. This model is suitable

for extended target tracking in the random matrix framework.

The proposed algorithm was compared to previous work

using both simulated data and real world experimental data

acquired by an X-band marine radar. Estimation performance

for the kinematic parameters is comparable to previous work,

however the proposed approach shows significant improve-

ments for the estimation of the extent parameters. Compared

to previous work the average gains of the proposed approach

assessed on real data are up to 75% for the cross-range size

and up to 31% for the along-range size.
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Fig. 7. (a) Length and (b) width estimations for the compared approaches on simulated data for a target that follows a radial track.

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

Time [s]

L
en

g
th

[m
]

 

 

Ground Truth
Rk = 0

Rk = R1
Rk = R2
Rk = R3
CM-ETT

(a)

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

Time [s]

W
id
th

[m
]

 

 

Ground Truth
Rk = 0

Rk = R1
Rk = R2
Rk = R3
CM-ETT

(b)

Fig. 8. (a) Length and (b) width estimations for the compared approaches on simulated data for a target that follows an almost along constant range track.
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