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Abstract—The use of random matrices for tracking extended
objects has received high attention in recent years. It is an
efficient approach for tracking objects that give rise to more
than one measurement per time step. In this paper, the concept
of random matrices is used to track surface vessels using high-
resolution automotive radar sensors. Since the radar also receives
a large number of clutter measurements from the water, for
the data association problem, a generalized probabilistic data
association filter is applied. Additionally, a modification of the
filter update step is proposed to incorporate the Doppler velocity
measurements. The presented tracking algorithm is validated
using Monte Carlo Simulation, and some performance results
with real radar data are shown as well.

I. INTRODUCTION

Radar systems have become standard for vessel detection

and collision avoidance in marine navigation. Owing to the

required high angular resolution, typical radars for inland

waterways have large apertures and high power consumptions.

As recreational crafts or small unmanned surface vessels do

not usually have sufficient space for such systems, automotive

radar sensors are an interesting alternative. Working at a higher

frequency, these sensors offer comparable angular resolutions

and accurate Doppler velocity measurements at the price of a

reduced detection range and scanning angle. However, due to

the extension of a vessel in comparison with sensor resolution,

at each scan, the sensor provides several detections of an

object. This leads to an extended target tracking problem

according to the definition of an extended target in [1]. The

problem of tracking extended targets has been the subject

of research for many years, which is why a large variety of

algorithms have already been proposed. Surveys on this topic

can be found in [2] and [3]. Considering a sensor that receives

a point cloud from the illuminated object, new sensor models

have been developed that can roughly be divided into two

different core assumptions:

One model group assumes that the sources of the mea-

surements are at distinct locations within the target and, in

some cases, can be used to reconstruct the target’s shape. A

model for the simulation of the received measurement from

a vehicle using automotive radar sensor was introduced by

[4]. This model is based on the assumption that a vehicle

consists of a set of point reflection centers and plane reflectors.

On the basis of this sensor model, a tracking framework was

presented by [5]. However, the exact prediction of the location

of the reflection centers requires detailed knowledge of the

target type under observation. If no prior information about

the location of reflection centers is available, the concept of

tracking individual measurement generating points of an object

was also used in [6],[7].

However, in many applications, not stable but fast fluctuat-

ing reflection centers are the case. Hence, alternative sensor

models assume that the measurements are randomly distributed

over the target extent during the observation process. Fur-

ther, it is assumed that the noise of the measurements is

correlated with the size of the target. Thus, by analyzing

the noise distribution, an estimation of the target extent can

be obtained. An approach when the shape of the target is

elliptical is presented in [8]. The target’s physical extension is

represented by a random symmetric positive definite matrix.

An alternative to arbitrary shapes is presented in [9], where

Random Hypersurface Models are used to estimate the extent

of an object. In case the measurement spread is only partially

depended on the target extent and also on the sensor accuracy,

[10] proposed modeling this spread as a linear combination of

extension noise and measurement noise. Using the heuristics

in [10], [11] derived a more complex filter update step that

improves the estimation results. A unification of [8] and [10]

was proposed in [12], and further extended for non-elliptical

models in [13].

All referenced papers on Random Matrices so far assume

that the data association problem is solved. Nevertheless, only

a few algorithms that deal with the data association problem

have been presented. In [14] and [15], the PMHT is applied to

solve the data association problem. Using a spatial clustering

of the detections in combination with an JPDA is proposed in

[16] and a PHD-based approach is presented in [17].

As an alternative, the Generalized Probabilistic Data Asso-

ciation (GPDA) filter is considered here. For each detection

within a gate, the well-known PDA calculates a probability

for the hypothesis that it was generated by the target [18].

Therefore, the assumption is made that at the most the target
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originates one detection. [19] proposed an extension to the

PDA. Termed Multiple Detection Probabilistic Data Associa-

tion, here the association likelihoods were calculated under the

condition that more than one measurement was created by the

target. Comparable to the IPDA, the filter was then extended

in [20] to incorporate the existence likelihood and was applied

in [21] for extension estimation. The GPDA is then used to

estimate the width of a vehicle. If each transmitted radar spoke

within a scan has equal likelihood to evoke a measurement

from the extended target, the cardinality of measurements

is binomially distributed. Similar to the PDA, the multiple

detection JPDA is presented in [22]. The MD-JPDA was used

to handle multi-path reflections from over-the-horizon radars.

In this paper, the G(J)PDA is applied to track one or

more vessels under clutter, and to estimate kinematic state

and physical extent using the concept of random matrices.

Therefore, the paper is structured as follows: Section II gives

a brief overview of Random Matrices while a modification

to incorporate Doppler measurement is proposed in Section

III. Section IV describes the GPDA filter and in Section V

some considerations regarding the implementation and some

simulation results are presented. Finally, the results for a real

target tracking scenario are presented, followed by a short

conclusion.

II. RANDOM MATRICES

The seminal work applying random matrices for estimation

of extended objects was presented in [8]. In this work, a

concept to obtain an estimate of the kinematic target state and

its physical extension using Bayes’ theorem was established.

Therefore, a few assumptions on the target characteristics are

made. First, it is assumed that the shape of the target can be

represented by an ellipse. Further, it is assumed that there is

no correlation between the orientation of the ellipse and the

direction of the object’s motion. This is required for vessel

tracking since during maneuvers, or when a vessel is just

drifting with the sea current (e.g. fishermen), no alignment

of principal axis to the direction of motion is given.

The most important assumption required for the use of

random matrices affects the measurement noise: The noise is

mainly caused by the physical extension. Given a measurement

z
j
k at time k, a linear relationship to a state xk is assumed,

which is superimposed by a normally distributed noise term

wk:

z
j
k = Hxk +wk (1)

The physical extension of the object at time k is described by

a symmetric positive definite random matrix Xk. Assuming

that the noise part of the measurement is mainly due to the

size of the object, the probability density function for a set of

measurements Zk =
{

z
j
k

}nk

j=1
is defined as:

p(Zk|nk,xk,Xk) =

nk
∏

j=1

N (zjk;Hxk,Xk) (2)

By calculating the center of gravity for the measurement set

z̄k =
1

nk

nk
∑

j=1

z
j
k (3)

and the outer product of the measurements

Z̄k =

nk
∑

j=1

(zjk − z̄k)(z
j
k − z̄k)

T (4)

the pdf in (2) can be rewritten in the form

p(Zk|nk,xk,Xk) ∝ N (z̄k;Hxk,Xk/nk)

×W(Z̄k;nk − 1,Xk), (5)

where W denotes a Wishart distribution over Xk with nk − 1
degrees of freedom. Substituting this relationship in the Bayes’

filter recursion leads to an analytic solution for state expecta-

tion and covariance update as well as for the update of Xk.

However, radar detections are generally in polar coordinates

with range r and detection angle φ. Thus, if targets are

detected in greater distance, this leads to a larger spread of

the measurements. Disregarding this fact for the estimation of

the physical extension would lead to an overestimation of the

true size when the object is far away.

To include the contribution of the sensor error to the

measurement spread, [10] proposed rewriting the probability

density function in the following way:

p(Zk|nk,xk,Xk) =

nk
∏

j=1

N (zjk;Hxk, cXk +Rk) (6)

However, for this model, no exact analytical solution can

be found for p(xk,Xk|Zk). To obtain a recursive update

scheme, in [10] the assumption is made that the target extent is

predicted with sufficient accuracy, which makes it possible to

separate kinematic and extension updates. With some further

approximations, the following filter scheme is obtained:

Kinematic:

xk|k = xk|k−1 +Kk|k−1(z̄k −Hxk|k−1)

Pk|k = Pk|k−1 +Kk|k−1HPT
k|k−1

Sk|k−1 = HPk|k−1H
T +

1

nk
Yk|k−1

Kk|k−1 = Pk|k−1H
TS

−1

k|k−1

Yk|k−1 = cXk−1|k−1 +Rk

Extension:

Xk|k =
1

αk

(

αk|k−1Xk|k−1 + N̂k|k−1 + Ŷk|k−1

)

αk = αk|k−1 + nk

Nk|k−1 = (z̄k −Hxk|k−1)(z̄k −Hxk|k−1)
T

N̂k|k−1 = X
1/2

k|k−1
S
−1/2

k|k−1
N

1/2

k|k−1
(S

−1/2

k|k−1
)T (X

−1/2

k|k−1
)T

Ŷk|k−1 = X
1/2

k|k−1
Y

−1/2

k|k−1
Z̄
1/2

k|k−1
(Y

−1/2

k|k−1
)T (X

−1/2

k|k−1
)T

TABLE I
FILTER UPDATE STEPS [10]

The prediction step for the kinematic state is the same as

for the well-known Kalman filter. For the extension, a time
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τ is applied in order to describe the time-restricted change in

the extension. Using T for the sample time, the predictions

are shown in Table II.

Kinematic:

xk|k−1 = Fkxk−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Extension:

αk|k−1 = 2 + e
−T
τ (αk−1|k−1 − 2)

Xk|k−1 = Xk−1|k−1

TABLE II
FILTER PREDICTION STEPS [10]

As already mentioned in the introduction, a more general

update scheme using the sensor model as in (6) was presented

in [11]. However, the focus of this paper is on data association

for RM. The improvements of [11] are not further discussed

here, since those lead to a significantly more complex filter

scheme. Nevertheless, based on the approach of [10], in the

next section, an extension to incorporate range rate measure-

ments in the measurement update step is considered.

III. EXTENSION FOR DOPPLER MEASUREMENTS

Especially when radar sensors are used, in addition to the

polar position measurements, the Doppler velocity or range

rate is available. In general, the range rate is a valuable piece

of information that can significantly improve the kinematic

state estimate, especially when a target is performing fast

maneuvers. Thus, the range rate should be used in the track

filtering process as well. However, no direct transformation

of the range rate into the Cartesian space is possible, so

an alternative representation of the measurement model is

proposed: Assuming that the sensor provides the typical radar

measurements range r, bearing φ and range rate ṙ, the mea-

surement model is given by

zk = h







√

x2 + y2

tan−1 y/x
xvx+yvy√

x2+y2






+wk, (7)

where x, y are the target coordinates relative to the radar, the

relative target velocity vx, vy , and measurement noise wk.

Based on the concept presented in [12], the following is

proposed: Assuming the extension of the ellipse is described

in a two-dimensional Cartesian space, the probability density

of wk for nk measurements is defined as

p(Zk|nk,xk,Xk) =

nk
∏

j=1

N (zjk;h(xk), cBkXkB
T
k +Rk).

(8)

Under the assumption that the current target state is sufficient

accurately known, the Jacobian matrix Bk is given by

Bk =









x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

y(vxy−vyx)√
(x2+y2)3

x(vyx−vxy)√
(x2+y2)3









(9)

and Rk is now the measurement noise covariance matrix in

polar coordinates. However, Bkonly valid if the differential

Doppler speed due to the object turn rate is small. Since there

is a nonlinear relationship between state and measurement,

here the Unscented Transform [23] is proposed to update the

kinematic state estimate. The update of the extension estimate

can be obtained in a straightforward manner by replacing Xk

with BkXkB
T
k in Table I. Alternatively, it can be done by

first transforming the measurements and the noise covariance

Yk|k−1 into Cartesian coordinates using the corresponding

Jacobi matrix.

In [8] and [10], the acceleration model by van Keuk was

used for the target’s kinematic state prediction. It allows

statistically independent movements in x and y-direction.

However, when the detection count is a small single-digit

value, the prediction step becomes more important, and the

use of correlations between x and y motion, e.g. a turn rate,

might improve the state estimate. It was already shown in

[24] that using a horizontal turn model improves the estimate

of the target’s heading, which for a collision avoidance system

is as important as the target’s position. Knowledge about the

target’s turn rate can also improve the extension estimation

as carried out in [25]. Thus, in this work, the constant turn

rate and velocity (CTRV) model with xk = [x, y, ψ, ω, V ] is

considered, where ψk and ω are respectively the heading and

the corresponding turning rate, and Vk the horizontal velocity.

See [26] for further details.

IV. PROBABILISTIC DATA ASSOCIATION FOR MULTIPLE

DETECTIONS

The Generalized Probabilistic Data Association Filter re-

laxes the assumption of the PDA filter that an object can

generate at the most one measurement at time k. For the

GPDA, it will be assumed that up to nk measurements can

be originated by an object.

A. Single Object Tracking

To begin with, the case that only one object is present will be

considered. In [20], the posterior probability density function

is defined as a weighted sum over all association hypotheses.

Let Zk denote the sets of measurements received up to time

k, hence the posterior for kinematic state xk and extension

Xk at time k is given by

p(xk,Xk|Zk) =
∑

Am
i
∈A

p(xk,Xk|Zk, Am
i )P (Am

i |Zk). (10)

Here the hypothesis set A contains all possible associa-

tions, where Am
i describes the ith combination of assigning

m = 0...nk measurements to the track and nk the total

number of measurements received at time k. For example,

if nk = 3 there are three different combinations of assigning

m = 2 measurements: A2
1 : z

(1)
k , z

(2)
k , A2

2 : z
(1)
k , z

(3)
k and

A2
3 : z

(2)
k , z

(3)
k .

The term p(xk,Xk|Zk, Am
i ) can then be computed, e.g.

using the filter operations as presented in Section II. For
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the association probability P (Am
i |Zk), invoking Bayes’ rule

yields

P (Am
i |Zk) =

1

η
p(Zk|Am

i ,Z
k−1)p(Am

i |Zk−1) (11)

with the normalization factor

η = p(Zk|Zk−1) =
∑

Am
i
∈A

p(Zk|Am
i ,Z

k−1). (12)

Assuming that the association likelihood is only dependent

on the measurements at time k and making the reasonable

assumption that the prior probability P (Am
i ) is uniformly

distributed, the last term in (11) can be safely removed.

Next, the measurement set can be divided into a part Zk,x,

which contains measurements that were generated by the

objects and a part Zk,cl that contains false alarms:

p(Zk|Am
i ,Z

k−1) = p(Zk,x|Am
i ,Z

k−1)p(Zk,cl|Am
i ). (13)

Here the additional clutter is assumed to be independent of

Zk−1. Each part in (13) is now further separated into a

spatial and a cardinality likelihood. Therefore, no correlations

between target motion and target size is considered, that means

each likelihood is independent.

According to the sensor model (6), the measurements are

normally distributed over object extension and measurement

noise. Thus, the spatial likelihood is given as product over all

assigned measurements j in Hypothesis Am
i :

p({z}xk|Am
i ,Z

k−1) =
∏

z
j

k
∈Am

i

N (zjk;Hxk, cXk +Rk) (14)

Alternatively, the sensor model in (2) or (8) can be used.

For the sake of simplicity, the cardinality likelihood of the

true measurements is proposed to be P (nx|Zk−1, Am
i ) =

P (nx). This is in accordance with the assumption in [8]

that the number of measurements is independent of the target

extent. However, since for real sensors this will not be the

case, far more modeling effort should be made here. The most

common assumption used for extended targets is that P (nx)
satisfies a Poisson distribution.

For clutter measurements, the commonly used assumption

that they are uniformly distributed over the surveillance vol-

ume V with density λ is applied and the number of false

alarms is assumed to be Poisson distributed:

p({z}cl
k |Am

i ) = V −(nk−m) (15)

P (ncl = nk −m|Am
i ) =

(λV )nk−m

(nk −m)!
e−λV (16)

These likelihoods follow from the fact that all measurements

not assigned to an object are clutter measurements. Hence, for

each association hypothesis, the definition nx+ncl = nk must

hold.

With these considerations, the probability P (Am
i |Zk) can

be calculated with

P (Am
i |Zk) (17)

=
1

η
P (nx = m)

nk!λ
−m

(nz −m)!

∏

z
j

k
∈Am

i

N (zjk;Hxk, cXk +Rk).

After executing the update step, e. g. according to table I for

each combination, the resulting estimates are merged using the

determined association likelihood and a first- and second-order

moment matching as presented in [10].

B. Multi Object Tracking

The obtained GPDA filter can only be applied for multi-

object cases if the objects are well separated in the measure-

ment space. If the targets are close together, the GPDA will

tend to merge tracks. To avoid this, the GJPDA can be used to

consider joint track to measurement associations. Similar to the

JPDA, this requires extending the set of hypotheses A for all

possible combinations that distribute up to nk measurements

to nT tracks. Let AM
i = {Am1

i , .., A
mnT

i } denote the ith
hypothesis to associate m1 detections to track 1 up to mnT

detections to track nT . Using the same assumptions for spatial

and cardinality distribution as for the GPDA, the unnormalized

association likelihood is provided by

P (AM
i |Zk) =

nk!λ
−mT

(nk −mT )!
(18)

×
∏

A
mt
i

∈AM
i

P (nx = mt)
∏

z
j

k
∈A

mt
i

N (zjk;Hx
(t)
k , cX

(t)
k +Rk)

where mT = m1 + ... + mnT ≤ nk is the number of all

assigned detections in this hypothesis and x
(t)
k ,X

(t)
k denote

kinematic state and extension of the tth track. The hypothesis

set A in general now contains several hypotheses that assign

the same measurement combinations for the nj th track. Thus,

after normalizing (18) for each track, the association weights

of its lth measurement combination are marginalized over all

AM
i that contain this combination.

V. IMPLEMENTATION

First, the algorithms have been evaluated using simulated

data. In the simulations, one or two objects with the typical

size of a recreational craft are moving on meander-like trajec-

tories. It is also assumed that the major axis of the extension

ellipse is aligned with the direction of motion of the target.

In general, this is not true for real ships, especially because

during turning maneuvers ships have significant drift angles.

However, since in the modeling process the independence of

extension and motion is granted, this assumption can be made

to simulate the change in orientation of the ellipse during the

turning maneuvers.

The object is observed by a high-resolution sensor with

noise term according to Table III. The scan rate for the sensor

is fs = 1/T = 15Hz. The measurements are assumed to be

uniformly distributed over the complete vessel extension. The

number of received measurements from the object is Poisson-

distributed with mean nx = 4, hence the cardinality likelihood

for detections from the target is given by

P (nx = m|Am
i ) =

(nx)
m

m!
e−nx . (19)

Clutter measurements are assumed to be uniformly distributed

over the complete observation space. Their number is also
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Poisson with mean Ncl = 20, and for simplicity, the observa-

tion space is rectangular with a size of 250m× 250m.

Range Bearing Range Rate

σr=0.25m σφ=1
◦ σṙ=0.1m/s

TABLE III
MEASUREMENT NOISE PARAMETERS FOR POINT TARGET

Two different filter schemes, Filters A and B, were evalu-

ated. For Filter A, a linear system of the form

xF = Fxk−1 +wk (20)

is considered, where only the position measurements are

taken into account according to (1). In the simulation, all

measurements are generated in polar space and transformed

into Cartesian space using

zk =

[

rk cos(φk)
rk sin(φk)

]

. (21)

Since the polar measurement standard deviation σr for range

and σφ for the detection angle are small, the associated

covariance matrix in Cartesian coordinates is approximated

using

Rk ≈ 1

2

(

σ2
r − r2kσ

2
φ

)

[

b+ cos(2 φk) sin(2 φk)
sin(2 φk) b− cos(2 φk)

]

b =
σ2
r + r2kσ

2
φ

σ2
r − r2kσ

2
φ

.

(22)

A more detailed discussion of optimal transformation for polar

into Cartesian to minimize transformation bias and covariance

errors can be found in [27].

For each axis, the nearly constant acceleration (CA) model

is used as the linear transition model:

F̃ =





1 T T 2

2
0 1 T
1 0 e−T/τCA



 , Q̃ =





0 0 0
0 0 0
0 0 σ2

v(1− e−2T/τCA)





Hence, the two-dimensional system reads F = F̃ ⊗ I2 and

Q = Q̃⊗ I2. The parameters for the model are given in Table

IV.

For the second filter (Filter B), the polar measurements

including range rate are incorporated for the update step using

the sensor model in (8). Therefore, the unscented Kalman

filter (UKF) is adopted. As motion model, the Constant Turn

Rate and Velocity Model are used with transition function and

process noise as follows:

f(xk)=





x+T
V (sin(ψ+ωT )−sinψ)

ω

y+T
V (cos(ψ+ωT )−cosψ)

ω
ψ+Tω
V

ω



,Qω=







0 0 0 0 0
0 0 0 0 0

0 0
T3σ2ω

3

T2σ2ω
2

0

0 0
T2σ2ω

2
Tσ2ω 0

0 0 0 0 Tσ2
V







The parameters for both motion models and extension

estimation used in the simulation are given in table IV. The

parameters for the extension estimate are the same for both

filters. As the GPDA filters do not include target birth, the

number of targets in each scenario is assumed to be constant

and is known apriori.

A. Single Target Case

One vessel with size 8m × 2m is moving on a trajectory

as shown in Figure 1. For this data, one GPDA filter using

the linear configuration and a second filter using CTRV and

Doppler measurements are applied. For each filter, 500 Monte

Carlo runs have been executed. The velocity profile for each

trajectory is randomly generated with a standard deviation for

velocity change of σV = 0.2m/s2. The mean velocity is

3.5m/s. In addition to the GPDA results, the filter errors are

shown if the correct data association would be known, e.g.

no clutter is present. For both proposed updating schemes,

the suggested tracking algorithm provides a stable track. The

RMS error for position is shown in Figure 2, and heading and

velocity errors are shown in Figure 3. The GPDA results show

no significant distance to the estimation results with known

associations. Using the range rate measurements with a UKF

leads to performance gain in heading and especially velocity

estimates. With increasing detection count, the performance

gain due to nonlinear filtering will obviously decrease further.

The extension error is computed using RMSEX =
√

1
500

∑500
j tr[(Xj

k|k −Xk)2] and is shown in Figure 4. The

results for the extension estimates are comparable; however,

during the turning maneuvers, the GPDA with UKF has

slightly better results. This gain is obviously due to a better

clutter rejection, since in the optimal case there is no difference

between the two methods. As can be seen in Figure 1, in both

cases, no good match is achieved for ellipse orientation and

size during the turning maneuvers. An improvement could be

achieved using the prediction step, as proposed in [12]. The

average errors of all runs over time are given in Table V.

B. Multi Target Case

To evaluate the joint data association, a scenario with

two vessels of the same size as above is considered. The

trajectory is chosen in such a way that the vessels meet

in the sensor center field of view, move in parallel through

a turning maneuver, and then split off again. The distance

between the two vessels during the parallel phase is equal

to the vessels’ width. The distance is chosen in such a way

that if two single filters as in the previous part where used,

the estimated trajectories would merge. At this point, a track

is considered merged if a centroid position is inside another

CA σv = 0.15m/s2 τCA = 2s
CTRV σV = 0.25m/s2 σω = 0.25◦/s
Extension c = 1/4 τ = 2s

TABLE IV
PROCESS NOISE PARAMETERS FOR SYSTEM MODELS

Model Position Heading Velocity Length Width

Linear 0.61 m 5.3◦ 0.45m/s 0.42 m 0.91 m

UKF 0.48 m 3.7◦ 0.21m/s 0.55 m 0.63 m

TABLE V
RMSE FOR GPDA WITH LINEAR CARTESIAN FILTER AND POLAR FILTER

USING UKF FOR 500 MONTO CARLO SIMULATIONS
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Fig. 1. Path of reference object and estimated position and extension for
linear and Doppler-based filtering

Fig. 2. RMSE horizontal position over time. No significant difference between
filtering with known measurement association (opt) and GPDA solution
occurs.

Fig. 3. RMSE of heading and velocity. The results for optimal association
and GPDA filtering are practically identical.

Fig. 4. RMSE of object extension

Fig. 5. Path of reference objects (black) and estimated position and extension
for linear (blue) and Doppler-based filtering (red)

target’s extension ellipse. Again, for this scenario, Filters A

and B are used with the same parameters for dynamics and

sensor model, and 500 Monte Carlo simulations have been

executed. Over all runs, the estimated trajectories of both

vessels remain separated all the time when using the UKF,

but merged in 70 (14%) runs when using Filter A. All merges

occurred during the common turning phase. However, as can

be seen from Figure 5, an overlapping of the extension ellipses

is still possible for the UKF as well. The kinematic estimation

results for the stable tracks are similar to the performance of

the single target case and thus not shown in this paper due to

space considerations.

VI. EXPERIMENTAL RESULTS

The presented tracking algorithms have been applied to the

following system: An automotive radar system was mounted

on a small vessel (Figure 6). The radar has an opening angle

of ±26◦ for a 60m short range mode. In the test scenario, the

host vessel is following a target vessel in a varying distance.

The driven trajectory is shown in Figure 7. In addition to

the turning maneuver, this trajectory contains two times the

passage of a bridge. This leads to a significant increase in
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the received measurement count in that region. The tracking

is done in body-fixed coordinates of the host vehicle. Thus,

before each update step, the motion of the host vehicle has to

be compensated for in the target state and extension estimate.

This is done using the velocity measurement from a GPS

and the yaw rate from an automotive gyro. The measurement

filtering is done with a CTRV model for the ego motion.

For the extension ellipse, only the heading change is used

to rotate Xk. The remaining parameters are identical to those

used for the simulation process. Since only a single target ship

is available for the experiments, only the results for GPDA are

shown here.

The results of the position and estimated extension ellipses

are shown in Figure 7. As can be seen, there is a significant

deviation in reference position, received measurements, and

track estimate before the first passage of the bridge. The

accuracy of the proposed system is evaluated based on the

recorded GPS traces for both ships. While the kinematic state

of the host vessel was measured using a differential RTK GPS

with two antennas, for the target vessel only a low-cost GPS

receiver was available. This already leads to relative positional

uncertainty of a few meters. Moreover, it should be noted that

both GPS systems lose the satellite beneath the bridge, which

is why only model-based estimations are available in these

cases. Consequently, it is practically impossible to calculate a

real ground truth of the relative position of the target to the

host. Thus, the shown traces and the corresponding calculated

RMS errors for tracked to measured states can only show

trends. Tests with two DGPS systems are on schedule.

Model Position Heading Velocity Length Width

Linear 1.98 m 6.7◦ 0.13m/s 0.92 m 1.11 m

UKF 1.92 m 5.5◦ 0.07m/s 0.60 m 0.90 m

TABLE VI
RMSE BETWEEN ESTIMATED AND GPS MEASURED STATES

The estimated heading and velocity are shown in Figure 8.

Since the target vessel is moving with constant velocity, the

gain when using range rates is low here. However, as expected,

the highest impact of the Doppler speed is achieved in the data

association process. This can be seen from Figure 9 where the

target’s extent is plotted. For better readability, here the length,

width, and orientation of the estimated ellipse as well as true

(a) Host ”Korona” (b) Target ”Solgenia”

Fig. 6. Vessels for sea test: The radar is mounted above the front window of
the host, approximately 1.5 m above the water surface. The target size is 8.2
m. in length and 2.5 m. in width

Fig. 7. Path of reference object, with one turn and two bridge crossings. The
extension ellipses are plotted at an interval of 4s.

values are shown. When the target is passing through the

bridge (e.g. at time 250s), the number of associated measure-

ments for Filter A increases, thus leading to an overestimation

of the target size. This is not the case for Filter B, where

the target measurements are more clearly distinct from static

object measurements. Thus, there is a better estimation of the

extension for the real data process.

Fig. 8. Estimated heading and velocity over Time

VII. CONCLUSION

In this paper, the problem of tracking surface vessels on

inland waterways using automotive radar sensor is considered.

Hence, the concept of random matrices to estimate kinematic

state and target extension in parallel is used. To solve the

data association problem, the GPDA and GJPDA filters are

applied. Based on the assumption that the expected number
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Fig. 9. Estimates size and ellipse orientation of the target vessel over time

of detections from targets is Poisson-distributed and known

in the mean, it was shown that this procedure can reliably

track an object under clutter. In addition, the influence of

using the Doppler measurement was evaluated as well. It

was shown that this can improve target state estimate and

certainly improves the data association. Since the GPDA is a

single-target tracker, for the multi-target case, the GJIPDA is

considered and it was shown that it can separate close objects

properly. However, due to the combinatorial problem, it can

only be used if the count for tracks and measurements in

the association cluster is small. To solve this, heuristic search

schemes are currently investigated in order to use only the

m-best association hypothesis. In future research, the GPDA

will also have to be extended to handle an unknown expected

number of detections per target.
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