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Abstract—In vegetated environments, reliable obstacle detec-
tion remains a challenge for state-of-the-art methods, which are
usually based on geometrical representations of the environment
built from LIDAR and/or visual data. In many cases, in practice
field robots could safely traverse through vegetation, thereby
avoiding costly detours. However, it is often mistakenly inter-
preted as an obstacle. Classifying vegetation is insufficient since
there might be an obstacle hidden behind or within it. Some
Ultra-wide band (UWB) radars can penetrate through vegetation
to help distinguish actual obstacles from obstacle-free vegetation.
However, these sensors provide noisy and low-accuracy data.
Therefore, in this work we address the problem of reliable
traversability estimation in vegetation by augmenting LIDAR-
based traversability mapping with UWB radar data. A sensor
model is learned from experimental data using a support vector
machine to convert the radar data into occupancy probabilities.
These are then fused with LIDAR-based traversability data.
The resulting augmented traversability maps capture the fine
resolution of LIDAR-based maps but clear safely traversable
foliage from being interpreted as obstacle. We validate the
approach experimentally using sensors mounted on two different
mobile robots, navigating in two different environments.

I. INTRODUCTION

Reliable obstacle detection is one of the most critical

components of autonomous navigation in an a-priori unknown

environment. Most existing obstacle detection systems rely

on a geometric representation of the environment that is

typically formed either by using a vision system or a LIDAR.

However, for an unmanned ground vehicle (UGV) in vegetated

environment this representation is not sufficient for effective

navigation because vegetation is often mistakenly interpreted

as an obstacle by perception systems based on these traditional

sensors (visual cameras or LIDARs). In practice, traversing

through sparse vegetation is often possible and preferable to

avoid executing longer paths. In cases of densely vegetated

environments it can even be the only acceptable option for the

UGV. For example, in Fig. 1 the UGV, relying on a state-of-

the-art terrain traversability mapping system based on LIDAR

data, tends to consider the grass as an obstacle and would not

be able to traverse the surrounding terrain.

Fig. 1. UGV in a densely vegetated environment.

Prior studies have approached this problem by classifying

vegetation to distinguish it from other types of obstacles. For

example, in [1] a multispectral camera is utilised for detect-

ing vegetation based on near-infrared (NIR) light reflectance

properties. In [2] and [3] a 3D LIDAR is used to classify grass

from other obstacles based on statistical analysis of the 3D data

points. However, solid obstacles might be hidden behind the

vegetation (e.g. a large rock), which would pose a great risk to

the robot if it were to decide to traverse through this vegetated

area based on the result of vegetation classification only. Some

ultra-wideband (UWB) radars, which operate at much lower

frequencies of the electromagnetic spectrum, are able to see

through a certain amount of vegetation [4]. However, these

sensors emit large beams and provide data with high noise and

low accuracy. Therefore, UWB radars alone are insufficient to

provide accurate terrain traversability maps.

In prior work, the authors showed that by combining data

acquired by a UWB radar and a LIDAR it was possible to

generate augmented traversability maps that allow for reliable

navigation of UGVs in vegetated environments [5]. LIDAR-

based traversability maps were augmented with radar mea-

surements such that areas with obstacle-free foliage (i.e. areas

of vegetation that the UGV could safely drive through) could

be cleared from the map. A sensor model was developed to

convert the radar measurements into occupancy probabilities,

which were fused with probabilities of occupancy computed
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from LIDAR measurements. The radar measurements were

used only to update the cells seen as obstacles by the LIDAR,

which reduced the effect of the UWB radar noise. However,

this sensor model was partly engineered manually, and had to

be tuned by an operator. This is a tedious operation that may

need to be repeated for each mounting configuration of the

radar and/or type of environment. Therefore, in this paper we

propose to learn the UWB radar sensor model from experience,

using a support vector machine (SVM) [6]. We provide an

experimental validation of the proposed method using two dif-

ferent UGV platforms in two distinct environments. We show

that thanks to the learned sensor model the new augmented

traversability maps clearly outperform the state of the art.

The paper is organized as follows. Section II reviews the rel-

evant prior work. Section III describes the proposed approach

in detail. Section IV introduces the experimental system and

discusses implementation details, then Sec. V presents the

experimental results and compares them to previous work.

Finally, Sec. VI concludes the paper and proposes some future

work.

II. RELATED WORK

The most common representation of the environments for

obstacle detection of mobile robots is probabilistic occupancy

grid maps [7], which typically divide the environment into

equal grid cells whose values are probabilities of being occu-

pied (by an obstacle) or not. To populate these maps, LIDARs

are the most commonly used sensors, however, any other

range sensor may be used instead [8], or in combination with

LIDARs. For example, millimetre-wave (MMW) radars were

used in [9] and [10] to construct probabilistic occupancy grids

in environments that are challenging for laser or cameras,

such as in the presence of heavy dust, where LIDARs tend to

fail to provide reliable information beyond (or through) dust

clouds [11], [12].

Traversability maps quantify the difficulty a robot would

encounter when traversing through a particular region. They

are typically platform-dependent [13]. In [14] an elevation

map, i.e. a grid-based 2.5D spatial representation where each

cell stores the height of the cell [15], was transformed into a

traversability map where each grid cell retains a traversability

index. This index was calculated using the terrain slope and

roughness. In [16] a machine learning method was exploited

to learn the traversability of a road ahead using data from

LIDAR, camera, and inertial measurement unit (IMU). All

these methods rely only on range data from sensors that are

not capable of consistently penetrating foliage. Therefore, they

tend to interpret foliage as difficult areas for a UGV, if not

obstacles.

UWB radars have only been utilized in few studies for

detecting obstacles in vegetated areas. In [17] an impulse

radar operating at 2.2GHz was used to detect a tree trunk

behind 2.5m of branches and foliage. A ground penetrating

radar was used to detect obstacles within vegetation as well

as underground in [18]. To study the possibility of detecting

obstacles through vegetation, a custom UWB radar array was

built and tested in [19] and [20]. However, these studies

concentrate only on UWB-radar-based obstacle detection and

do not take the terrain traversability into consideration. In

iRobot’s DareDevil project [21] the authors used a UWB

radar in parallel with a LIDAR for all-weather operations of a

UGV, and also discussed the possibility of achieving obstacle

detection within vegetation by comparing the output of the

two sensors. However, this was not actually demonstrated.

III. APPROACH

We propose a method for learning the sensor model for a

UWB radar from data using a SVM. The learned sensor model

is used to convert the UWB radar measurements to occupancy

values that are fused with the LIDAR data to augment LIDAR-

based traversability maps in vegetated environments. This

section presents the details of the learning process as well

as how the learned sensor model is applied.

A. Target Detection with UWB Radars

UWB radar systems transmit signals across a much wider

range of frequencies than conventional radar systems. The

most common technique for generating UWB signals is to

transmit pulses with very short durations. These pulsed UWB

radars return a vector of power measurements originating from

the radar cross-sections (RCS) of the targets within the radar

field of view (FOV) [9]. The elements of this vector are

referred to as range bins. Typically UWB radars operate at

low frequencies and are therefore capable of penetrating some

amount of soft material, e.g., vegetation. On the other hand,

the low frequency results in a wide beam [4], which makes

it challenging to accurately localise detected targets, and to

estimate their actual dimensions. Furthermore, the UWB radar

return vectors can be very noisy.

Traditionally, the target detection from radar data is based

on comparing the radar returns to threshold values. The

popular constant false alarm rate (CFAR) method [22] does not

perform well in environments with frequent obstacles or with

radars that return short measurement vector. The thresholds

presented in [10] cannot be adapted to the case of UWB

radars due to different noise characteristics [4]. The sensor

model introduced by the authors in [5] was shown to be

appropriate for a UWB radar. However, the model was partly

engineered by hand which lacks adaptability properties and

may lead to sub-optimal performance. Therefore, we propose

that the sensor model is learned from experience, using real

data, before the radar data are combined with the LIDAR

measurements.

B. Learning the Sensor Model

The UWB radar sensor model is learned based on the syn-

chronized and localized radar and LIDAR data from controlled

environment using the following five steps.

1) Generate LIDAR-based Traversability Map: The UGV,

equipped with a LIDAR pointed towards the ground, a UWB

radar, and a localisation system, is driven around a controlled
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environment to collect range data with corresponding locali-

sation. We assume the relative configuration of the sensors on

the platform is know. This can be estimated by a calibration

method such as in [23]. A 2D traversability grid map, Tm, is

then generated from the LIDAR measurements. The radar data

needs to be recorded at the same time. Each cell on this map

contains a traversability value, τ , that quantifies the difficulty

for a robot to travel through that area. The traversability map

is normalised such that τ ∈ [0,1].
2) Label Teaching Examples: Traversable and

untraversable areas are then hand-labelled on the grid

map, which is straightforward since the environment is

controlled and safely traversable areas are known. There

is no need to label the whole map but only representative

examples from both classes. That is, to ensure the quality of

the training data, only the areas whose labels are definitely

known should be labelled. In addition, labelling multiple

smaller areas enables a more even distribution of the training

data. This is discussed further in the next section.

3) Extract Features: Features are extracted based on the

labelled cells of the grid, the radar return vectors, the radar

FOV, and the synchronized radar poses. The features we

use are the angle from the radar to a labelled cell, α , the

corresponding range bin index, k, and the measured intensity

at this range bin I(k). The radar data are replayed with respect

to the synchronized radar pose and the labelled cells within

the effective radar FOV are taken into account. An illustration

of this process can be seen in Fig. 2.

Typically there are more than one labelled cell correspond-

ing to a range bin simultaneously. Therefore, only the cells

with the smallest α are saved for each range bin at every time

step since it is assumed that the strongest reflection is received

from the middle of the FOV. Traversable cells are only saved if

there are no labelled obstacle cell at the corresponding range

bin. For example, in Fig. 2, only O1, T2, and O2 are saved

for range bins k − 1, k, and k + 1 respectively. In case the

whole map would be labelled, only teaching examples with

very small α would be recorded. Therefore, in order to get

more even distribution of α , it is important to label multiple

smaller regions rather than one large one. Nonetheless, the

different labelled classes should have clear margin between

them to avoid confusion.

Since the sensors are calibrated with respect to the same

frame, we have the timestamped radar poses in the same

coordinate frame as the labelled LIDAR-based grid map.

Therefore, it is straightforward to calculate the α and the

distance d. The range bin number is calculated by k = ⌈d/∆d⌉,

where ∆d is the range resolution. The corresponding intensities

are fetched from the radar return vector. Note that we discard

all the labelled cells that are not within the effective radar

detection range [dmin,dmax]. This is determined experimentally

based on the lack of reliable detection at ranges beyond dmax

and the excess of noise in the data closer than dmin.

4) Preprocess Data: The extracted data need some pre-

prosessing before they can be used for teaching the model.

Namely, the number of negative and positive samples might

(a) Radar FOV

(b) Corresponding radar return

Fig. 2. (a) An illustration of the radar FOV while extracting the features
with labelled cells on the FOV (T1 −T4 and O1 −O3). Three range bins are
depicted in the figure (k− 1, k, and k+ 1). θ is the radar beamwidth, α is
the angle from the radar to a labelled cell, and d is the distance to a labelled
cell. (b) Corresponding radar return vector. I(k−1), I(k), and I(k+1) are the
intensities of the range bins.

be significantly unbalanced. Therefore, the larger group is

randomly downsampled such that the number of examples

from both classes are roughly equal for each range bin.

This ensures that no problems arise from unbalanced data.

In addition, we scale the features within [0,1] and save the

original minimum and maximum values for each k such that

we can scale the measurements similarly when applying the

learned sensor model.

5) Train the Models: The preprocessed data are used to

train a model for converting the radar data to measurement

likelihoods. The well-known SVM framework was chosen as

the learning method because it has been shown that SVMs

consistently perform very well in similar two-class real-world

problems [24]. We use the C-support vector classification (C-

SVC) [6] with the probability estimates extension [25] to

estimate a probability that an object in the radar FOV is indeed

a real obstacle. We train a separate model for each range bin

since the radar-return-vector noise floor differs significantly

from one range bin to another. The separate models are simpler

than one complex model, which makes the prediction step
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Fig. 3. (a) A radar return with two targets in the FOV (at a range of 7.5m

and 9m, respectively) drawn in red. The learned threshold (assuming α = 0)
is drawn in green. (b) Corresponding occupancy probabilities calculated with
the learned sensor model.

much faster. We use Radial Basis Function (RBF) kernel since

it can handle non-linear relations in the data and tends to

perform well in cases where there are only few features [26].

The free parameters for the C-SVC with RBF kernel are C,

which controls the cost of misclassification on the training

data, and the kernel parameter γ , which controls how far the

influence of a single training example reaches. We used grid

search guided by cross-validation to assist in the selection of

these parameters. Note that since the radar data are very noisy,

it is important not to overfit the model and aim for smooth

decision surfaces. An example of the radar return vector and

the learned sensor model can be seen in Fig. 3. The green

detection threshold in Fig. 3(a) was computed assuming that

measurements originate from the middle of the FOV and it

illustrates the point where the predicted class changes.

C. Apply the Model

Applying the learned sensor model is done in three steps.

Firstly, Tm is generated from the LIDAR data. Secondly, the

sensor model is applied for each untraversable cell on Tm

within the radar FOV. Thirdly, the radar detections are com-

bined with the prior data.

1) Generate LIDAR-based Traversability Map: First, as

in the learning phase, we need to generate Tm from the

LIDAR data. However, contrary to the learning phase, a local

traversability map of the robot’s surroundings is sufficient as

long as it covers the radar FOV. Constantly updating a local Tm

enables real-time processing of the proposed algorithm.

2) Apply the Sensor Model: After each new radar mea-

surement vector, all the untraversable cells in Tm within the

radar FOV are processed with the sensor model. That is, the

features α , k, and I(k) are extracted from the data and scaled,

the correct model is selected based on the value k (the range

bin number), and the model is applied using the feature vector.

However, there are often multiple target cells that correspond

to a particular range bin similarly to Fig. 2. This is problematic

since the radar only returns the strongest reflection per each

range bin. Therefore, we assume that the I(k) originates from

the cell with the smallest α . To take this into account, we

apply an angle scaler Gθ that models the beam pattern with

an inverse parabola [9] and scales the probabilities with respect

to the cell with the smallest α . That is, Gθ is

Gθ (α,αmin) =
θ 2 −2α2

θ 2 −2α2
min

, (1)

where α and αmin are the angle from the beam axis to the

centre of the current cell and the central cell respectively,

and θ is the beamwidth of the radar. The measurement

likelihood, P(z|y), is calculated with

P(z|y) = Gθ (α,αmax)×Ppred(y) , (2)

where the class labels y ∈ {0,1} correspond to traversable and

untraversable cells respectively. The Ppred(y) is the predicted

class probability and the z is the radar return vector. The mea-

surement likelihood is computed only for the predicted y and

the result is bounded such that 0.5 ≤ P(z|y)≤ 0.8. The upper

bound controls the conservativity of the clearing strategy: the

lower the value, the more measurements are required to clear

cells initially found as obstacles in the LIDAR-based map.

3) Update the Augmented Traversability Map: The corre-

sponding cells are updated to the augmented traversability

map, Tma, by using Bayes’ formula, assuming static world and

conditional independence, a standard assumption in occupancy

mapping applications [7]. The Tma is initialized with the values

from Tm but only the cells seen untraversable by the LIDAR

are updated. This ensures that the resulting Tma retains the

high resolution of the Tm and the noisy radar measurements

are only used for additional information on the obstacles. In

case the radar observations do not indicate that a cell should

be cleared (i.e., the predicted probabilities are not consistently

low enough), the cell remains untraversable.

IV. SYSTEM DESCRIPTION

This section presents the experimental system used for

validation and discusses the implementation of the proposed

approach on two UGVs.
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A. UWB Radar

The UWB radar used in this study is a Radar Developer’s

Kit Lite (RaDeKL) by Multi Spectral Solutions Inc (MSSI).

The most relevant radar performance characteristics are sum-

marised in Table I. Please refer to [5] for an experimental

evaluation of the ability of this sensor to penetrate through

various depths of vegetation.

TABLE I
TECHNICAL SPECIFICATIONS OF RADEKL UWB RADAR

RF Characteristics

Centre Frequency 6.35 GHz
Bandwidth 400 Mhz (-3 dB)
Peak Power 50 mW EIRP
Antenna gain 12 dBi w/4x4 Array
Antenna FOV 40 deg AZ x 40 deg EL

System Performance

Range Extent 256 range bins w/variable offsets
Range resolution (∆d) 30 cm
Effective min range (dmin) 3.6 m
Effective max range (dmax) 10.0 m

B. Measurement Platforms

Data from two different measurement platforms were used

in this study to validate the proposed approach. The mea-

surement platforms, Shrimp and Argo, can be seen in Fig. 4.

Shrimp is based on Segway’s Robotic Mobile Platform RMP-

400 and Argo is an 8 wheel skid-steering vehicle. Both

platforms are equipped with a Novatel SPAN System (Syn-

chronized Position Attitude and Navigation) with a Honey-

well IMU positioning system, which typically provides 2cm-

accuracy localisation estimates. On both platforms the UWB

radar was mounted at the front of both platforms, slightly

pointing down (tilt angle of about 2deg.). A SICK LMS

291 LIDARs (indicated in Fig. 4), mounted with a tilt an-

gle of about 8deg., was used to generate the LIDAR-based

traversability maps by scanning the terrain with the vehicle.

C. Implementation

In this paper, the traversability map, Tm, was computed using

the method in [14]. First, an elevation map was calculated

from the LIDAR returns and the synchronized pose data. The

traversability index, τ , was then calculated for each cell using

the slope and roughness of the terrain.

The resulting Tm was scaled by dividing the τ of each cell

by a platform-specific untraversability constant, Ti = 40, which

was determined experimentally. Every cell with a τ above Ti

was considered untraversable and the values below were scaled

between 0 and 1. However, all traversability representations are

applicable as long as the traversability is scaled accordingly.

We used the popular LIBSVM library [27] to learn the

sensor model. The range bin models were divided into three

groups with similar noise characteristics based on radar re-

turn data analysis and the grid search results. The selected

hyperparameters and the mean cross-validation accuracies are

presented in Table II. The γ parameter of the C-SVC method

(a) Shrimp

(b) Argo

Fig. 4. The measurement platforms used for validation. The exteroceptive
sensors used in this study are marked on the pictures.

TABLE II
HYPERPARAMETERS OF THE SENSOR MODELS (see Sec. III-B5)

Range bin γ C Accuracy

12-16 0.50 0.50 61%
17-24 0.25 1.00 73%
25-33 0.50 8.00 84%

(see Sec. III-B5) is low for all the range bins since the under-

lying non-linear model was expected to be simple and remain

similar throughout the data. However, the range bins closer

to the radar have significantly higher noise floor. Therefore,

separating the targets from the noise is more challenging and

the decision surface was kept smooth (i.e., C is low) to avoid

overfitting.

V. EXPERIMENTAL RESULTS

To validate the proposed approach, we use the experimental

data presented in [5]. Three sets of field trials were conducted.

Trials 1 and 2 were conducted in a controlled environment on

a relatively flat lawn and Trial 3 in a rural environment with

numerous grass tussocks on the test area (see Fig. 5). We used

the data from Trial 1 for learning the sensor model and the

data from Trials 2 and 3 to validate the proposed approach.

The results are also compared against the method in [5].

In Trial 2, a total of 6 different experiments were performed.

In experiment a, the lawn was clear of obstacles and three

obstacles (i.e., a stone and columns of 2 and 3 bricks) were
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(a) Test site of Trials 1 and 2 (b) Test site of Trial 3

Fig. 5. Partial views of the test sites.

TABLE III
CLEARED CELLS FROM TRIAL 2

Learned sensor model Sensor model in [5]

T NR FNR T NR FNR

a) Empty N/A 6.67% N/A 6.81%
b) Obstacles N/A 12.68% N/A 15.42%
c) 1 layer 92.40% 9.01% 88.98% 8.59%

d) 2 layers 92.86% 14.21% 88.49% 17.60%
e) 3 layers 83.96% 12.25% 75.00% 13.87%
f) 4 layers 83.09% 14.85% 65.69% 10.37%

added for the experiment b. Then, branches of Eucalyptus tree

were added layer by layer in front of the obstacles as well as on

two clear spots on the lawn for experiments c, d, e, and f . One

layer was added before each experiment, every layer adding

approximately 10cm of depth to the foliage. See the summary

of experiments in this trial in Table III.

An example of the resulting Tm from Trial 2c (with one

layer of foliage in front of obstacles) is shown in Fig. 6(a).

The locations of the obstacles are indicated in the figure. The

corresponding augmented traversability map, Tma, is shown in

Fig. 6(c).

Fig. 6(b) indicates how long the map cells that were updated

using the radar data spent in the radar FOV during the

experiment. Note that due to the noise and low resolution of

the radar data, and to use a sufficiently conservative strategy,

the decision of clearing a grid cell from being considered as

an obstacle was only taken for cells that have been in the radar

FOV for more than 2s.

Table III summarises the results from Trial 2 using our

approach, compared with the hand-tuned sensor model in [5].

Since our goal is to clear some areas falsely considered as

obstacled in the LIDAR-based traversability map Tm, in this

analysis we are only interested in the false negative rate (FNR)

and the true negative rate (TNR). TNR is the proportion of

foliage cells that were correctly cleared of being an obstacle,

i.e. obstacle-free foliage cells, among all obstacle-free foliage

cells. FNR is the proportion of obstacle cells that were falsely

cleared, among all obstacle cells. These values are calculated

based on hand labelling foliage and obstacles on the Tm using

information of the obstacle locations and size without foliage.

In the table, the best results for each experiment (a- f ) (i.e.

highest TNR and lowest FNR) are shown in bold font.

It is clear from Table III that our approach outperforms

the model in [5] in all the experiments. The TNR values are

significantly higher with the learned sensor model, i.e., more

obstacle-free vegetation is correctly cleared. The TNR values

are around 90% in the experiments with less than three layers

of foliage but start to drop as the vegetation increases since

the radar is no longer able to distinguish between foliage and

obstacles.

The FNR values are around 10% with both approaches.

Overall, there are three reasons that affect the FNR values.

Firstly, the radar is not able to capture the true dimensions

of the objects due to large range resolution, which may result

in falsely clearing some of the obstacle cells. Secondly, the

annotation is based on traversability map that typically exag-

gerates the obstacle dimensions, i.e., some of the perimeter

cells of labelled obstacles might be obstacle-free in reality.

Finally, the RCS of some of the obstacles is too small for the

radar to detect them reliably and in some experiments they are

falsely cleared. For example, in experiment f with 4 layers of

vegetation (see Table III) the column of two bricks was falsely

cleared with the learned approach, which leads to a significant

increase in the FNR due to the low number of labelled cells.

Trial 3 was conducted in a rural environment with multiple

grass tufts and three brick piles (heights: 2, 3, and 4 bricks)

on the test area. In addition, there was also a small ditch and a

car in the test area. Maps of Trial 3 can be seen in Fig. 7. The

LIDAR-based traversability map in Fig. 7(a) shows that when

using only LIDAR data the terrain appears very challenging

and if the UGV was located in Position A it would not find

a safe path to autonomously reach Position B, even though

most of the field is actually only covered with grass, with only

occasional and isolated actual obstacles. However, augmenting

the traversability map with UWB radar data allowed the

system to clear large areas that have been observed by the

radar (Fig. 7(b)) and considered as obstacle-free despite the

presence of tall grass (Fig. 7c-d). Both approaches performed

reasonably well in this test, however, the new approach with

learned sensor model was able to clear significantly more

obstacle-free cells, while still detecting all actual obstacles.

The TNR and FNR could not be computed for Trial 3 since

no ground truth was available for these tests.

VI. CONCLUSION

In this paper, we proposed a method for learning the

UWB radar sensor model used to augment LIDAR-based

traversability maps in vegetated environments. This is espe-

cially important in densely vegetated environments where it

may be impossible for a UGV to operate without sensors

that are able to penetrate some amount of vegetation. A

SVM with probability extension was utilized to learn the

sensor model that converts the radar measurement vector into

occupancy values of individual cells that can be fused with

the LIDAR measurements. We showed that the learned sensor

model allowed us to outperform the method introduced in

our prior work, especially increasing significantly the True

Negative Rate value, i.e. clearing obstacle-free foliage areas
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(a) Traversability map (Tm) (b) Updated cells radar FOV (c) Augmented map (Tma)

Fig. 6. Maps from Trial 2c. (a) shows the LIDAR traversability map, coloured by traversability value (red means obstacle); (b) show the cells that were
observed by the radar, with an intensity of grey proportional to the time spent by the cell in the radar FOV (darker means longer time); (c) show the augmented
occupancy map, coloured by probability values, (blue for 0, red for 1). The size of the test area is around 30×30m2.

(a) Traversability map (Tm) (b) Updated cells in radar FOV

(c) Tma using learned sensor model (d) Tma using method in [5]

Fig. 7. Trial 3: (a) shows the LIDAR traversability map, coloured by traversability value (red means obstacle); (b) shows the cells that were observed by the
radar, with an intensity of grey proportional to the time spent by the cell in the radar FOV (darker means longer time); (d) shows the augmented occupancy
map using the learned sensor model, coloured by the probability value (blue for 0, red for 1). (d) shows the augmented occupancy map using the model in [5],
coloured by the probability values. The size of the test area is around 50×50m2.
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that were considered as obstacles by state-of-the-art LIDAR-

based traversability mapping.

However, despite the clear improvement of performance

the radar data remain too noisy to reliably distinguish targets

with small radar cross-sections, which may lead to ignoring

small difficulties in the terrain detected by the LIDAR. Even

though these targets are typically not a significant threat to

the integrity of the robot, it is preferable to detect them

to anticipate any difficulty (e.g. to reduce the speed of the

platform). Therefore, the learned sensor model is trained to

clear vegetation aggressively while still detecting the obstacles

in the experiments. More aggressive sensor model would lead

to falsely clearing more obstacles.

The learned sensor model is applicable to various environ-

ments with different types of vegetation. However, the amount

of cleared obstacle-free vegetation may depend on the type of

the vegetation. For example, wet grass or vegetation with high

concentration of branches will result in stronger backscattering

of the radar signal, i.e., less obstacle-free vegetation can be

cleared.

To improve performance, in future work we consider mount-

ing the radar on a scanning mechanism (e.g. a pan-tilt unit) or

using an overlapping array of radars, which would enhance

the accuracy of the collected radar data, as well as that

of the augmented traversability map. We will also consider

implementing a real-time version of the algorithm. In this

paper the results were obtained off-line, however, no heavy

computations are involved in the process, therefore, using a

3D LIDAR should allow us to update a local traversability

map continuously.
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