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Abstract—Modern sensors that are increasingly flexible may
be used to schedule various functions. Such sensors typically
have competing demands on limited sensor resources such as the
sensor timeline. Sensor management systems attempt to meet the
overall goal of the sensor user by considering the user’s priorities
and the capabilities of the sensor.

This paper describes an algorithm for scheduling an electron-
ically scanned array radar in order to perform the two functions
of (i) searching for new targets and (ii) updating tracks on
known targets. A previous formulation considered search theory
approaches to determine radar dwell times. This formulation
is extended from the search problem to address the tracking
or update function for known targets. A key feature of the
scheduling formulation permits the sensor user to specify the
costs of not detecting targets within a surveillance volume and
of not updating tracks on known targets. A single cost function
is used to determine a myopic radar schedule that is optimised
using an interior point method.

A simple example of a dynamically evolving target environ-
ment is used to illustrate the allocation of radar timeline for
search and tracking functions.

Keywords: Sensor Management, Radar, Surveillance,

Search, Tracking.

I. INTRODUCTION

Recent technology advancements enable modern sensors

to perform many tasks which support different functions.

However, the operation of multifunction sensors requires the

dynamic allocation of limited sensor resources to achieve

overall mission objectives. The different functions may have

competing demands on the sensor resources so automated

techniques are needed to schedule resources based on the

sensor capabilities and on the objectives [1], [2].

In this paper the problem of scheduling an electronically

scanned phased array radar to jointly perform the two func-

tions of (i) searching for previously undetected targets and (ii)

updating tracks on previously detected targets is addressed.

Previous work has typically considered the search and tracking

functions as separate problems.

Mechanically scanned radars, where the radar is physically

rotated with a fixed period, are quite constrained in the

allocation of sensor resources. Track-While-Scan functions are

commonly used to update tracks with radar measurements that

arise when the mechanically scanned radar beam illuminates

a given volume. In contrast, the agility of an electronically

scanned phased array radar permits various radar parameters

such as the pointing direction and dwell-time to be selected

dynamically so that radar resources are optimised for achieving

mission objectives. A multifunction radar scheduling system

must account for a dynamic object environment, the charac-

teristics of the radar and any constraints on the operation of

the radar.

Various approaches have been applied to the problem of

radar resource allocation for either the search function, the

track function, or both functions [3], [4]. Many radar schedul-

ing approaches focus on allocating time to tasks at the radar

dwell level, including allowing for interleaving [5], pulse train

length [6] and waveform considerations [7], [8]. Wintenby

distinguished between this low level tasking and a higher

level of abstraction, in which radar resources are allocated

to search and track tasks, rather than specific waveforms [9].

Scheduling at the higher level of abstraction permits a more

direct consideration of the relative importance of search and

track tasks.

Methods of dividing radar resources between search and

track functions include fixed, heuristic rules [10] or a fixed

ratio of search to track effort [11], [12]. Methods to vary

the allocation between functions tend to optimise the schedule

according to some utility function, for example based on infor-

mation theoretic measures [11], [13]–[15]. Sensor scheduling

may be myopic (short term) so that the sensor allocations are

decided for a single time step ahead. In contrast, non-myopic

(long term) sensor scheduling plans multiple sensor allocations

in the future [15], [18], [19].

The foundation for the sensor scheduling approach pre-

sented in this paper lies in search theory techniques for

allocating sensor resources to detect targets [16]. Grid-based

search scheduling techniques have been applied to the problem

of non-myopic sensor management for allocating the resources

of electronically scanned radar to search for multiple targets

[19]. An approximately convex cost function is solved using

an interior point method to optimise the time allocation of

search actions within the surveillance region.

In this paper the scheduling framework of [19] is extended

from considering the radar search function alone to include

the target track function. A single cost function is developed

that has two terms: (i) a term that addresses the cost of

not detecting targets for the search problem, and (ii) a state-

dependent term that addresses the cost of error in the track

state estimates. A system user may therefore explictly define

the relative importance of searching for targets that have not
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Figure 1. Closed loop tracking and sensor scheduling

been detected previously compared to that of updating the set

of tracks on previously detected targets.

Figure 1 illustrates the concept of closed loop tracking

and sensor scheduling [1]. A sensor system yields a set of

measurements zt corresponding to time t. Then, for each of

the detected targets, a tracker is used to determine a track

state estimate that typically comprise a mean x̂t|t and a

measure of uncertainty given by the covariance P̂t|t, where

the terminology t|t is used to denote that the estimate is

obtained for time t given all of the measurement data obtained

up to and including time t. An operator may then make

decisions on the basis of the track estimates. In our framework

there exists a feedback loop, whereby the track estimates

are made available to a sensor scheduler, which also accepts

user-specified costs associated with the functions of search

and track update. Sensor resources such as radar dwell times

for particular beams or actions τt,a are allocated to yield

sensor measurements for subsequent updates for the tracker.

The overall goal is to allocate the sensor resources in order

to provide an operator with a track picture that satisfies the

operator’s mission objectives for search and track update.

In section II the surveillance region is described together

with background information on the sensor model that is used

to develop the scheduling algorithm. Section III reiterates

the myopic search cost function developed in [19] and then

section IV presents a compatible track update cost function.

The scheduling algorithm for combining the search and track

update functions is described in section V. A simple example

illustrating the implementation of a myopic scheduling algo-

rithm is presented in section VI. Conclusions and future work

are discussed in section VII.

II. SURVEILLANCE REGION AND SENSOR

We consider an agile radar that performs sensing actions

to either detect previously undetected targets or to update

track estimates for known targets. From these actions, the

radar generates measurements in 2D, range-azimuth space

including estimates of the associated measurement error. The

measurements are processed using a tracker to perform track

state prediction and update [1]. For this paper we assume a

single, stationary sensor however the method can be extended

to multiple sensors whose motion is known.

A. Grid

The radar surveillance region is quantised into a set of N
non-overlapping cells S1, . . . ,SN . We assume these cells are

fixed for the duration of the scenario. Note that the search

optimisation strategy in [19] uses a subspace quantised into

Gaussian cells, the exact quantisation strategy is relatively

unimportant.

The use of a grid-based approach for the search problem can

be justified by the diffuse undetected target density [19], but

the distribution of track estimates is expected to have strong

peaks over the same grid. In this case a grid-based method is

likely to be highly inefficient - we discuss how the efficiency

can be improved in section IV.

B. Sensor timeline

The radar is assumed to be able to actively detect targets

using a number of beams (or actions), a ∈ A = {1, . . . , A},

between which it must divide its time. Each beam is able to

observe a sparse subset of the surveillance space with non-

zero probability of detection. We denote the set of beams able

to observe cell Si by V(Si).
We assume the radar timeline can be segmented into smaller,

time indexed sections (or ‘scans’) of duration ∆T = Rt so that

time Tt+1 = Tt +∆T . We aim to generate a schedule for the

radar beams for each scan by allocating time to each beam τt,a
such that

∑A
a=1 τt,a ≤ Rt. The schedule of future scans can

be recalculated after the detection actions for each scan have

been performed. In this paper we only consider scheduling the

next single scan (a myopic plan) however future work is to

extend this to a finite planning horizon.

The scheduling method described in this paper can be

extended to include multiple sensors by appending new beams

to the set A, separating the total time constraints for each

sensor.

C. Probability of detection model

A model relating the time allocated to a beam during the

scan at time t, τt,a, to the probability of detecting a target

is required. Any convex relation can be used, but for our

scenario we use Albersheim’s model [17] and assume the value

is constant over each cell Si. As in [19] we use a modified

version of Albersheim’s formula to allow for the eclipsing of

targets during radar transmit.

Pd(Si, a, τt,a) =
(1− d) + (1− γ)eb(Si,a,τt,a)

1 + eb(Si,a,τt,a)
. (1)

Where γ < 1 is the probability of eclipsing and constant

d = 1 + (1 − γ)e−c/(0.12c+1.7) is used to fix the probability

of detection to zero when no resources are allocated. Con-

stant c = ln(0.62/Pfa) for a given false alarm rate. Factor

b(Si, a, τ) = (ωSi,aτ − c)/(0.12c + 1.7) depends not only

on the dwell time, τ , but also on the range of cell Si and

the detection specifications of beam a. The sensor detection
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performance may vary from beam to beam, and with time but

is assumed to be constant for the duration of each scan. For

beam a it is assumed that there is a specified probability of

detection P̄ a
d at a specified range r̄a given a specified dwell

time τ̄a, so that

ωSi,a =
1

τ̄a

(

r̄a

r(Si)

)4

×

[(

1

0.12c+ 1.7

)

ln

(

1− P̄ a
d − d

P̄ a
d − 1 + γ

)

+ c

]

. (2)

From equations 1 and 2 we find the probability of miss to

be Pm(Si, a, τt,a) = 1 − Pd(Si, a, τt,a) = exp [α(Si, a, τt,a)]
where

α(Si, a, τt,a) = ln

(

d+ γeb(Si,a,τt,a)

1 + eb(Si,a,τt,a)

)

. (3)

In the scheduling problem we will need a log-convex

probability of miss but, as discussed in [19], the function

α(Si, a, τt,a) is neither convex nor concave. We follow the

example of [19] and ‘convexify’ this function by setting the

second derivative to be zero where it would otherwise be

negative - allowing the use of a convex optimisation solver

later. Both α and its first derivative α′ are unaltered but we

set the second derivative to α̃′′ ≡ max{α′′(Si, a, τt,a), 0}.

This is similar to sequential convex programming [21], as

we are forcing the Hessian to be positive semi-definite at

each approximation to the solution but not explicitly defining

a trusted region. This meets the convexity requirements of

Newton’s Method in section V while using a realistic radar

detection model.

III. TARGET SURVEILLANCE

In [19] a convex optimisation method to schedule agile

radar beams for the search problem is presented. There is an

unknown number of undetected targets within the surveillance

region and we wish to divide array time for some defined

scan between search beams to minimise the expected number

of undetected targets after completion of the scan.

Following [11], the expected number of undetected targets

at a given time t is assumed to follow a Poisson distribution

with parameter λ that may vary in time and space. We denote

the expected number of undetected targets in cell Si by λ(Si),
which is assumed to be constant for any cell but may vary

between cells to approximate a Poisson distribution that is non-

homogeneous over the surveillance region. At time t we denote

the predicted value of λ(Si) as λt|t−1(Si) and the filtered

value (once measurements have been incorporated) as λt|t(Si).

In each time interval, say between time t − 1 and time t,
the predicted undetected target density in a cell Si may be

computed as the sum of

• the number of new targets that arrive in cell Si, and

• the number of targets that move from other cells or that

simply remain in cell Si,

so that we have:

λt|t−1(Si) = λA(Si)∆T +
N
∑

j=1

Φ∆T (Sj ,Si)λt−1|t−1(Sj). (4)

In the above λA(Si) is the arrival rate for new targets in Si

and Φ∆T (Sj ,Si) is the transition kernel for targets that move

from cell Sj to cell Si in the time interval between time t− 1
and t, which is of duration ∆T .

The arrival function λA(Si) may incorporate three different

types of arrivals:

1) new targets appearing anywhere within the surveillance

region,

2) new targets appearing at the boundary of the surveillance

region,

3) new targets appearing at likely entry points, e.g. airports.

We define λS to be the average arrival rate of targets within

the surveillance region, λB to be the average arrival rate

of targets at the boundary of the surveillance region, where

B = ∪i∈IB
Si is the set of cells at the surveillance boundary.

Finally, λl
E to be the average arrival rate of targets within

a region El = ∪i∈Il
Si associated with the l-th (of L) entry

point and where Il is the set of corresponding cell indices that

define the region in which targets may enter.

We sum the contributions from the various arrival mecha-

nisms to obtain the arrival density

λA(Si) =
λSA(Si)

AS
+
δB(Si)λBA(Si)
∑

∪i∈IB
A(Si)

+
L
∑

l=1

δlE(Si)λ
l
EA(Si)

∑

∪i∈Il
A(Si)

,

(5)

where A(Si) is the area of cell Si, AS is the total surveillance

area and where δB(Si) and δE(Si) are indicator functions such

that

δB(Si) =

{

1, if Si ∈ B,

0, else.
(6)

Similarly,

δlE(Si) =

{

1, if Si ∈ El,

0, else.
(7)

After detection actions have been performed at time t, the

distribution of undetected targets is updated to be Poisson with

intensity

λt|t(Si) = Pm(Si|τt,a∈V(Si))λt|t−1(Si), (8)

where Pm(Si|τt,a∈V(Si)) is the probability of miss for cell Si

given the scheduled sensing functions that observe it. When

the log-probability of miss is given by Albersheim’s formula,

the contributions from the search beams that observe cell Si

during the scan at time t are summed to obtain

Pm(Si|τt,a∈V(Si)) = exp





∑

a∈V(Si)

α(Si, a, τt,a)



 . (9)

A search cost cs(Si) for not detecting a target in a given

cell is introduced. This cost is assumed to be constant for

the whole cell and to not change over the single time step

947



planning horizon. We wish to assign time to each beam to

minimise the expected total cost over the region for the scan

interval at time t. The optimisation problem for myopic search

scheduling is presented in equation (8) of [19] and repeated

here for completeness:

minimise

N
∑

i=1

cs(Si) exp





∑

a∈V(Si)

α(Si, a, τt,a)



λt|t−1(Si)

subject to

A
∑

a=1

τt,a ≤ Rt, τt,a ≥ 0. (10)

As in [19] this is a convex function when using the

convexified version of Albersheim’s formula.

IV. TRACK UPDATES

We consider the track update scheduling problem. In a

manner analogous to the search cost cs(Si), we seek to develop

a cost function for track updates that is of a similar form and

can be applied over the same surveillance space.

Assume there is a set of targets j ∈ {1, . . .M} already

being tracked in the surveillance region. These tracks may be

cued by a different sensor or be historical tracks from the

sensor under consideration. The targets are tracked so that the

estimate, x̂
j
t|t, of the state of target j is available at time t.

We assume that the scan time Rt is short enough and that

the surveillance region cells are large enough that if a track’s

predicted state estimate is within the cell then we can apply the

update cost for that target entirely to that cell at that time. The

predicted state of target j is denoted x̂
j
t|t−1 and so an indicator

function for whether a track lies within a cell is defined by

δ(x̂j
t|t−1 ∈ Si) =

{

1, x̂
j
t|t−1 ∈ Si

0, else.
(11)

An update cost cu(j) for not updating the track on target j
is introduced. This, combined with the indicator function (11),

gives the overall track update cost for cell Si as the sum of

all the track update costs for the tracks that lie within the cell:

cu(Si, t) =

M
∑

j=1

cu(j)δ(x̂
j
t|t−1 ∈ Si). (12)

The track update cost cu(j) can be anything, but to be of

use for developing a scan schedule should be related to the

information loss cost of not updating the track within the one-

step planning horizon.

Radars generally use different waveforms depending on

whether they are searching for a new target in a given direction

or are updating a track on a target in that direction [8]. For

now we consider a single set of beams that are able to perform

both search and track update actions. Future work will divide

the radar timeline further into separate search and track update

functions.

Assuming that the probability of miss is the same regardless

of whether a beam is performing search or track, the proba-

bility of miss for a track update is given by (9).

Combining these, the objective for the track update problem

becomes:

minimise

N
∑

i=1

cu(Si, t)





∑

a∈V(Si)

α(Si, a, τt,a)





subject to

A
∑

a=1

τt,a ≤ Rt, τt,a ≥ 0. (13)

An efficient implementation of this method would only

consider the subset of the A update beams that actually contain

a track.

V. COMBINED SEARCH AND TRACK UPDATE PROBLEM

If the search and update problems are defined on the same

grid, then the two can be directly combined and sensing

actions that observe the grid optimised. We assume for now

that the radar beams can search for new targets and update

tracks in the same action subject to the restriction on total

radar time, so

minimise

N
∑

i=1

cs(Si) exp





∑

a∈V(Si)

α(Si, a, τt,a)



λt|t−1(Si)

+

N
∑

i=1

cu(Si, t) exp





∑

a∈V(Si)

α(Si, a, τt,a)





subject to

A
∑

a=1

τt,a ≤ Rt, τt,a ≥ 0. (14)

The probability of miss is non-increasing with increased

resources so the restriction on total time allocated for the scan

at time t can be replaced with the equality constraint:

e
T
τ t = Rt, (15)

where τ t = [τt,1, . . . , τt,A]
T and e is an A×1 vector of ones.

As in [19] we solve this problem using Newton’s Method

for a related objective function, one with a log barrier for the

non-negative time constraints:

Bθ(τ t) =
N
∑

i=1

(

cs(Si)λt|t−1(Si) + cu(Si, t)
)

×

exp





∑

a∈V(Si)

α(Si, a, τt,a)



− θ
A
∑

a=1

ln τt,a. (16)

This is convex in τ t if α(Si, a, τt,a) is convex ∀a, as exp(·)
is convex and − ln(·) is convex [20]. Its derivatives are:

δBθ(τ t)

δτt,aj

=
∑

i|aj∈V(Si)

(

(

cs(Si)λt|t−1(Si) + cu(Si, t)
)

·

α′(Si, a
j , τt,aj ) exp





∑

a∈V(Si)

α(Si, a, τt,a)





)

−
θ

τt,aj

(17)
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and

δ2Bθ(τ t)

δτ2t,aj

=
∑

i|aj∈V(Si)

(

(

cs(Si)λt|t−1(Si) + cu(Si, t)
)

·

[

α̃′′(Si, a
j , τt,aj ) + α′(Si, a

j , τt,aj )2
]

·

exp





∑

a∈V(Si)

α(Si, a, τt,a)





)

+
θ

τ2t,a
.

(18)

δ2Bθ(τ t)

δτt,ajδτt,ak

=
∑

i|aj∈V(Si),ak∈V(Si)

(

(

cs(Si)λt|t−1(Si)+

cu(Si, t)) ·
[

α′(Si, a
j , τt,aj )α′(Si, a

k, τt,ak)
]

·

exp





∑

a∈V(Si)

α(Si, a, τt,a)





)

, aj 6= ak

(19)

As α(Si, au, τt,a) is not inherently convex, we solve

the equality-constrained auxiliary problem using Newton’s

Method [20] on the convexified Hessian forced locally by

keeping α̃′′ ≥ 0. The step direction is calculated by:
[

∆τt
w

]

=

[

∇2Bθ(τ t) e

e
T 0

]

\

[

−∇Bθ(τ t)
0

]

. (20)

The optimal dual variable, w, here serves to ensure that the

equality constraint (15) is met. To start the minimisation from

a strictly feasible point, we choose an initial τt = Rt

A e. We

update this estimate τt := τt + γ∆τt until a termination

condition is met, or for a fixed number of steps.

Following [20], the step length is chosen to ensure the

estimate does not reach the unstable log boundary γ =
(1−ǫ)min{1, τt,a/−∆τt,a∀a : ∆τt,a < 0} with a small scale

factor ǫ that keeps τt,a certainly positive. Nominally choose

ǫ = 0.01.

Further, to ensure that Bθ(τ t) decreases every step without

performing an expensive line search, we use the common

technique of backtracking [20]. In the case that a given step

would increase the cost function, the step is repeated from the

previous position in the same direction (i.e. ∆τt,a need not be

re-calculated) but for a smaller step size γ := 0.5γ.

Every Newton step the log-barrier keeping the allocated

times positive is tightened. In this experiment, as in [19],

we commence with an initial θ = 0.01 and reduce this

geometrically every step θ := θ/3.

VI. EXAMPLE

A simple scenario is developed to illustrate how a multi-

function sensor schedule can be generated for a dynamically

evolving target scenario. A myopic scan schedule is found

for a single, stationary radar that is able to perform search

and track update functions in a 2D surveillance region where

there are extant target tracks to be updated and assumptions

are made about the underlying undetected target density.

A. Scenario

We define the surveillance region as a polar coordinate grid

centred around the sensor with grid cells formed by uniform

range and azimuth divisions. The cells are chosen so that it is

reasonable to assume that the probability of detection and the

costs are spatially uniform across a cell. The range component

is discretised from 20 km to 200 km with Nr = 100 uniform

range divisions. The azimuth component is discretised from 0

to 2π radians with Nθ = 30 uniform azimuth bins so there

are Nr ×Nθ = 3000 cells in all.

The sensor is an agile radar that can perform search and

track update actions. For simplicity, we define A = 30 beams,

each centred on an azimuth bin and including the adjacent

bins. All of the range cells are observed in the three azimuth

bins for each beam. For the centre azimuth bin of each beam,

the specified probability of detection is P̄ a
d = 0.5 at range

r̄a = 100 for dwell time τ̄a = 0.1s. For the two outer bins of

each beam a, a 24dB reduction is assumed so r̄a = 100/4.

The probability of eclipsing is set to γ = 0.1 and Pfa = 10−6.

The time the sensor spends on each of the beams (τa,t, a =
1, ..., 30 at scan time t) is allocated myopically from a scan

time of Rt = 1 second, after which the schedule is executed

and the target tracks and undetected target density updated

according to the simulated observations. This is repeated for

30 scans (equivalent to 30 seconds).

The optimisation is the Newton’s Method with step length

and backtracking as described in section V and with a maxi-

mum of 15 steps.

We assume undetected targets follow a Poisson distribution

as described in section III.

The total background arrival rate is assumed to be a constant

λS = 0.05 targets per second throughout the whole surveil-

lance volume. In addition, there is a total boundary arrival rate

of λB = 0.01 targets per second to cells at the outer range

in angle bins 16-21. Finally, an entry arrival region is defined

in the third angle bin at ranges [100, 150] to have an extra

λE = 0.01 targets arriving per second.

The sensor scheduling method outlined in this paper does

not require that the surveillance region is empty of targets

when the sensor starts detecting. The scheduler can account

for an initially high undetected target density (reflecting the

targets that may inhabit the surveillance space when the sensor

is turned on). We initiate the scenario with an undetected target

density equivalent to the background arrival rate maintained

for 1 second.

If the cells are chosen to be large and frequently observed,

then the undetected targets may be assumed to be stationary,

so the transition kernel in equation (4) is the identity matrix.

The predicted undetected target density in cell Si can then be

simplified to

λt|t−1(Si) = λA(Si)∆T + λt−1|t−1(Si). (21)

The Poisson arrival distribution is sampled across the whole

surveillance region over a scan time to determine if a target is

born at that time. If so, an “undetected track” is started at a
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random position drawn from the surveillance region weighted

by undetected target density and with velocity (here in km per

second) drawn from the continuous uniform distribution vi ∼
U(−0.1, 0.1), i = x, y. This target’s kinematics are updated at

each time according to a constant velocity model (note that this

is different to the assumption of stationary undetected targets

for the density transition kernel). If a beam illuminates the

undetected target position it is detected with the probability

Pd = 1 − Pm and if detected it is added to the targets being

tracked with an initial covariance as below (24). In this paper

we assume that no false alarm measurements are produced.

The kinematic state of the targets evolve according to

a constant velocity process with piecewise-constant white

acceleration (see [1] p.204). The sensor scheduling method

proposed does not specify a particular tracking method. In

this example, the track state is estimated using a standard

non-linear Extended Kalman Filter (EKF) with process noise

intensity set to q = 0.1.

We introduce two targets, which we label A and B, that are

tracked at the start of the scenario. A starts close to the sensor

and moves out of the detection region, and B starts far from

the sensor and moves slowly towards it. If the state space is

x = [x, vx, y, vy]
T , then

x
A = [30,−10, 40, 0]T (22)

x
B = [140,−4,−140, 4]T . (23)

At the beginning of the scenario each track has a large

covariance, indicating large uncertainty that will incur a large

cost:

P0 =









12 0 0 0
0 0.12 0 0
0 0 12 0
0 0 0 0.12









. (24)

After each scan the radar beam time allocations are com-

puted using Albersheim’s formula based on the probability of

detection for each target. Radar measurements zt = [rt, θt]
T ,

each consisting of range and azimuth components, are assumed

to have a mean at the predicted target state and covariance R,

the radar measurement error covariance which is given by

R =

[

(0.1km)2 0
0 (0.1rad)2

]

. (25)

The radar measurement error covariance R is used in an EKF

update on the track covariance so that the new cost of not

updating the track can be generated and used to determine the

schedule for the next scan period.

We choose a track update cost that is a function of the ratio

between the expected standard deviation (error) of the track

estimate in each dimension at the end of the scan and some

desired error

cu(j) = ωr · f

(

σj
r

σd
r

)

+ ωθ · f

(

σj
θ

σd
θ

)

, where (26)

ωr = range accuracy weight

ωθ = azimuth accuracy weight

σd
r = desired range error

σd
θ = desired azimuth error

σj
r = estimated track range error

σj
θ = estimated track azimuth error

f(x) = max{x− 1, 0}.

The contributions to the track update cost from the range

and azimuth components are truncated at the desired errors,

assuming that there is no operational benefit to further refining

the track estimate.

The accuracy weights in (26) may be set according to the

relative operational importance of these components, but in

this example we let ωr = ωθ = 1. Furthermore, the desired

error is defined as a state-dependent function to reflect the

relative operational importance of targets with different states:

σd
r (r) =







0.1 : r < 50
0.2 : 50 ≤ r < 100
0.5 : 100 ≤ r

(27)

σd
θ (r) =







0.5 : r < 50
1.0 : 50 ≤ r < 100
2.5 : 100 ≤ r.

(28)

Equations (27) and (28) indicate that a track at short range has

low desired track errors in the range and azimuth components

compared to a track at longer range.

To balance the search cost with the track costs, the cost of

an undetected target is set to be uniformly 300 throughout the

surveillance region. Note that the operator can be provided

with cu(j) for the initial state of a track and choose a directly

comparable undetected target cost depending on her own

priorities.

Target tracks are terminated if the targets depart from the

surveillance region. A new track is initiated from measure-

ments of previously undetected targets in which case the initial

track state estimate covariance is given by P0 in equation (24).

Beams are allocated time based on the undetected target

cost of the cells observed by that beam and on the update

cost of all tracks that fall along that azimuth, as given in the

auxiliary objective function (16).

B. Results

A myopic sensor schedule was derived using the optimisa-

tion method outlined in this paper for the example radar and

target scenario described in the preceding section.

A representation of the resulting schedule is shown in figure

2, where the time allocations τt,a for each beam a (vertical

axis) are shown as a function of scan number t (horizontal

axis). As required by the constraint (15) the sum of the

time allocation for all beams must sum to the scan time.

Throughout the duration of the scenario it can be seen that

beam 3 receives a relatively high time allocation which is

consistent with the presence of the entry arrival region in

the centre of that beam. Beams 16-21 initially receive a large

time allocation corresponding to the boundary arrival region

covered by those beams. Target track information is overlaid
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Figure 2. Myopic schedule time allocation (seconds). Tracks are overlaid (-),
with ⋆ indicating the track birth and ◦ a measurement.
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Figure 3. An example of the decrease in the cost with Newton steps for a
single scan.

onto figure 2 so that the azimuth of a measurement is indicated

by the corresponding beam position.

The target tracks receive sensor time for their update beams

as required to maintain track state covariances that are low

cost. A measurement is obtained on a target when sufficient

time has been allocated to the beams that observe the target.

Even when relatively little time is allocated to a given beam,

the combination of the time allocated to the set of beams that

observe a target can be enough to allow a detection on that

target. For example the measurement obtained on the target in

beam 27 at time 21 arises despite the low time allocation for

that beam and for the two adjacent beams.

An example of the decrease in the objective function Bθ

for a single scan is shown in figure 3. Typically the time

allocations for the set of beams A are stable within 15 Newton

steps of the optimisation solver. During the course of the

scenario, small perturbations in the undetected target density

are amplified by the closed loop nature of the scheduler. The

resultant sparse schedule, where some beams are allocated sub-

stantially more time than others appears as a ‘chequerboard’
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Figure 4. Surveillance region (grey) around sensor (♦) showing initial track
position (⋆), radar measurements (◦) and track estimates (-). Entry arrival
region (green) and boundary arrival region (blue) are indicated. Axis units
are kilometres.
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Figure 5. Undetected target distribution at t=30s for uniform and myopic
schedules.

pattern in figure 2.

Figure 4 shows the surveillance region and the locations in

Cartesian coordinates of targets A and B which each exist at

the start of the scenario as well as other targets that appear

later.

Figure 5 shows the undetected target density at the end of

the scenario for two different sensor schedules. A uniform

schedule in which the total scan time is allocated to each

beam equally can be seen to retain a high undetected target

density in the entry arrival region. In contrast, applying the

myopic sensor schedule as described in this paper reduces the

undetected target density in the entry arrival region.

Preliminary results using the joint track and search schedul-

ing scheme outlined in this paper are promising. In particular

the sensor scheduling scheme provides a means to specify

the costs of different functions for implementation in a single

optimisation framework. The initial results appear consistent
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with expectation and indicate benefits in fulfilling overall user

objectives.

VII. CONCLUSIONS AND FUTURE WORK

An approach for determining a sensor schedule for multiple

functions such as target search and track update has been

developed. The approach is illustrated with a simple example

of an electronically scanned radar that is tasked to perform

search and track update functions. The cost function provides a

mechanism for the user to specify directly compatible costs for

undetected targets and target track maintenance requirements,

determining the relative priorities of different functions.

In the multifunction radar systems of interest the wave-

forms of track update beams are typically tailored to the

state estimate of the corresponding target. Future work will

consider the sensor scheduling problem where search beams

and track update beams have distinct characteristics associated

with their respective functions. An extension of the single

scan (myopic) scheduling to accommodate multiple scan (non-

myopic) scheduling is planned to be conducted following the

framework for the single function of search as outlined in

[19]. Other appropriate cost functions for track update may

be explored, as well as applying constraints for operational

radars employing search and track functions. Functions other

than search and track update for radar systems are also

being considered for inclusion into a similar sensor scheduling

approach.

Finally, a methodology for assessing the resultant sensor

schedule is required. Ultimately, the scheduling algorithms for

multifunction sensors must allow an operator’s priorities to be

considered in meeting their objectives.
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