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Abstract—In this paper, we propose a method for optimal
stochastic sensor control, where the goal is to minimise the
estimation error in multi-object tracking scenarios. Our approach
is based on an information theoretic divergence measure between
labelled random finite set densities. The multi-target posteriors
are generalised labelled multi-Bernoulli (GLMB) densities, which
do not permit closed form solutions for traditional information
divergence measures such as Kullback-Leibler or Rényi. How-
ever, we demonstrate that the Cauchy-Schwarz divergence admits
a closed form solution for GLMB densities, thus it can be used
as a tractable objective function for multi-target sensor control.
This is demonstrated with an application to sensor trajectory
optimisation for bearings-only multi-target tracking.

Index Terms—Multi-target sensor control, information the-
oretic control, generalised labelled multi-Bernoulli, Cauchy-
Schwarz divergence, bearings-only trajectory optimisation

I. INTRODUCTION

In most target tracking scenarios, the sensor can be con-

trolled to perform various actions that may have a significant

impact on the quality and information content of the measure-

ment data, and therefore the estimation performance of the

tracking system. Typically, such actions may include changing

the position, orientation or motion of the sensor platform,

which in turn affects the sensor’s ability to detect, track,

and identify objects in the scene. Often, the control decisions

are driven by manual intervention, or by some deterministic

control policy, which provides no guarantee of optimality.

The goal of automatic sensor control is to determine the best

control action to perform, based on some optimality criteria.

This has the potential to improve tracking performance, by

selecting the control actions in a manner that accounts for the

current conditions.

This type of control problem can be formulated as a partially

observable Markov decision process (POMDP) [1]–[4], which

has also been referred to in the literature as a hidden Markov

model multi-arm bandit problem [5]. In a POMDP, the multi-

target dynamics is modelled as a Markov process, but only

the posterior probability density function (pdf) of the multi-

target state is known (conditioned on the past measurements),

and the true underlying state is unknown. The measurements

follow a known distribution, which is conditional on the multi-

target state and the sensor control action. The benefit of

performing a given action is expressed by a reward function,

which characterises the objectives of the control system. Every

time a decision is needed, the goal is to find the control action

which maximises this reward function.

Within the POMDP framework, different types of reward

functions may be used, depending on the objectives of the

system. These generally fall into two categories; task-based

criteria, and information-based criteria. Task-based control

is useful in situations where the system objective can be

formulated in terms of a single criterion (see for example [6]–

[8]), but utilising this technique in the presence of multiple

competing objectives is a challenging problem. On the other

hand, information-based optimisation strives to quantify the

overall information gained from executing a control action,

therefore it does not suffer from the problem of competing

objectives. Although information theoretic control may not

lead to an optimal decision with respect to any particular

task, the overall performance across multiple task objectives

is likely to be superior [9]. It is for this reason that we focus

our attention on information theoretic control in this paper.

The earliest use of information theoretic control for sensor

management and state estimation appears to be the work

of Hintz and McVey [10], where they investigate Shanon

entropy in target tracking using Kalman filters. Since then,

various information theoretic divergence measures such as

the Kullback-Leibler (KL) divergence [11]–[13], and more

generally the Rényi divergence [9], [12], [14]–[20], have been

proposed for sensor management in single and multi-target

tracking problems. In such problems, the expected divergence

or information gain between the prior and posterior target

densities is computed and used as the basis for selecting the

optimal control action. While the KL and Rényi divergence

based techniques have proven useful, a major limitation is their

significant computational cost. In particular, except for certain

special cases, these divergences cannot be computed analyti-

cally, thus requiring expensive approximations, typically based

on Monte Carlo (MC) methods [17], [20], [21]. Other control

algorithms motivated by the concept of the Fisher information

matrix have also been proposed, for example, in problems such

as sensor waveform selection [22], and trajectory planning

[23]–[26].

An alternative information divergence measure is the

Cauchy-Schwarz (CS) divergence [27], [28]. In [29], an an-

alytical solution to the CS divergence between two mixtures

of Poisson point processes was derived, with an application to

range-only multi-target sensor control, based on the probability
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hypothesis density (PHD) filter [30], [31]. The drawback of

this approach is that it cannot be used in applications that

require target tracks, since the PHD filter in principle does not

produce tracks. Moreover, the PHD filter involves a drastic

approximation to the multi-target posterior, which leads to

highly uncertain cardinality estimates [32], [33].

In this paper, we consider the problem of sensor control for

multi-target tracking via labelled random finite sets (RFS). In

particular, we use a tracking algorithm called the generalised

labelled multi-Bernoulli (GLMB) filter [34], [35], for which

the result in [29] is not directly applicable. The key innovation

of this paper is an analytic expression for the Cauchy-Schwarz

divergence between two GLMB densities, which is used to

construct the reward function for a POMDP-based sensor

control scheme. This reward function accounts for target

trajectories in a principled manner, which is not possible using

unlabelled RFSs. Furthermore, the GLMB density provides a

much more accurate approximation of the multi-target poste-

rior, leading to improved estimation performance.

We have tested our proposed method by applying it in

the context of a multi-target bearings-only tracking scenario,

where the control algorithm is used to select an optimal

course change for a moving sensor platform. In this type of

scenario, the optimal choice of course change will be governed

mainly by the effects of observability [36]–[38], as different

course changes may lead to significantly different levels of

observability for the targets.

II. BACKGROUND: MULTI-TARGET SENSOR CONTROL

The goal of multi-target sensor control is to select the

control action that, when executed, results in the lowest

estimation error relative to all possible actions. It is generally

not possible to compute this exactly, since calculating the true

estimation error requires access to the scenario ground truth.

It is often argued that a good substitute for minimising the

estimation error, is to maximise the information gain, which

can be quantified by the information divergence between the

prior and posterior multi-object densities. Computing these

densities requires a Bayesian multi-object filter, which we

describe herein.

In multi-target tracking we represent the multi-object state

as a finite set of single target states at each time k. The

multi-object states Xk ⊂ X and multi-object observations

Zk ⊂ Z are modelled as random finite sets, and FISST is

a framework for working with RFSs [39] based on a notion of

integration/density that is consistent with point process theory

[40]. The multi-object posterior density can be computed using

the Bayes recursion.

At the previous time step k − 1, the multi-object state is

distributed according to a multi-object density πk−1 (·|Z1:k−1),
where Z1:k−1 is a collection of finite sets of measurements

received up to time k − 1. Each Zk is assumed to be

generated through a process of thinning of misdetected objects,

Markov shifts of detected objects, and superposition of false

measurements. The multi-object prediction to time k is given

by the Chapman-Kolmogorov equation

πk|k−1 (Xk|Z1:k−1) =

ˆ

fk|k−1 (Xk|X)πk−1 (X|Z1:k−1) δX,

(1)

where fk|k−1 (Xk|X) is the multi-object transition kernel from

time k − 1 to time k, and the integral is the set integral,

ˆ

f (X) δX =
∞
∑

i=0

1

i!

ˆ

Xi

f ({x1, . . . , xi}) d (x1, . . . , xi)

(2)

for any function f that takes F (X), the collection of all finite

subsets of X, to the real line. A new set of observations

Zk is received at time k, which is modelled by a multi-

object likelihood function gk (Zk|Xk). Thus the multi-object

posterior at time k is given by Bayes rule

πk (Xk|Z1:k) =
gk (Zk|Xk)πk|k−1 (Xk|Z1:k−1)
´

gk (Zk|X)πk|k−1 (X|Z1:k−1) δX
. (3)

Collectively, (1) and (3) are referred to as the multi-

object Bayes filter. In general, computing the exact multi-

object posterior is numerically intractable, and approximations

are required to derive practical algorithms. Such algorithms

include the probability hypothesis density (PHD) filter [30],

the cardinalised PHD (CPHD) filter [32], the multi-object

multi-Bernoulli (MeMBer) filter [39], [41], and the generalised

labelled multi-Bernoulli (GLMB) filter [34], [35]. The GLMB

filter has the distinct advantage that it produces labelled target

state estimates. In the remainder of this section we briefly

describe the main points of the GLMB filter, and for a more

complete treatment the reader is referred to [34] and [35].

We begin by introducing some notation and definitions relat-

ing to labelled random finite sets. The multi-object exponential

of a real valued function h raised to a set X is defined

as [h]
X

,
∏

x∈X h (x), where [h]
∅
= 1, and the elements

of X may be of any type such as scalars, vectors, or sets,

provided that the function h takes an argument of that type.

The generalised Kronecker delta function is defined as

δY (X) ,

{

1, if X = Y

0, otherwise
(4)

where again, X and Y may be of any type, such as scalars,

vectors, or sets. Finally, the set inclusion function is

1Y (X) ,

{

1, if X ⊆ Y

0, otherwise
. (5)

Definition 1. A labelled RFS with state space X and discrete

label space L, is an RFS on X×L, such that the labels within

each realisation are always distinct. That is, if L (X) is the

set of unique labels in X , and we define the distinct label

indicator function as ∆(X) = δ|X| (|L (X)|), then a labelled

RFS X always satisfies ∆(X) = 1.

In general, we adopt the notational convention that labelled

sets are expressed in bold upper case (X), unlabelled sets in

regular upper case (X), labelled vectors in bold lower case

(x), and unlabelled vectors in regular lower case (x).
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Definition 2. A generalised labelled multi-Bernoulli (GLMB)

RFS is a labeled RFS with state space X and discrete label

space L, which satisfies the probability distribution

π (X) = ∆ (X)
∑

c∈C

w(c) (L (X))
[

p(c) (·)
]X

(6)

where C is an arbitrary index set,
∑

L⊆L

∑

c∈C
w(c) (L) = 1,

and
´

x∈X
p(c) (x, l) dx = 1.

The GLMB, as defined above, has been shown to be a

conjugate prior with respect to the standard multi-object like-

lihood, and closed under the Chapman-Kolmogorov equation

for the standard multi-object transition [34] (i.e. the form of

the density is retained through both prediction and update),

which facilitates implementation of a Bayesian GLMB filter.

A. Prediction

Let X be the labelled RFS of objects at the current time

with label space L. A particular object (x, l) ∈ X has

probability pS (x, l) of surviving to the next time with state

(x+, l+) and probability density f (x+|x, l) δl (l+) (where

f (x+|x, l) is the single target transition kernel), and prob-

ability, qS (x, l) = 1−pS (x, l) of being terminated. Thus, the

set S of surviving objects at the next time is distributed as

fS (S|X) = ∆ (S)∆ (X) 1L(X) (L (S)) [Φ (S; ·)]X (7)

where

Φ (S;x, l) =
∑

(x+,l+)∈S

δl (l+) pS (x, l) f (x+|x, l)

+
(

1− 1L(S) (l)
)

qS (x, l) . (8)

Now let B be the labeled RFS of newborn objects with label

space B, where L ∩ B = ∅. To ensure that L and B are

disjoint, we adopt a labelling scheme such that each new birth

is labelled with a pair (tb, lb), where tb is the current time

and lb is a unique index. Since the time changes from scan

to scan, the space of birth labels is always disjoint from the

space of surviving labels. Since the births have distinct labels,

and assuming that their states are independent, we model B

according to a labelled multi-Bernoulli distribution (LMB)

fB (B) = ∆ (B)wB (L (B)) [pB (·)]B . (9)

where pB (·, l) is the single target birth density, and wB(·) is

the birth weight (see Section IV-D of [34] for more details).

We derive the prediction based on an LMB birth model,

however, this can easily be extended to the case of a GLMB

birth model. The overall multi-object state at the next time step

is the union of survivals and new births, i.e. X+ = S∪B. The

label spaces L and B are disjoint, and the states of new born

objects are independent of surviving objects, hence S and B

are independent. It was shown in [34] that the multi-object

transition can be expressed as

f (X+|X) = fS (X+ ∩ (X× L) |X) fB (X+ − (X× L)) ,
(10)

and that a GLMB density of the form (6) is closed under the

Chapman-Kolmogorov prediction (1) with the transition kernel

defined by (10), where the predicted GLMB density is given

by

π+ (X+) = ∆ (X+)
∑

c∈C

w
(c)
+ (L (X+))

[

p
(c)
+ (·)

]X+

(11)

where

w
(c)
+ (L) = wB (L− L)w

(c)
S (L ∩ L) , (12)

p
(c)
+ (x, l) = 1L (l) p

(c)
S (x, l) + (1− 1L (l)) pB (x, l) , (13)

p
(c)
S (x, l) =

〈

pS (·, l) f (x|·, l) , p
(c) (·, l)

〉

η
(c)
S (l)

, (14)

η
(c)
S (l) =

ˆ

〈

pS (·, l) f (x|·, l) , p
(c) (·, l)

〉

dx, (15)

w
(c)
S (J) =

[

η
(c)
S

]J∑

I⊆L

1I (J)
[

q
(c)
S

]I−J

w(c) (I) , (16)

q
(c)
S (l) =

〈

qS (x, l) , p
(c) (x, l)

〉

. (17)

B. Update

Let X be the labelled RFS of objects that exist at the ob-

servation time. A particular object (x, l) ∈ X has probability

pD (x, l) of generating a detection z with likelihood g (z|x, l),
and probability qD (x, l) = 1−pD (x, l) of being misdetected.

Let D be the set of target detections. Assuming the elements of

D are conditionally independent, then D is a multi-Bernoulli

RFS with existence and single-object density parameters given

by the set {(pD (x, l) , g (·|x)) : (x, l) ∈ X}, and we write its

probability density as

πD (D|X) = {(pD (x, l) , g (·|x)) : (x, l) ∈ X} (D) . (18)

Let K be the set of clutter observations, which are independent

of the target detections. We model K as a Poisson RFS with

intensity κ(·), hence K is distributed according to

πK (K) = e−〈κ,1〉κK . (19)

The overall multi-object observation is the union of target

detections and clutter observations, i.e. Z = D ∪ K. Since

D and K are independent, the multi-object likelihood is

g (Z|X) =
∑

D⊆Z

πD (D|X)πK (Z −D) . (20)

As demonstrated in [39], this can be equivalently expressed as

g (Z|X) = e−〈κ,1〉κK
∑

θ∈Θ(L(X))

[ψZ (·; θ)]X (21)

where Θ(L (X)) is the set of all one-to-one mappings of

labels in X to measurement indices in Z, (i.e. θ : L (X) →
{0, 1, ..., |Z|}, such that [θ (i) = θ (j) > 0] ⇒ [i = j]), and

ψZ (·; θ) is

ψZ (x, l; θ) =







pD(x,l)g(zθ(l)|x,l)
κ(zθ(l))

, θ (l) > 0

qD (x, l) , θ (l) = 0
(22)

It was demonstrated in [34] that a GLMB density of the

form (6) is closed under the Bayes update (3) with likelihood

function defined by (21), and the posterior density is given by

π (X|Z) (23)
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= ∆(X)
∑

c∈C

∑

θ∈Θ(Z)

w
(c,θ)
Z (L (X))

[

p(c,θ) (·|Z)
]X

where

w
(c,θ)
Z (L) =

w(c) (L)
[

η
(c,θ)
Z

]L

∑

c∈C

∑

J⊆L

∑

θ∈Θ(Z)

w(c) (J)
[

η
(c,θ)
Z

]J
, (24)

p(c,θ) (x, l|Z) =
p(c) (x, l)ψZ (x, l; θ)

η
(c,θ)
Z (l)

, (25)

η
(c,θ)
Z (l) =

〈

p(c) (·, l) , ψZ (·, l; θ)
〉

. (26)

C. Sensor Control

The problem remains that at the time when we wish to

perform a control action, we have no knowledge of the

posterior density that would arise from taking that action.

Since the true information divergence is not yet available,

the expectation of the information divergence with respect

to all possible future measurements is used [20], [42]. More

precicely, let us begin by defining the following notation

• πk (·|Z1:k) is the multi-object GLMB posterior at time k,

• Ck is the set of allowable control actions at time k,

• H is the horizon length for calculation of the reward,

• πk+H (·|Z1:k) is the multi-object GLMB prediction from

time k to k +H ,

• Zk+1:k+H (c) is the collection of measurement sets that

would be observed from times k + 1 up to k + H , if

control action c ∈ Ck was executed at time k.

The optimal control action is given by maximising the ex-

pected value of a reward function Rk+H (·) over the set of

allowable actions,

copt = arg max
c∈Ck

E [Rk+H (c)] , (27)

where the reward function is given by some form of informa-

tion divergence D (·, ·) between the predicted and posterior

multi-object densities,

Rk+H (c) = (28)

D (πk+H (X|Z1:k) , πk+H (X|Z1:k, Zk+1:k+H (c))) .

and the expectation is taken with respect to the future

measurement sets Zk+1:k+H (c). A further problem is that

calculation of the divergence (as well as its expectation) is

generally intractable, which presents a major challenge in the

development of tractable sensor control algorithms. A solution

to this problem is proposed in the following section.

III. CAUCHY-SCHWARZ DIVERGENCE FOR GLMB

DENSITIES

The most commonly used measures of information gain

are the Kullback-Leibler divergence, and more generally, the

Rényi divergence. However, their form precludes analytical

solutions for all but very simple probability density functions,

and in the case of more complicated pdfs (such as the GLMB),

one must resort to approximate numerical methods. In this

section we show that the Cauchy-Schwarz divergence has a

mathematical form which is more amenable to closed form

solution, and in particular, a closed form can be obtained

for GLMB densities, in the case where the individual target

densities are Gaussian mixtures.

In the context of random finite sets, the Csiszár-Morimoto

divergence (of which Kullback-Leibler and Rényi are special

cases), can be formulated by replacing the standard (Lebesque)

integral with the set or FISST integral [39]. However, un-

like the Csiszár-Morimoto divergence, the Cauchy-Schwarz

divergence cannot be extended to FISST densities by simply

replacing the standard integral with the set integral. To see this,

consider the naive inner product between two FISST densities

φ and ϕ via the set integral:

〈φ, ϕ〉 =

ˆ

φ(X)ϕ(X)δX (29)

=

∞
∑

i=0

1

i!

ˆ

Xi

φ({x1, ..., xi})ϕ({x1, ..., xi})d(x1, ..., xi).

Note that the FISST density is not a probability density, and

the functions φ({x1, ..., xi}) and ϕ({x1, ..., xi}) each have

units of K−i, and d(x1, ..., xi) has units of K, where K is the

unit of hyper-volume in X. Since the i-th term in the above

sum has units of K−i, the sum is not meaningful because the

terms cannot be added together due to a unit mismatch, e.g.

if K = m3, then the first term is unitless, the second term is

in m−3, the third term is in m−6, and so on.

A. Cauchy-Schwarz Divergence for RFS

To define the Cauchy-Schwarz (CS) divergence for RFS

densities, we need to resort to the Lebesque integral. The

probability density of an RFS can be defined with respect to

the reference measure µ given by [40]

µ(T ) =
∞
∑

i=0

1

i!Ki

ˆ

Xi

1T ({x1, ..., xi})d(x1, ..., xi) (30)

for any (measurable) subset T of F(X), where X
i denotes the

ith-fold Cartesian product of X, with the convention X
0 = {∅},

and the integral over X0 is 1T (∅). The measure µ is analogous

to the Lebesque measure on X (indeed it is the unnormalized

distribution of a Poisson point process with unit intensity u =
1
K

when the state space X is bounded). Moreover, it was shown

in [40] that for this choice of reference measure, the Lebesque

integral of a function f : F(X) → R, given by

ˆ

f(X)µ(dX) =
∞
∑

i=0

1

i!Ki

ˆ

Xi

f({x1, ..., xi})d(x1, ..., xi),

(31)

is equivalent to Mahler’s set integral [39]. Note that the

reference measure µ, and the integrand f are all dimensionless.

Using the Lebesque integral we can define the inner prod-

uct 〈f, g〉µ ,
´

f(X)g(X)µ(dX), and corresponding norm

‖f‖µ ,
√

〈f, f〉µ. Such forms for the inner product and norm

are well-defined because the densities f and g, as well as the

reference measure µ, are all unitless.

Definition 3. The Cauchy-Schwarz divergence between the

probability densities f and g of two point processes with
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respect to the reference measure µ is defined by

DCS(f, g) = − ln
〈f, g〉µ

‖f‖µ ‖g‖µ
. (32)

It was shown in [29] that the CS divergence of two Poisson

RFSs equals half the squared distance between their PHDs.

Moreover, an analytic expression for the CS divergence be-

tween two mixtures of Poisson RFSs was derived.

The above definition of the Cauchy-Schwarz divergence

can be equivalently expressed in terms of set integrals as

follows. Let φ and ϕ denote the FISST densities of the

respective point processes. Using the relationship between the

FISST density and the Radon-Nikodym derivative in [40], the

corresponding probability densities relative to µ are given by

f(X) = K |X|φ(X) and g(X) = K |X|ϕ(X). Since

〈f, g〉µ

=
∞
∑

i=0

1

i!

ˆ

Kiφ({x1, ..., xi})ϕ({x1, ..., xi})d(x1, ..., xi)

=

ˆ

K|X|φ(X)ϕ(X)δX, (33)

the Cauchy-Schwarz divergence can be written in terms of the

set integral as follows

DCS(φ, ϕ)=− ln





´

K |X|φ(X)ϕ(X)δX
√

´

K |X|φ2(X)δX
´

K |X|ϕ2(X)δX



 .

(34)

Remark: Note that it is easy to show that a change in the unit

of measurement K, does not change the value of the integrals,

and hence the CS divergence is in fact independent of K.

B. Cauchy-Schwarz Divergence for GLMB

Using the definition in (34), we show that the CS divergence

between two GLMBs can be written in closed form.

Proposition 4. For two generalised labelled multi-Bernoulli

densities defined by

φ (X) = ∆ (X)
∑

c∈C

w
(c)
φ (L (X))

[

p
(c)
φ (·)

]X

, (35)

ψ (X) = ∆ (X)
∑

d∈D

w
(d)
ψ (L (X))

[

p
(d)
ψ (·)

]X

, (36)

the Cauchy-Schwarz divergence between φ and ψ is given by

DCS (φ, ψ) = − ln

(

ζ (φ, ψ)
√

ζ (φ, φ) ζ (ψ,ψ)

)

, (37)

where

ζ (φ, ψ) =
∑

L⊆L

∑

c∈C

∑

d∈D

w
(c)
φ (L)w

(d)
ψ (L)

×

[

K

ˆ

p
(c)
φ (x, ·) p

(d)
ψ (x, ·) dx

]L

. (38)

Proof: If φ (X) and ψ (X) are two GLMB densities

defined by (35) and (36), the set integral can be expressed

as
ˆ

K |X|φ (X)ψ (X) δX

=

ˆ

K|X|∆(X)
∑

c∈C

w
(c)
φ (L (X))

[

p
(c)
φ (·)

]X

×
∑

d∈D

w
(d)
ψ (L (X))

[

p
(d)
ψ (·)

]X

δX

=

ˆ

∆(X)
∑

c∈C

∑

d∈D

w
(c)
φ (L (X))w

(d)
ψ (L (X))

×K |L(X)|
[

p
(c)
φ (·) p

(d)
ψ (·)

]X

δX

=
∑

L⊆L

∑

c∈C

∑

d∈D

w
(c)
φ (L)w

(d)
ψ (L)

×

[

K

ˆ

p
(c)
φ (x, ·) p

(d)
ψ (x, ·) dx

]L

, (39)

where the last line is obtained by making use of Lemma 3 in

[34]. Substituting (39) into (34), we are left with (37), with

the inner product ζ (·, ·) defined by (38).

We now apply the same result to the case of two δ-GLMB

densities, which leads to a tractable closed form solution that

can be applied in practice. Let the two densities be δ-GLMBs

as follows

φ (X) = ∆ (X)
∑

(I,α)∈
F(L)×Ξ

w
(I,α)
φ δI (L (X))

[

p
(α)
φ (·)

]X

, (40)

ψ (X) = ∆ (X)
∑

(J,β)∈
F(L)×Ω

w
(J,β)
ψ δJ (L (X))

[

p
(β)
ψ (·)

]X

, (41)

where Ξ and Ω are spaces of measurement-to-target associa-

tion histories. This leads to the following inner product

ζ (φ, ψ) =
∑

L⊆L

∑

(I,α)∈
F(L)×Ξ

∑

(J,β)∈
F(L)×Ω

w
(I,α)
φ w

(J,β)
ψ δI (L) δJ (L)

×

[

K

ˆ

p
(α)
φ (x, ·) p

(β)
ψ (x, ·) dx

]L

. (42)

Notice that the product of the two delta functions inside the

summation in (42) means that the only non-zero terms are

those which satisfy I = J = L, i.e. the summation is over all

pairs of components with matching target labels, which can

be expressed as follows

ζ (φ, ψ) =
∑

L⊆L

∑

(L,α)
∈F(X)×Ξ

∑

(L,β)∈
F(L)×Ω

w
(L,α)
φ w

(L,β)
ψ

×

[

K

ˆ

p
(α)
φ (x, ·) p

(β)
ψ (x, ·) dx

]L

. (43)

Thus if the inner product between two single target densities

is computable, which is the case for Gaussian mixtures [28],

then the Cauchy-Schwarz divergence between two δ-GLMB

densities can be evaluated tractably in closed form. It is worth

noting here that if two δ-GLMB’s contain no components with

matching labels, then the inner product (43) will evaluate to

zero, leading to a Cauchy-Schwarz divergence of infinity. This

is an intuitive result, because if there are no matching sets

of labels, there is effectively zero overlap between the two

densities, which results in the maximum possible divergence.
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C. Computation of Cauchy-Schwarz based Reward

Having established an analytic expression for the Cauchy-

Schwarz divergence between two GLMBs, we now proceed to

present a strategy for computing the reward function.

Recall from (27) that we need to compute the expected value

of the divergence between the predicted and posterior GLMB

densities. This does not have a closed form solution, so in

order to approximate this expectation, we use the following

procedure.

1) Compute the predicted density at the end of the control

horizon πk+H (X|Z1:k), by carrying out repeated pre-

diction steps of the GLMB filter, without target birth or

death, from time k up to time k +H .

2) Draw a set of N multi-target samples from πk (X|Z1:k),

which we denote as S =
{

X
(1), . . . ,X(N)

}

.

3) For each X
(i) ∈ S , generate future sets of idealised

measurements Z̃k+1:k+H

(

c,X(i)
)

, i.e. simulate mea-

surements based on the predicted future trajectories in

sample X
(i), with zero clutter, zero process noise, zero

measurement noise, and unity detection probability.

4) Compute the reward conditioned on each multi-target

sample in S . To do this, we initialise a GLMB filter at

time k with density πk (X|Z1:k), then run the GLMB

filter recursion forward up to time k+H using the mea-

surements Z̃k+1:k+H

(

c,X(i)
)

. This gives us the pos-

terior density πk+H

(

X|Z1:k, Z̃k+1:k+H

(

c,X(i)
))

,

which we then use to compute the following reward for

sample i,

R
(i)
k+H (c) = DCS

(

πk+H (X|Z1:k) , (44)

πk+H

(

X|Z1:k, Z̃k+1:k+H

(

c,X(i)
)))

.

5) Having computed (44) for all samples in S , the expec-

tation of the reward is approximated as the mean of the

sample rewards,

E [Rk+H (c)] ≈
1

N

N
∑

i=1

R
(i)
k+H (c) . (45)

In the above method, steps 1 and 2 need only be carried out

once, since the predicted density at the control horizon does

not depend on the control action, and the same set of multi-

target samples should be used in the reward calculation for

each action. Therefore, we repeat steps 3-5 for each c ∈ Ck,

after which we select and execute the control action which

produced the highest expected reward as computed by (45).

IV. SIMULATION RESULTS

In this section we apply the sensor control strategy described

in the previous section, to the problem of observer trajectory

optimisation for single-sensor bearings-only tracking. This

type of problem has been studied before in [17], [23]–[25],

[43]–[46], however, these have been limited to the case of a

single target. The method proposed in this paper allows us to

deal with the more general case where multiple targets may

be present in the scene.

The targets are modelled using 2D Cartesian position and

velocity vectors x =
[

px ṗx py ṗy
]T

, and are assumed

to move according to the following discrete white noise

acceleration model,

xk+1 = Fxk + Γvk, (46)

F =

[

1 T
0 1

]

⊗ I2, Γ =

[

T 2/2
T

]

⊗ I2

where T is the sampling period, vk ∼ N (0, Q) is a 2 × 1
independent and identically distributed Gaussian process noise

vector with Q = σ2
vI2, where σv is the standard deviation

of the target acceleration. The sensor measures only target

bearings, where the measurement corresponding to target t is

modelled according to

z
(t)
k = h

(

x
(t)
k , uk

)

+ wk (47)

where x
(t)
k is the true state of target t at time k, uk =

[

p
(s)
x,k p

(s)
y,k

]

is the sensor position at time k, wk ∼

N
(

0, σ2
w

)

is scalar Gaussian measurement noise, and the

measurement function h is given by

h
(

x
(t)
k , uk

)

= arctan

(

p
(t)
y,k − p

(s)
y,k

p
(t)
x,k − p

(s)
y,k

)

. (48)

The sensor platform moves with constant velocity, but

undergoes course changes at certain pre-specified times, in

an attempt to improve the observability of the targets being

tracked. Conducting sensor manoeuvres is very important in

bearings-only tracking, as they are necessary to establish target

observability [36]–[38], and therefore play a pivotal role in

determining the tracking performance.

The test scenario consists of three targets, which enter the

scene between time 0 and 200. The sensor platform carries

out a pre-determined course change at time 400, in order

to improve the track estimates prior to executing the control

algorithm. At time 800, the control algorithm is executed to

compute the optimal course change at that time. The computed

course change is then carried out, and the sensor platform

remains on that course until the end of the scenario at time

1600. The sensor generates measurements with a sampling

period of T = 2s, and the measurement noise is σw = 0.5◦.

The target-observer geometry is shown in Figure 1.

In computing the optimal course change at time 800, the

idealised measurements are generated over a horizon length

of H = 10, with sampling period T = 40s, which means

that the control algorithm is looking ahead by 400s (up to

time 1200s). The space of control actions is discretised at an

interval of 20◦, i.e. the set of allowed course changes is C =
{−180◦,−160◦, . . . , 0◦, . . . , 160◦, 180◦}, and the number of

samples used to compute the expected reward is N = 50.

To establish the effectiveness of the proposed control

method, we need to determine the true optimal control action

for this scenario to use as a benchmark. We have done this by

carrying out 200 Monte Carlo runs of the entire scenario, under

each possible control action. We then calculate the average

optimal sub-pattern assignment (OSPA) distance [47] at the

horizon time (1200s), and plot the result as a function of
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Figure 1. Target-observer geometry. The solid blue line is the sensor trajectory
up to time 800. The trajectory after time 800 is determined by the control
algorithm, which considers all the possible control actions shown by the
dashed blue lines. Note that once the algorithm decides upon a new course,
it remains fixed until the end of the scenario.
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Figure 2. Course change vs average OSPA, evaluated at the control horizon
time of 1200s.

course change. The course change with the lowest OSPA at the

horizon time can be considered as the true optimal decision,

which is unknown to the control algorithm. If the algorithm

is working well, we should expect it to make the true optimal

decision in the majority of runs. The result for this scenario

is shown in Figure 2, from which we observe that the true

optimal course change is 100◦.

To test the control algorithm, we perform 200 Monte Carlo

runs of the scenario, in which the algorithm decides on the

course change at time 800s. Firstly, we show the tracking

output of a typical run in Figure 3, in which the algorithm has
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Figure 3. Track output from a typical run of the control scenario.
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Figure 4. Reward curve generated by the control algorithm for a typical run.
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Figure 5. Frequency of selection for each control action across 200 Monte
Carlo runs.

correctly chosen the optimal manoeuvre. The reward curve for

this run is shown in Figure 4, in which we plot the expected

value of the Cauchy-Schwarz divergence as a function of

course change. We can see from Figure 4, that the shape of the

reward curve exhibits an inverse relationship with the OSPA

curve in Figure 2. This is expected, as the control actions that

result in lower OSPA values should correspond to those with

higher rewards, and vice-versa.

To demonstrate the overall performance of the control

algorithm on this scenario, Figure 5 shows a histogram of the

number of times that each possible manoeuvre was selected

across the 200 Monte Carlo runs. The true optimal manoeuvre

of 100◦ was selected on almost three-quarters of the runs, and

the second-best manoeuvre of 120◦ was selected on most of

the remaining runs. This result shows that the Cauchy-Schwarz

divergence is capable of identifying the optimal control action

with a good degree of reliability.

V. CONCLUSION

In this paper we have proposed a new method for multi-

target sensor control based on maximising the expected

Cauchy-Schwarz divergence between generalised labelled

multi-Bernoulli densities. The Cauchy-Schwarz divergence be-

tween two known GLMB densities can be computed in closed

form, which leads to a more efficient implementation than

other divergence measures, which require the use of numerical

integration methods. The proposed algorithm was shown to be

effective in finding the optimal course change in a simulated
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bearings-only multi-target tracking scenario. A possibility for

future research in this area may involve applying this technique

to non-standard sensor models, for example using the method

in [48], which presented a GLMB filter for tracking in the

presence of merged measurements.
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