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Abstract—The probabilistic ontology language PR-OWL
(Probabilistic OWL) uses Multi-Entity Bayesian Networks
(MEBN), an extension of Bayesian networks with first-order
logic, to add the ability to deal with uncertainty to OWL, the
main language of the Semantic Web. A second version, PR-OWL
2, was proposed to allow the construction of hybrid ontologies,
containing deterministic and probabilistic parts. Existing PR-
OWL implementations cannot deal with very large assertive
databases. This limitation is a main obstacle for applying the
language in real domains, such as Maritime Domain Awareness
(MDA). This paper proposes a PR-OWL extension using RDF
triplestores and the OWL 2 RL profile, based on rules, in order
to allow dealing with uncertainty in ontologies with millions of
assertions. We illustrate our ideas with an MDA ontology built
for the PROGNOS (PRobabilistic OntoloGies for Net-centric
Operation Systems) project.

Index Terms—probabilistic ontology, uncertainty reasoning,
PR-OWL, MEBN, OWL 2 RL, triplestores.

I. INTRODUCTION

The advance of Big Data and the Internet of Things has

brought unprecedented growth in available information from

from different sensors and devices. This creates a major

challenge in how to select, combine, and use the data to derive

new knowledge and insights for decision making. Fusion of

information from multiple sources promises to overcome the

limitations of each source individually and achieve synergy.

Low-Level fusion (LLF) concerns locating and identify-

ing individual entities by fusing information from multiple

sources [1]. LLF has been widely studied and is considered

a mature field [2]. Success in LLF has naturally led to

increased interest in high-Level fusion (HLF), the problem

of identifying the situation, understanding the relationships

among the involved entities, and calculating the impact of

actions being considered. HLF technologies require the use of

expressive representational frameworks capable of explicitly

representing the semantics of the domain [3].

Maritime Domain Awareness (MDA) is the effective un-

derstanding of anything associated with the maritime domain

that could impact security, safety, economy or environment.

Achieving MDA requires integrating information from mul-

tiple sources in order to provide a global vision of the

maritime environment. MDA is essential for identifying and

planning preventive action in response to threats such as

piracy, terrorism, and transport of illegal cargo. A probabilistic

ontology (PO) for the MDA domain was developed for PROG-

NOS (PRobabilistic OntoloGies for Net-centric Operation

Systems) [4], [5], a naval predictive situation awareness system

devised to work within the context of U.S. Navy’s FORCENet.

The PROGNOS PO combines data from several sources and

reasons with it in order to provide predictive information.

The PROGNOS PO was built using PR-OWL (Probabilistic

OWL) [6], an extension of OWL (Ontology Web Language)

that permits representing and reasoning with uncertain infor-

mation. OWL is the W3C’s standard for defining ontologies

for the Semantic Web. PR-OWL is based on Multi-Entity

Bayesian Networks (MEBN), an extension of Bayesian net-

works with first-order expressive power, and can represent

uncertainty associated with aspects of an ontology.

Current PR-OWL reasoners do not deal with very large

assertive databases, since they require that the data must be

loaded into memory during inference time. PROGNOS was

used only on a simulation platform, and was tested with only

about 2,000 entities. Real applications may require millions of

statements, demanding a scalable implementation of PR-OWL.

Triplestores can store RDF (Resource Description Frame-

work) triples in databases optimized to work with graphs

making it possible to work with ontologies that have a large

assertive base. RDF Oracle Spatial and Graph and Allegro-

Graph, two commercial triplestores, are able to handle trillions

of RDF triples1, showing the scalability of this alternative

to relational databases. Some triplestores, such as GraphDB,

allow processing and inference with restrictive versions of

OWL, such as the profile OWL 2 RL, which is based on rules.

1https://www.w3.org/wiki/LargeTripleStores
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The objective of this work is to extend PR-OWL to work

with triplestores and with the OWL 2 RL profile, allowing

treatment of uncertainty in ontologies with millions of as-

sertions. This paper also proposes an implementation of this

new language within UnBBayes, a framework for probabilistic

reasoning [7], developed by the Group of Artificial Intelligence

of the University of Brasilia. We use the MDA probabilistic

ontology of the PROGNOS project to illustrate our ideas.

This paper is organized as follows: Section II presents

MEBN, PR-OWL, and its implementation in UnBBayes.

Section III presents the OWL 2 RL profile and how it is

implemented by triplestores. Section IV discuss the problems

of scalability of the current PR-OWL implementations in

UnBBayes. Section V presents PR-OWL 2 RL, a language that

joins PR-OWL with the OWL 2 RL profile implemented in

triplestores. Finally, Section VI presents concluding remarks.

II. PR-OWL AND MEBN

This section presents MEBN and PR-OWL as well as their

implementation in the UnBBayes framework.

A. Multi-Entity Bayesian Networks

Multi-Entity Bayesian Network (MEBN) is a language

for representing first-order probabilistic knowledge bases [8].

MEBN extends Bayesian networks by incorporating the ex-

pressiveness of first-order logic (FOL), addressing an impor-

tant limitation of Bayesian networks: the inability to represent

problems in which the number of uncertain variables is un-

known and may vary from situation to situation.

MEBN represents domain knowledge as a collection of

model templates called MEBN Fragments, or MFrags. Each

MFrag represents a modular element of knowledge about a set

of related entities, including uncertainty about their attributes

and relationships. MFrags contain arguments to be filled in by

specific domain entities. A set of MFrags satisfying consis-

tency constraints ensuring the existence of a unique probability

distribution is called an MTheory [8]. As information arrives

about the specific entities involved in a given situation, MFrags

are retrieved and assembled into a problem-specific model

called a situation-specific Bayesian network, which is used

to reason about the situation.

Figure 1 illustrates the MFrag Meeting, from the MDA

ontology, presented in [5]. Resident nodes and input nodes rep-

resent properties and relationships of entities, with arguments

(ordinary variables) to be filled during model instantiation.

A resident node has its local probability distribution (LPD)

defined into its home MFrag, while an input node has its

LPD defined in another MFrag, in which it is a resident node.

Context nodes are formulas in first-order logic that define

constraints that must be satisfied for the LPD to be used

(otherwise, its default distribution will be used).

Inference in MEBN is performed by constructing a

Situation-Specific Bayesian Network (SSBN), a minimal

Bayesian network sufficient to compute the answer to a query.

A query consists of obtaining the posterior distribution for a

set of query random variables given a set of evidence and

Fig. 1. Meeting MFrag, from the Maritime Domain Awareness ontology

Fig. 2. PR-OWL main concepts

context variables [9]. A bottom-up algorithm for generating a

SSBN is presented in [8].

B. PR-OWL and PR-OWL 2

The PR-OWL language, proposed by Costa in 2005, adds

uncertainty support to OWL. PR-OWL consists of a set of

classes, subclasses, and properties that collectively form a

framework for building probabilistic ontologies [6].

Figure 2, extracted from [6], shows how PR-OWL models

the main concepts involved in defining a MEBN theory. The

user models the probabilistic part of the ontology using the

MTheory class, composed of a set of MFrags (connected to the

MTheory through the hasMFrag property) which collectively

should form a consistent MTheory. The MFrags are built from

nodes. The nodes represent random variables. Each node has

an associated probabilistic distribution and an exhaustive set

of possible states, where states are individuals from the Entity

class.

In 2011, Carvalho proposed PR-OWL 2 [10], an extension

of PR-OWL that solves two of its major limitations: the lack of

formal mapping between the random variables from PR-OWL

and concepts defined in OWL; and the lack of compatibility

between PR-OWL and OWL types [11].

The first limitation is addressed by defining the relation-

ship definesUncertaintyOf, that links random vari-

ables from PR-OWL to OWL properties. Additionally, the

relationships isSubjectIn and isObjectIn are used to

define the domain and range of the random variable using

925



OWL concepts. Though this feature, PR-OWL facilitates the

construction of hybrid ontologies, containing interrelated prob-

abilistic and deterministic statements.

To solve the second limitation, PR-OWL 2 maps PR-

OWL types to the types already present in OWL. The

class ObjectEntity, for example, is replaced by the

class Thing, while the class CategoricalRVStates

is replaced by DataOneOf, to enumerate data types, or

ObjectOneOf for objects [11].

PR-OWL 2 also contains other improvements, such as the

ability to work with polymorphism in random variables.

C. The UnBBayes MEBN/PR-OWL Plugins

UnBBayes is a framework developed to work with proba-

bilistic reasoning. Created by the Artificial Intelligence Group

from the University of Brasilia (GIA-UnB), and written

in Java, UnBBayes is open-source software, distributed un-

der the GPL licence, available through the Source Forge2

site. UnBBayes implements several formalisms, including

Bayesian networks, Influence Diagrams, Multiply-Sectioned

Bayesian Networks (MSBN), Object-Oriented Bayesian Net-

works (OOBN), Hybrid Bayesian Networks (HBN), and Multi-

Entity Bayesian Networks (MEBN). The current architecture

of UnBBayes is based on plug-ins [7], facilitating the imple-

mentation of new formalisms.

Support for MEBN and PR-OWL was first developed in

2008 [12], [13]. This was the first implementation of MEBN.

This implementation includes a graphical user interface for

visual modeling of an MTheory; a knowledge representation

and reasoning system; and an algorithm for generating an

SSBN, based on the algorithm proposed in [8]. PR-OWL is

used as the format for persisting MTheories.

The UnBBayes PR-OWL implementation uses Power-

Loom 3, a Knowledge Representation and Reasoning (KR&R)

system, to perform logical reasoning. A PowerLoom Knowl-

edge Base is composed of a TBox, containing the terminolog-

ical vocabulary, and an ABox, containing the assertive base,

over the defined TBox. PowerLoom is used for storing and

querying the assertion database (ABox), containing the entities

and evidence for a specific situation, and for evaluating the

FOL expressions in the context nodes. PowerLoom uses as

representation language a variant of KIF (Knowledge Inter-

change Format), a language developed for the exchange of

knowledge between different computer systems.

The Pr-OWL knowledge base is loaded in two parts: first,

the TBox is created and loaded into PowerLoom, translating

the MTheory model to KIF; then, the ABox, containing

entities, properties, and relationships, is either loaded from

a KIF file specified by the user or specified directly through

the UnBBayes GUI. The user can record different KIF files

containing different sets of findings, but any of these must

be compatible with the TBox. Since PowerLoom has support

for first-order logic, the mapping of MEBN elements to

2http://sourceforge.net/projects/unbbayes
3http://www.isi.edu/isd/LOOM/PowerLoom/

PowerLoom elements is straightforward. An extra format, ubf

(UnBBayes File), is used to store graphical features (e.g., size

and position of the nodes in the canvas), since PR-OWL does

not provide support for storing this type of information.

The PR-OWL 2 plug-in was implemented in 2011 [14].

Since PR-OWL 2 allows the modeling of hybrid ontologies,

adding uncertainty information to a deterministic ontology, it

was important to allow users to work simultaneously with both

representations. Protégé4 is a popular and mature open source

framework for representing and editing ontologies. It has been

integrated into UnBBayes to allow the modeling of the deter-

ministic part. Protégé was encapsulated as an internal panel in

UnBBayes, allowing the user to access all its functionality.

The user models the deterministic part of the ontology in

Protégé, and the probabilistic part in UnBBayes’ MEBN GUI.

A panel allows the user to link an OWL property to a resident

node in the MTheory, indicating that the latter represents the

uncertainty related to the former. This link is mapped to a

definesUncertaintyOf PR-OWL 2 property.

In the PR-OWL 2 implementation, the knowledge base is

saved in OWL 2, eliminating the need for a separate KIF file to

store the ABox. HermiT [15], the default reasoner in Protégé,

is used to search for information in the assertive database and

to evaluate the context nodes. HemiT is based on description

logic, offering support for OWL 2 DL. Some restrictions were

necessary in the context node formulas since PR-OWL 2

accepts all valid first-order expressions, while HermiT is only

able to support a subset of first-order logic. These restrictions

are discussed in Section IV.

III. THE OWL 2 RL PROFILE

OWL (Web Ontology Language) is a representation lan-

guage based on formal logic, used for constructing complex

ontologies. In 2004, OWL was adopted as a W3C Recom-

mendation for the development of ontologies in the Semantic

Web. In 2012, the revised OWL 2 specification was adopted.

OWL is built on RDF, and typically uses RDF/XML for

persistence. RDF is a formal language used for describing

structured information [16], representing statements through

RDF triples, in which predicates link subject nodes to object

nodes. An RDF graph is a set of triples in which common

nodes are unified.

OWL 2 has a DL version, based on the description logic

SROIQ(D), and a Full version, which is undecidable. It

includes three profiles, or sub-languages (syntactic subsets),

developed for specific applications that possess properties that

allow the development of efficient algorithms: OWL 2 EL,

based on description logic EL++, recommended for appli-

cations involving a large number of properties and classes [17];

OWL 2 QL, based on conjunctive queries, recommended for

applications with large amounts of data where the answer to

the query is the most important task [18]; and OWL 2 RL,

based on rules, recommended for applications that need a scal-

able reasoning without much sacrifice in expressiveness [18].

4http://protege.stanford.edu/
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The OWL 2 RL profile allows the implementation of algo-

rithms in polynomial time relative to the size of the ontology

for the standard types of inference: ontology consistency,

class expression satisfiability, class expression subsumption,

instance checking, and conjunctive query answering [18].

OWL 2 RL is based on pD* and DLP (Description Logic

Programs). pD*, proposed by ter Horst, extends both RDFS

and D* entailments. It is largely defined by means of IF

conditions, and it applies to a property-related subset of the

OWL vocabulary [19]. Different from SWRL [20] (Semantic

Web Rule Language), a more expressive approach which

integrates OWL DL with rules, pD* is decidable. DLP consists

in a language formed by a subset of OWL DL added to

Datalog, being less expressive than both formalisms [16]. A

datalog rule is a logical implication that may only contain

conjunctions, constant symbols, and universally quantifiers

variables, but no disjunctions, negations, existential quantifier,

or function symbols [16].

W3C established a partial axiomatization, consisting of a set

of implication rules based on RDF semantics. This axiomati-

zation can be used to implement the OWL 2 RL profile using

rule-based technologies operating over RDF databases [17].

This set of rules is presented as OWL 2 RL/RDF [18], and

can be applied to OWL ontologies serialized in RDF. The

rules are given as universally quantified first-order implications

over a ternary predicate T [18], where T represents an RDF

triple in the format T(s, p, o), where s is the subject,

p is the predicate and o is the object. Using this set of

rules, the inference can be accomplished by materialization.

Materialization consists of expanding the rules in loading time

by calculating all new expressions that emerge from the set of

added expressions.

RDF triplestores implementing the OWL 2 RL profile

are becoming popular [21]. RDF triplestores are databases

that store information structured using RDF triples, forming

graphs. Triplestores use a flexible ontological schemata where

data is processed by an inference engine according to well-

defined semantics [22]. Besides the RDF semantics, most

triplestores implement RDF(S), and some of them work with

restrictive versions of OWL, such as the profile OWL 2

RL, making it possible to work with ontologies that have

large assertive bases. Examples of commercial triplestores that

implement fully or partially the OWL 2 RL profile include

GraphDB [22], Oracle Spatial and Graph and AllegroGraph.

IV. SCALABILITY OF UNBBAYES/MEBN

Neither the PR-OWL and PR-OWL 2 implementations in

UnBBayes is adequate to work with ontologies with very large

assertive databases. This is due to the fact that PowerLoom

and HermiT, inference engines used respectively in PR-OWL

and PR-OWL 2, work only with data stored in memory, and

they consume large amounts of time to evaluate formulas in

ontologies with many assertions.

OWL DL reasoners, like HermiT, are good for working with

complex ontologies, offering complete answers, but present

scalability problems. HermiT makes inferences in OWL 2

TABLE I
SIZE OF LUBM TEST BASES

Size Inst. Classes Inst. Properties

LUBM 1 8.02 MB 20,659 82,415

LUBM 10 102 MB 263,427 1,052,895

LUBM 100 1.06 GB 2,779,262 11,096,694

LUBM 500 12 GB 13,839,128 55,240,636

DL using the Direct Semantics, based on Description Logic.

Tableau reasoners, like Pellet, Racer, and FaCT++, perform

consistency tests trying to build a model for knowledge

base [15]. HermiT implements a calculus “hipertableau” which

reduces greatly the number of possible models to be con-

sidered [15], but nevertheless scalability remains a problem.

Moreover, these reasoners are limited to the available memory

of the computational resource used, since the full database

needs to be loaded into memory to allow inference.

The main reasoning problems for OWL 2 DL (ontol-

ogy consistency, class expression satisfiability, class expres-

sion subsumption and instance checking) have complexity

N2EXPTIME-complete: they are in the class of problems

solvable by nondeterministic algorithm in time that is at most

double exponential in the size of the input [18]. This limits the

performance and scalability of the possible reasoners: query

time grows intractably as the knowledge base becomes large.

Therefore, implementations of PR-OWL 2 that use OWL 2

DL Reasoners are inherently non-scalable.

In order to evaluate the size of the ontology the user could

use in the implementation of PR-OWL in UnBBayes, we ran

some tests using LUBM (Lehigh University Benchmark) [23],

a benchmark widely used for performance tests in OWL

reasoners and RDF triplestores. LUBM consists of an OWL

Lite ontology that models an academic domain, an automatic

generator of test bases that allows the creation of ABox bases

with varying amounts of assertive statements, and a set of

fourteen queries of different complexities. Table I shows the

number of statements and the physical size of some test bases.

Using UnBBayes, running on a machine i5 with 6Gb of

memory (3Gb dedicated to the JVM process) it was possible to

load only the LUBM 10 version, containing 263,427 instances

of classes and 1,052,895 instances of properties. This test case

has only 102 MB, making it clear that the structure used adds

a great overhead to the implementation.

There are also some practical limitations on the plug-in

developed, such as the need for new instances and relationships

to be manually entered by the user, using Protégé’s interface.

This task tends to be slow and repetitive when there are

many instances and relationships. Working with ontologies

containing thousands of assertions is only possible through the

use of API and tools that automate this insertion. It is not clear

how the user would work with different sets of assertions, since

the implementation of PR-OWL 2 saves the ABox and TBox

in the same file. These limitations make the modeling and use

of POs in UnBBayes possible only for simple domains.

Furthermore, the PR-OWL 2 plug-in has limitations on

expressiveness due to restrictions in the evaluation of context
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nodes. The implementation of PR-OWL uses PowerLoom

to evaluate context nodes, having full support for first-order

logic, including quantifiers. The implementation of PR-OWL

2, however, required simplifications in the formats of accepted

formulas, since HermiT, the reasoner used, is based on the

description logic OWL 2 DL, which is a fragment of first-

order logic. According to [14]:

The DL natively implements the builtInRV (op-

erations like and, or, not, forAll, and exists

are implemented natively). However, because of

expressive differences between FOL (used in expres-

sions of the context nodes formulas) and DL, the

formulas of the context nodes can not be directly

mapped to queries in ontology PR-OWL 2, mainly

because DL queries may not be done for several

ordinary variables simultaneously.

Table II presents the restrictions in the context node for-

mula formats that were made in the implementation of PR-

OWL 2. In the table, ov refers to an ordinary variable,

which will be filled with an entitiy during the evaluation of

an MFrag, BooleanRV refers to boolean random variable,

nonBooleanRV refers to a non-Boolean random variable,

and CONST refers to a constant. According to the table, only

simple formulas are allowed, without the use of connectives

and quantifiers.

V. PR-OWL 2 RL

The alternative proposed in this work to address the scal-

ability problem is extend PR-OWL 2 to use triplestore RDF

together with the profile OWL 2 RL, for storing OWL data

and for performing inference. This extension makes it possi-

ble to work with probabilistic ontologies that have assertive

databases large enough to preclude the use of traditional OWL

DL reasoners. The OWL 2 RL profile has polynomial time for

the main types of reasoning encountered in our applicaitions,

as compared with the N2EXPTIME-complete of OWL 2 DL.

Furthermore, triplestores support only versions of OWL with

limited expressiveness, making it impossible to work with

OWL 2 DL. The OWL 2 RL profile is implemented by several

triplestores.

The proposed language, PR-OWL 2 RL, maps the PR-OWL

2 language to be represented in OWL 2 RL, respecting the

restrictions of the profile. The new language also has restric-

tions on the valid formats for context nodes, making them

evaluable by triplestores using the SPARQL query language.

A plug-in will be developed in UnBBayes in order to allow

representation and inference of POs designed in PR-OWL 2

RL.

We performed tests with the triplestores Sesame 5, Jena

TDB 6, and GraphDB Lite 7. These were selected because

they are free and popular in the Semantic Web community. We

used the LUBM benchmark for checking the storage capacity

5http://rdf4j.org/
6https://jena.apache.org/
7http://ontotext.com/products/ontotext-graphdb/

and reasoning of these alternatives. Although all versions were

able to load the LUBM 100, only GraphDB correctly answered

the fourteen queries proposed in the benchmark. We could not

load larger versions of the assertive base of LUBM because, in

the version used in the tests (GraphDB Lite), all the data are

loaded in memory (we ran the tests with only 3 GB dedicated

to the JVM running the GraphDB server).

Based on these tests, we choose GraphDB Lite, from Onto-

text, for implementing our plug-in. The implementation of the

profile OWL 2 RL of the GraphDB triplestore is based on the

rule set OWL RL/RDF defined by W3C [22], following RDF

semantics. Inference is performed by total materialization: all

entailment statements are computed at load time [22]. The

reasoner uses predominantly forward-chaining to apply the

selected inference rules directly to RDF triples [24].

Deterministic inference in PR-OWL elements, using the

semantic repository, suffer the limitations of rule-based rea-

soning. However, it is still possible use an OWL DL reasoner

to make inferences over the terminological component (TBox).

In fact, the knowledge engineer can use the UnBBayes’ PR-

OWL 2 plug-in to build and test the terminological component

of the ontology, and use the new plug-in only when it is

necessary to process a large assertive database (ABox). Note

that in our implementation, the TBox has to be mapped to

a triplestore prior to loading the assertion data. At this point,

the TBox should already be complete, since the introduction of

new terminology statements is costly to the database, which,

using materialization, has to redo the inferences to instances

of ABox preloaded.

The interface between UnBBayes and the triplestore is

achieved through the SAIL (Storage and Inference Layer)

Sesame API, that abstracts the details of storage and inference.

This API is implemented by several triplestores, allowing the

use of alternatives to GraphDB.

The user workflow with the proposed tool is described

below:

1) The TBox, containing both the probabilistic and deter-

ministic parts in UnBBayes, is defined. Modeling of the

deterministic part is done in Protégé, incorporated into

UnBBayes, and must hold the restrictions of the OWL

2 RL profile. Modeling of the probabilistic part is done

through the creation of an MTheory using the UnBBayes

GUI, leaving to the modeler the link between PR-OWL

to OWL properties.

2) The TBox is loaded into the triplestore.

3) The assertive data (ABox) triplestore is populated with

individuals and their properties occurring in the domain.

4) UnBBayes connects to the RDF triplestore using the

Sesame SAIL API.

5) Probabilistic queries are made using the UnBBayes

interface, using the SSBN derived from the MTheory

and knowledge base.

6) Deterministic queries may be performed using the in-

terface provided by the semantic repository. Alterna-

tively, GUI for SPARQL queries could be constructed

in UnBBayes, as it is connected to the triplestore.
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TABLE II
FORMATS OF VALID CONTEXT NODE FORMULAS IN THE PR-OWL 2 IMPLEMENTATION

Formula Negation

ov1 = ov2 NOT ( ov1 = ov2 )

booleanRV( ov1 [ , ov2 , ...] ) NOT booleanRV( ov1 [ , ov2, ... ] )

ov0 = nonBooleanRV( ov1 ) NOT ( ov0 = nonBooleanRV( ov1 ))

ov0 = nonBooleanRV( ov1 [ , ov2, ... ] )

CONST = nonBooleanRV( ov1 [ , ov2 , ... ] )

nonBooleanRV( ov1 [ , ov2 , ... ] ) = CONST

nonBooleanRV( ov1 ) = ov0 NOT ( nonBooleanRV ( ov 1 ) = ov0)

nonBooleanRV( ov1 [ , ov2 , ... ] ) = ov0

Context Nodes 

Evaluation

Resident/Input 

Nodes 

Instanciation

Query

SSBN

MFrag 

Instanciation

Input Nodes

Structure Pruning

Build Local 

Probability 

Distributions

Triple Store

Search for 

Findings

REPEAT  for

 each query and 

finding node

MFrag Evaluation 

SSBN Generation

Fig. 3. Generation of SSBN from a user’s query

The SSBN construction algorithm implemented in

UnBBayes will be changed to search for evidence (findings)

and to evaluate the context nodes using the triplestore, as

illustrated in Figure 3. The gray elements are the parts of the

algorithm that will be modified for using the triplestore. The

process starts with a query. Then, the knowledge base (in

this case, in a triplestore) is searched for evidence. For each

query node and each finding node, there will be an MFrag

evaluation. In it, the MFrag will be instantiated and the context

node formulas will be evaluated, followed by instantiation of

resident and input nodes with the ordinary variables filled

with the values of entities that satisfy the context nodes. The

input nodes cause the evaluation of MFrags in which they

are resident nodes. The SSBN algorithm implemented in

UnBBayes is based on the algorithm proposed in [8], where

the interested reader can find more details.

The search for evidence and evaluation of context nodes

Fig. 4. EvasiveBehavior MFrag

is performed using queries in SPARQL. The code below

shows the SPARQL query for evaluating context nodes in

the EvasiveBehavior MFrag (Figure 4), from the MDA

ontology, in a situation where we know that the ordinary

variable ship1 is filled with the entity ShipA. The evaluation

in this case is made using the comand SELECT.

SELECT ?ship2

WHERE ?ship2 rdf:type Ship ,

ShipA isWithinRadarRange ?ship2,

FILTER(ShipA != ?ship2)}

When we know the values of the variables and only want

to evaluate a formula, the command ASK is used. The code

below shows the evaluation of the same context node of the

previous example when we know that ship2 is ShipA. This

query will return TRUE or FALSE.

ASK

WHERE ShipB rdf:type Ship ,

ShipA isWithinRadarRange ShipB,

FILTER(ShipA != ShipB)}

Since inference in most triplestores is performed by materi-

alization at loading time (the approach used by GraphDB),

queries will execute quickly. However, queries correspond

to searches of the database, and for this reason can not

929



require evaluation of complex logical expressions. The code

showed for the context nodes of the EvasiveBehavior

MFrag illustrate how an AND and a NOT EQUAL expression

can be evaluated, utilizing, respectively, the SPARQL comma

operator and the ”!=” (different of) operator inside a FIL-

TER. Similarly, the OR can be evaluated using the command

UNION. The BNF grammar below shows the formats of

context nodes evaluable using these rules. These constructions

make it possible to work with the probabilistic ontology for

MDA presented in [4].

Listing 1. BNF Grammar for FOL Expressions

<atom > : := ov1 == ov2 |
booleanRV ( ov1 , [ , ov2 . . . ] ) |
nonBooleanRV ( ov1 , [ , ov2 . . . ] ) = ov0 |
ov0 = nonBooleanRV ( ov1 , [ , ov2 . . . ] ) |
nonBooleanRV ( ov1 , [ , ov2 . . . ] ) = CONST |
CONST = nonBooleanRV ( ov1 , [ , ov2 . . . ] )

<n e g a t i o n > : := NOT <atom>

<c o n j u n c t i o n > : := <atom> [AND <atom>]+
<d i s j u n c t i o n > : := <atom> [OR <atom>]+
<fo rmula >:= <atom> |

<n e g a t i o n> |
<c o n j u n c t i o n > |
<d i s j u n c t i o n >

Table III compares the two versions of PR-OWL with the

characteristics of the proposed PR-OWL 2 RL language.

The first version of PR-OWL was written in OWL DL8.

PR-OWL 2 was developed in OWL 2 DL, and made several

compromises in order to stay within OWL 2 DL. PR-OWL

2 RL will be written using the OWL 2 RL profile, based on

RDF semantic.

The expressiveness of context nodes in both versions of

PR-OWL is full first-order logic. Nevertheless, their respective

implementations have to provide some mechanism to actually

evaluate them, since the common reasoners developed for

OWL do not deal with FOL. The formats of valid formulas

in the context nodes in PR-OWL 2 RL will have restrictions

to suit the OWL 2 RL profile. The gain with this approach

is that the language will be easily implemented using full

implementations already available in current OWL 2 RL

technologies.

The first version of PR-OWL only allows probabilistic rea-

soning, while PR-OWL 2 allows hybrid reasoning, involving

probabilistic and deterministic reasoning. This feature will be

maintained in PR-OWL 2 RL, through the use of properties

such as definesUncertaintyOf, isSubjectIn, and

isObjectIn. The use of built-in OWL data types and the

support for polymorphism will also remain in PR-OWL 2 RL.

Table IV compares the implementations available for PR-

OWL and PR-OWL 2 in the UnBBayes framework with the

proposed implementation of PR-OWL 2 RL.

In the PR-OWL implementation, the KIF representation

language used in PowerLoom was used in addition to OWL

8PR-OWL was proposed when OWL 1 was still the standard for creating
ontologies

DL, since the assertive database must be expressed in KIF

format, separate from the original OWL ontology (represented

in OWL DL). The OWL DL language is used to express the

terminological database, whereas the assertive database uses

the KIF representation language because this is the language

used by PowerLoom. The PR-OWL language has constructs

to store the evidence using the OWL format, but these are not

used in the implementation, making it difficult to work in real

domains, expressed in standardized formats of the Semantic

Web. In PR-OWL 2 this limitation has been removed: both the

TBox and the ABox are stored using OWL. PR-OWL 2 RL

keeps this feature, storing the ABox in the triplestore using

OWL, serialized as RDF.

The context nodes in the implementation of PR-OWL accept

formulas in first-order logic, evaluated by PowerLoom, with

restrictions on the evaluation of formulas with variables not

filled at evaluation time. In the PR-OWL 2 implementation

only formulas in the formats presented in Table II are allowed.

The formats of valid formulas in PR-OWL 2 RL are based in

OWL 2 RL/RDF and how queries are made using SPARQL.

Of the new characteristics proposed in PR-OWL 2, one that

was not fully implemented in UnBBayes was polymorphism,

a feature that will be implemented in PR-OWL 2 RL.

The major improvement provided by PR-OWL 2 RL is with

respect to scalability, since it is designed to work with millions

of RDF triples. The current triplestores available allow work

with billions of RDF triples; however, the software that we

will use in the prototype, the Lite version of GraphDB, loads

the database in memory, which limits the size of the database.

The user can work with billions of triples as long as he has a

commercial version of GraphDB instead Lite, since the SAIL

interface is used in both versions.

VI. CONCLUSION

PR-OWL and PR-OWL 2 are probabilistic extensions of

OWL that use Multi-Entity Bayesian Network (MEBN) for

representation and inference under uncertainty. Both languages

were implemented in the UnBBayes framework, but these

implementations are not scalable enough to be used in real

cases with large assertive databases (e.g., in the Maritime

Domain Awareness probabilistic ontology developed for the

PROGNOS project when used with databases of realistic size).

This paper presented an approach to solve this problem, by

integrating PR-OWL 2 with RDF triplestores, using the OWL

2 RL profile, a restrictive version of OWL that has polynomial

time complexity for most types of reasoning tasks. Future work

involves defining the valid constructs for the context node,

implementing a plug-in tool for the formalism in UnBBayes,

using the GraphDB triplestore, and making more scalability

tests with the MDA ontology.
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