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Abstract—A fusion methodology for tracks represented by
Gaussian mixtures is proposed for distributed maneuvering
target tracking with unknown correlation information between
the local agents. For this purpose, Chernoff fusion is applied to
the Gaussian mixtures provided by the local interacting multiple-
model (IMM) filters. Chernoff fusion of Gaussian mixtures is
achieved using a recently proposed method in the literature
involving a sigma-point approximation. The results show that
the fusion of Gaussian mixtures in a distributed maneuvering
target tracking scenario brings a moderate improvement over
fusing only moment matched Gaussian densities.

Index Terms—Distributed estimation; maneuvering target
tracking, IMM filter, Chernoff fusion, covariance intersection,
sigma-points.

I. INTRODUCTION

In a distributed sensor network, one of the main challenges

is to handle unknown correlation between the local estimates.

In a target tracking scenario where the local agents process

their own information, even if the individual sensors collect

measurements about the target conditionally independently,

the common process noise of the target causes correlation

between the local estimation errors [1]. A solution proposed

for the correlation caused by the common process noise is to

communicate Kalman filter gains [2] between the local agents

which requires extra communication in the sensor network. In

addition to the common process noise, correlation between the

local estimates can also be caused by previous communication

between the local agents. It is possible to account for the

common information between the local agents (caused by

previous communication) using the techniques of information

decorrelation [3–5]). In many practical cases, keeping the

log of the correlated information between the local estimates

and compensating for them are either computationally or

communication-wise too costly or infeasible. Therefore tech-

niques which can work under unknown correlation information

are of interest. The most well-known track fusion techniques

which would give consistent estimates independent of the

amount of correlation between the local estimates are the

covariance intersection (CI) [6, 7] and the largest ellipsoid

algorithm (LEA) [8, 9]. In this work we are going to be

interested in CI and its generalization to density functions.

Target tracking before the last two decades was mostly dom-

inated by Gaussian density based state estimators (e.g. Kalman

filter (KF), extended KF (EKF), unscented KF (UKF) [10]).

This was indeed a result of the computational restrictions of

the era which made such filters actually the only possible

choices. As a result, the early approaches to track fusion

considered only the fusion of locally estimated means and co-

variances. With the advent of more sophisticated state estima-

tors like Gaussian sum filters [11], interacting multiple model

(IMM) filters [12], [13, Sec. 11.6] and particle filters [14], the

need for fusing density functions became more apparent. The

effects of the increase in the computational resources have also

been observed in multiple target tracking where computation-

ally costly multiple hypothesis trackers (MHTs) [15] started

to be used. Since MHTs inherently hold mixtures for targets,

the problem of fusion of local mixtures appears in multiple

target tracking as well (even if Gaussian based state estimators

are used in local trackers). The more recent developments in

multiple target tracking leading to the probability hypothesis

density (PHD) filters [16] made the need for density/intensity

fusion methods even more significant.

The optimal fusion of density functions is investigated in

detail in [17]. The generalization of CI to probability density

functions was first proposed by Mahler in [18] and two years

later, independently, by Hurley in [19]. This generalization

is called by different names by different authors: Chernoff

fusion [5]; geometric mean density [20]; exponential mixture

densities [21]. In [18], Mahler also proposed the application

of both the optimal approach [17] and Chernoff fusion to

multitarget densities. The consistency and conservativeness

properties of Chernoff fusion are investigated in [20]. Explicit

formulae are derived for Chernoff fusion of Bernoulli, Poisson

and independent cluster process multitarget densities in [22].

In this study, we consider a distributed maneuvering target

tracking scenario where the estimates of the local agents are to

be fused. We assume that the local agents run IMM filters for

handling target maneuvers and the output of the local trackers

are Gaussian mixtures. As a result the track fusion problem

we consider involves the fusion of the Gaussian mixture den-

sities. We assume that the correlation between local estimates

is unknown and therefore apply Chernoff fusion using the

methodology recently proposed in [23] which is based on

a sigma-point approximation. We derive the required fusion

expressions to be employed in the local IMM filters. As an

alternative methodology, we consider making the track fusion

with the single Gaussian densities obtained by reducing the
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output Gaussian mixtures of the IMM filter using moment

matching. Comparisons show that the track fusion with the

Gaussian mixtures provides a moderate improvement over

the single Gaussian version. To the authors’ best knowledge

the Chernoff fusion methodology has not been applied in a

distributed IMM filtering framework for making track fusion

using Gaussian mixtures before.

The organization of the paper is given as follows. In

Section II, we give a brief overview of maneuvering target

tracking and IMM filter. Section III first presents the cor-

relation independent fusion methodology CI [6, 7] and its

generalization (Chernoff fusion), then, it describes the method

taken from [23] utilized for performing Chernoff fusion of

Gaussian mixtures. The fusion expressions to be applied in

IMM filter which are the main contribution of the current work

are given in Section IV. Section V presents the simulation

results. The conclusions are drawn in Section VI

II. MANEUVERING TARGET TRACKING AND IMM FILTER

Maneuvering target tracking is a sub-area of target tracking

which is interested in the model mismatch between the true

target motion and assumed motion model in the tracking

filter. When not detected and compensated, the maneuvers can

degrade the performance of the tracker and might even lead

to filter divergence. See [13, Chapter 11] for the history and

a survey of the tracking methods proposed for maneuvering

target tracking. The most commonly used solution for the ma-

neuvering targets is the multiple model approach [13, Section

11.6] where multiple Kalman filters utilizing different motion

models are executed in the tracker. The most well known

instances of these methods are the so called Generalized

Pseudo Bayesian (GPB) Methods [24, 25] and Interacting

Multiple Model (IMM) filter [26].

IMM filter, which was invented by Blom and Bar-

Shalom [12], is the most common maneuvering target tracking

algorithm used in the literature. It is a state estimation algo-

rithm developed for the following Jump Markov Linear System

(JMLS).

x(k + 1) =Aix(k) +Bjwi(k), (1a)

z(k) =Cix(k) + vi(k) (1b)

where

• i ∈ {1, . . . , r} denotes the model which is assumed to

evolve according to a homogeneous Markov chain with

the transition probability matrix Π = [pij ] where pij is

the probability of a transition from the ith model to the

jth model;

• x(k) ∈ R
n is the state vector;

• z(k) ∈ R
m is the measurement vector;

• wi(k) ∼ N (wi(k), 0, Qi) is the white process noise

sequence for the ith model, i = 1, . . . , r;

• vi(k) ∼ N (vi(k), 0, Ri) is the white measurement noise

sequence for the ith model, i = 1, . . . , r, independent of

the process noise sequence;

• Ai, Bi, Ci are the model parameter matrices for the ith

model, i = 1, . . . , r.
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捲賦待怠岫倦 伐 な】倦 伐 な岻 捲賦待態岫倦 伐 な】倦 伐 な岻権岫倦岻
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Update
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Fig. 1. Block diagram of the IMM filter with two models.

Here, the notation N (x, x̄, P ) denotes a Gaussian density over

the variable x with mean x̄ and covariance P . The calculation

of the exact posterior state distribution for the model (1) is

not computationally feasible. Hence the use of suboptimal

solutions is necessary. IMM filter approximates the posterior

state as a Gaussian mixture given as follows.

p(xk|Z
k
0 ) ≈

r∑

i=1

µi(k|k)N (xk, x̂i(k), Pi(k|k)) (2)

where

• Zk
0 , {z(0), z(1), . . . , z(k)} is the cumulative set of

measurements from time 0 to k;

• µi(k|k) , E[Mi(k)|Z
k
0 ] is the posterior mode probability

where the Mi(k) is the event that the target assumes the

ith model at time k.

• x̂i(k|k) , E[x(k)|Zk
0 ,Mi(k)] is the mode-conditioned

state estimate;

• Pi(k|k) is the mode-conditioned state covariance defined

as

Pi(k|k) ,E[(x(k)− x̂i(k|k))

× (x(k)− x̂i(k|k))
T|Zk

0 ,Mi(k)]. (3)

Below we provide a brief overview of the single step of the

IMM filter which is adopted from [13]. Suppose that we have

the previous model conditioned estimates {x̂i(k−1|k−1)}ri=1,

the associated covariances {Pi(k−1|k−1)}ri=1 and the previ-

ous mode probabilities {µi(k−1|k−1)}ri=1. The updated state

estimates {x̂i(k|k)}
r
i=1, covariances {Pi(k|k)}

r
i=1 and mode

probabilities {µi(k|k)}
r
i=1 are obtained using the following

steps.

1) Interaction (Mixing):

µi|j(k − 1|k − 1) =
pijµi(k − 1|k − 1)

µj(k|k − 1)
, (4a)

x̂0j(k − 1|k − 1) =
r∑

i=1

µi|j(k − 1|k − 1)
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× x̂i(k − 1|k − 1) (4b)

P0j(k − 1|k − 1) =
r∑

i=1

µi|j(k − 1|k − 1)

×
([
Pi(k − 1|k − 1)

+ [x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)]

× [x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)]
T ])

(4c)

where the predicted mode probability µj(k|k − 1) is

given by

µj(k|k − 1) =

r∑

i=1

pijµi(k − 1|k − 1). (4d)

2) Mode-Conditioned Filtering:

• Prediction Update:

x̂j(k|k − 1) =Aj x̂0j(k − 1|k − 1), (5a)

Pj(k|k − 1) =AjP0j(k − 1|k − 1)AT
j +BjQjB

T
j .

(5b)

• Measurement Update:

x̂j(k|k) =x̂j(k|k − 1) +Kj(k)νj(k), (6a)

Pj(k|k) =[Inx
−KjCj ]Pj(k|k − 1), (6b)

νj(k) =z(k)− Cj x̂j(k|k − 1), (6c)

Sj =CjP
j(k|k − 1)CT

j +Rj , (6d)

Kj =Pj(k|k − 1)CT
j S

−1
j (6e)

where In is the identity matrix of size n× n.

3) Mode-Probability Update:

µj(k|k) =
µj(k|k − 1)Λj(k)∑r
i=1 µi(k|k − 1)Λi(k)

(7a)

where

Λj(k) =N (z(k), x̂j(k|k − 1), Sj). (7b)

Being a Bayesian state estimator, the intrinsic output of the

IMM filter is the Gaussian mixture (2). However, sometimes

only a single mean and covariance is desired as the output

for higher level processing. The single mean x̂(k|k) and

covariance P (k|k) are obtained using the following operations.

4) Merging:

x̂(k|k) =
r∑

i=1

µj(k|k)x̂j(k|k), (8a)

P (k|k) =
r∑

i=1

µj(k|k)
(
Pj(k|k)

+ [x̂j(k|k)− x̂(k|k)][x̂j(k|k)− x̂(k|k)]T
)
. (8b)

The calculation above amounts to reducing the Gaussian

mixture (2) to a single Gaussian by moment matching and

it is obviously a lossy operation. A block diagram for a single

step of the IMM filter for two models (i.e., r = 2 in the

JMLS (1)) is given in Figure 1.

III. CI AND CHERNOFF FUSION

Covariance intersection (CI) [6, 7] is one of the main

approaches to decentralized fusion [5]. Its main advantage is

that it enables consistent fusion under unknown correlation

information. The consistency in this context is defined as

the fused covariance being always larger than or equal to

the optimally fused covariance that would be obtained if the

correlation information was available. See [27] for more details

about the optimality and consistency properties of CI. The

main procedure of CI is described as follows. Let us have

two local estimates x1 ∈ R
n and x2 ∈ R

n and their positive

definite covariances P1 ∈ R
n×n and P2 ∈ R

n×n. CI calculates

the fused estimate xCI and covariance PCI as

P−1
CI xCI =wP

−1
1 x1 + (1− w)P−1

2 x2 (9a)

P−1
CI =wP−1

1 + (1− w)P−1
2 (9b)

where w ∈ [0, 1] is selected to be the solution w∗ of the

following optimization problem.

w∗ , arg min
w∈[0,1]

L
((
wP−1

1 + (1− w)P−1
2

)−1
)
. (10)

Here, the function L : Sn×n
≥0 → R≥0 represents an uncertainty

measure from the space of symmetric positive semi-definite

matrices (Sn×n
≥0 ) into non-negative real numbers (R≥0) and is

usually selected either as the trace or the determinant of the

matrix argument.

CI can be generalized to the fusion of density functions [18,

19]. The corresponding generalization is called as Chernoff

fusion [5]. Given two density functions px,1(·) and px,2(·)
representing the same random variable x, the fused density

px,CF(·) is obtained as

px,CF(x) =
pwx,1(x)p

1−w
x,2 (x)

∫
pwx,1(x)p

1−w
x,2 (x) dx

(11)

where the subscript CF stands for Chernoff fusion and w is

selected to be the solution w∗ of the optimization problem

given below.

w∗ = arg min
w∈[0,1]

L

(
pwx,1(x)p

1−w
x,2 (x)

∫
pwx,1(x)p

1−w
x,2 (x) dx

)
. (12)

Here, the function L(·) represents an uncertainty measure from

the set of density functions into real numbers. For example,

the matrix uncertainty measure trace in CI corresponds to

the uncertainty measure variance (Ex[x
Tx] − Ex[x

T]Ex[x])
in Chernoff fusion and the matrix uncertainty measure deter-

minant in CI corresponds to the uncertainty measure entropy

(Ex[− log p(x)]) in Chernoff fusion. See [20] for details about

the consistency and conservativeness properties of Chernoff

fusion formula (11).

A. Chernoff Fusion for Gaussian Mixtures

When the densities px,1(·) and px,2(·) in (11) are selected

to be Gaussian mixtures, the application of Chernoff fusion

formula (11) requires taking non-integer powers of the Gaus-

sian mixtures. In general, a non-integer power of a Gaussian
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mixture is not a Gaussian mixture (See e.g. [28, Sec. VI])

and there is no exact analytical expression for it. In [23], a

sigma-point approximation is proposed for approximating an

arbitrary non-integer power of a Gaussian mixture, which was

an improvement over the first-order approximation proposed

in [29] for the same problem. Suppose we call the wth

power of the Gaussian mixture p(x) =
N∑
i=1

αiN (x;xi, Pi) as

q(x) , pw(x). The function q(x) is approximated in [23] as

q(x) ≈
N∑

i=1

βiN (x;xi, w
−1Pi) (13)

where the unknown weights {βi}
N
i=1 are found by solving the

following weighted non-negative least squares problem.

minimize
β

(Mβ − b)TW(Mβ − b) (14a)

subject to 0 ≤ βi, i = 1, . . . , N. (14b)

In (14), the elements of the vector b ∈ R
N(2n+1)×1, the

matrix M ∈ R
N(2n+1)×N and the diagonal matrix W ∈

R
N(2n+1)×N(2n+1) are defined as

[M](2n+1)(i−1)+j,m ,N (sji ;xm, w
−1Pm), (15a)

[b](2n+1)(i−1)+j,1 ,pw(sji ), (15b)

[W](2n+1)(i−1)+j,(2n+1)(i−1)+j =αiπ
j
i (15c)

for i,m = 1, . . . , N and j = 1, . . . , 2n+1 where the notation

[·]i,j denotes the i, jth element of the argument matrix. In (15),

{sji}
2n+1
j=1 denote the sigma-points for the ith component of

p(·) generated by unscented transform [10] and {πj
i }

2n+1
j=1

are their weights. The non-negative least squares (NNLS)

problem (14) is solved using Lawson-Hanson algorithm [30,

Chapter 23] a modified version of which is available in

MATLAB as the function lsqnonneg(·).

The study [23] proposes to fuse Gaussian mixtures based

on the approximate power operation described above and calls

the resulting Chernoff fusion method as sigma-point Chernoff

fusion (SPCF). An overview of SPCF is given below. Suppose

the mixtures to be fused are given as follows.

px,1(x) =

M∑

i=1

µiN (x;φi,Φi), (16a)

px,2(x) =
N∑

j=1

νjN (x;ψj ,Ψj). (16b)

Suppose the wth and (1−w)th powers of px,1(·) and px,2(·),
respectively, obtained by the procedure above are called qx,1(·)
and qx,2(·) and given as

qx,1(x) =
M∑

i=1

µ̂i(w)N (x;φi, w
−1Φi), (17)

qx,2(x) =

N∑

j=1

ν̂j(w)N (x;ψj , (1− w)−1Ψj) (18)

where the dependency of the weights on w is emphasized.

Given qx,1(·) and qx,2(·), the rest of the fusion amounts to

applying the so called “naive” fusion formula [5] (i.e., the

fusion formula that would be valid if the local quantities were

independent.1) to fuse the resultant mixtures (17) and (18).

Multiplication of the Gaussian mixtures qx,1(·) and qx,2(·)
results in

qx,1(x)qx,2(x)

=
M∑

i=1

N∑

j=1

µ̂i(w)ν̂j(w)N

(
x;φi,

Φi

w

)
N

(
x;ψj ,

Ψj

1− w

)

=
M∑

i=1

N∑

j=1

µ̂i(w)ν̂j(w)πij(w)N
(
x; x̃ij(w), P̃ij(w)

)

where

πij(w) ,N

(
φi;ψj ,

Φi

w
+

Ψj

1− w

)
(21a)

P̃−1
ij (w) =wΦ−1

i + (1− w)Ψ−1
j (21b)

P̃−1
ij (w)x̃i,j(w) =wΦ

−1
i φi + (1− w)Ψ−1

j ψj . (21c)

Therefore, we have

px,SPCF(x) =

( ∑M
i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)

×N
(
x; x̃ij(w), P̃ij(w)

)
)

∑M
i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)

(22)

where w is selected to be the solution w∗ of the optimization

problem given as

w∗ =arg min
w∈[0,1]

L (px,SPCF(·)) . (23)

In this work we are going to use the variance as the optimizing

criterion since it is analytically computable for Gaussian

mixtures, i.e., L(px(x)) = Ex[x
Tx] − Ex[x

T]Ex[x], which

gives

w∗ =arg min
w∈[0,1]

( ∑M
i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)

×
[
tr
(
P̃ij(w)

)
+ ‖x̃ij(w)− x̃(w)‖22

]
)

∑M
i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)

(24)

where

x̃(w) ,
M∑

i=1

N∑

j=1

µ̂i(w)ν̂j(w)πij(w)x̃ij(w), (25)

and the notation ‖ · ‖2 denotes the Euclidean norm of the

argument vector; the operator tr(·) gives the trace of the

argument matrix.

1The naive fusion formula is given as

pnaive(x) =
px,1(x)px,2(x)∫
px,1(x)px,2(x) dx

. (19)
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IV. DISTRIBUTED IMM FILTERING

In this section, we are going to consider a distributed

maneuvering target tracking framework where local agents use

IMM filters to track targets. Without loss of generality, we are

going to consider only two local agents. The aim is going to

be to make distributed estimation where each agent receives

processed information from the other agent and fuses its local

estimate(s) with the remote information.

We consider two distinct fusion strategies depending on

the nature of the communicated information from/to the IMM

filters.

• Strategy-1: The communicated pieces of information

are in the form of Gaussian mixtures. These are the

mixtures (2) provided by the IMM filters. The Gaus-

sian mixtures are communicated by sending the mode-

probabilities along with mode conditioned means and

covariances. We here consider a general case where the

local IMM filters might use different (number of) models.

It is also assumed that when a local agents receives

remote information in the form of a Gaussian mixture,

it does not know which models the components of the

mixture correspond to.

• Strategy-2: The communicated pieces of information are

in the form of single Gaussian densities moment-matched

to IMM filter outputs. The mean and the covariance of

the moment-matched Gaussian density are given as in (8).

The Gaussian densities are communicated by sending the

merged mean and covariance (8).

In both strategies, feedback is assumed. In other words, at

each iteration, local IMM filters use the last fused mode-

probabilities, estimates and their covariances as their initial

condition. We are going to examine the required fusion op-

erations in each strategy in separate subsections below. For

each strategy, we are going to assume that we are in one of

the local agents and we are trying to fuse the received remote

information with the local quantities.

A. Fusion Strategy-1

For this strategy, the received remote information is in the

form of a Gaussian mixture density denoted as

fR(x) =

rR∑

i=1

µR
i (k|k)N

(
x; x̂Ri (k|k), P

R
i (k|k)

)
(26)

and it has to be fused with the estimates of each model

in the local IMM filter. Note that each model in the IMM

filter has a mode probability, mode-conditioned state estimate

and covariance denoted as µL
j (k|k), x̂

L
j (k|k) and PL

j (k|k),
respectively, and these quantities are to be replaced by the

fused quantities denoted as µF
j (k|k), x̂

F
j (k|k) and PF

j (k|k).
The information in the jth model of the local IMM filter is

given as the weighted Gaussian density below.

fLj (x) = µL
j (k|k)N

(
x; x̂Lj (k|k), P

L
j (k|k)

)
. (27)

The fusion operation is illustrated in Figure 2. With Strategy-

1, we consider the naive and SPCF fusion operations. For

Mixing

Filtering

Mode Probability Update

Merging

Remote 
Agent

Ͳ Naive
Ͳ SPCF

Ͳ CI

Ͳ Naive
Ͳ SPCF

Ͳ CI

Local Agent
捲賦怠庁岫倦 伐 な】倦 伐 な岻 捲賦態庁岫倦 伐 な】倦 伐 な岻

捲賦怠挑岫倦】倦岻 捲賦態挑岫倦】倦岻航態挑岫倦】倦岻航怠挑岫倦】倦岻

捲賦怠庁岫倦】倦岻 捲賦態庁岫倦】倦岻航怠庁岫倦】倦岻 航態庁岫倦】倦岻

Gaussian 
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Strategy Ͳ2

血眺岫ゲ岻

捲賦庁岫倦】倦岻

航怠庁岫倦 伐 な】倦 伐 な岻 航態庁岫倦 伐 な】倦 伐 な岻

Merging
捲賦挑岫倦】倦岻

Fig. 2. Proposed fusion strategies with feedback.

the sake of brevity we drop the time stamps (k|k) in the

expressions.

1) Naive Fusion: The Naive Fusion approach neglects

the correlation between the local and remote estimates and

produces the fused information given as

fFj (x) =fLj (x)f
R(x) (28a)

=µL
j

r∑

i=1

µR
i N (x; x̂Ri , P

R
i )N (x; x̂Lj , P

L
j ) (28b)

=µL
j

rR∑

i=1

µR
i N (x̂Ri ; x̂

L
j , P

R
i + PL

j )N (x; x̂i|j , Pi|j)

(28c)

=µL
j c

F
j

rR∑

i=1

ηFijN (x; x̂i|j , Pi|j) (28d)

where

x̂i|j =Pi|j((P
L
j )−1x̂Lj + (PR

i )−1x̂Ri ), (29a)

Pi|j =
(
(PL

j )−1 + (PR
i )−1

)−1
, (29b)

cFj =

rR∑

i=1

µR
i N (x̂Ri ; x̂

L
j , P

R
i + PL

j ), (29c)

ηFij =
µR
i

cFj
N (x̂Ri ; x̂

L
j , P

R
i + PL

j ). (29d)

Since the local information for the jth filter is in the form (27),

the fused information (28d) should also be brought into the

same form. For this purpose, the mixture in (28d) is reduced

to a single moment-matched Gaussian density which gives

fFj (x) =µ̃F
j N (x, x̂Fj , P

F
j ) (30)

where

µ̃F
j =µL

j c
F
j , (31a)

x̂Fj =

rR∑

i=1

ηFij x̂i|j , (31b)
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PF
j =

rR∑

i=1

ηFij
(
Pi|j + [x̂i|j − x̂Fj ][x̂i|j − x̂Fj ]

T
)
. (31c)

Finally, the fused mode probabilities µ̃F
j have to be normalized

across different modes in the local filter as

µF
j =

µ̃F
j∑rL

i=1 µ̃
F
i

(32)

to obtain

fFj (x) =µF
j N (x, x̂Fj , P

F
j ). (33)

2) SPCF: This is the proposed sigma-point Chernoff fusion

technique. Chernoff fusion would yield the fused information

given as

fFj (x) =
(
fLj (x)

)w (
fR(x)

)1−w
(34a)

= (µL
j )

wNw
(
x; x̂Lj , P

L
j

) [ rR∑

i=1

µR
i N

(
x; x̂Ri , P

R
i

) ]1−w

(34b)

The wth power of the Gaussian density N
(
x; x̂Lj , P

L
j

)

in (34b) can be taken exactly to give the weighted Gaussian

given below.

Nw
(
x; x̂Lj , P

L
j

)
= aLj (w)N

(
x; x̂Lj , w

−1PL
j

)
(35)

where

aLj (w) ,

(∣∣2πw−1PL
j

∣∣)0.5
(∣∣2πPL

j

∣∣)w/2
. (36)

For the calculation of (1−w)th power of the Gaussian mixture

in (34b), the approximation described in Section III-A is used

to obtain

[ rR∑

i=1

µR
i N

(
x; x̂Ri , P

R
i

) ]1−w

≈
rR∑

i=1

βR
i (w)N

(
x; x̂Ri , (1− w)−1PR

i

)
(37)

Hence, we have

fFj (x) ≈ (µL
j )

waLj (w)

rR∑

i=1

βR
i (w)N

(
x; x̂Lj , w

−1PL
j

)

×N
(
x; x̂Ri , (1− w)−1PR

i

)
(38a)

=(µj
L)

waLj (w)

rR∑

i=1

βR
i (w)N

(
x; x̂i|j , Pi|j

)

×N
(
x̂Ri ; x̂

L
j , w

−1PL
j + (1− w)−1PR

i

)
(38b)

=(µL
j )

waLj (w)c
F
j (w)

rR∑

i=1

ηFij(w)N
(
x; x̂i|j(w), Pi|j(w)

)

(38c)

where

x̂i|j(w) = Pi|j(w)
(
w(P j

L)
−1x̂

j
L + (1− w)(P i

R)
−1x̂iR

)

(39a)

Pi|j(w) =
(
w(P j

L)
−1 + (1− w)(P i

R)
−1
)−1

(39b)

cFj (w) =

rR∑

i=1

βR
i (w)N

(
x̂Ri ; x̂

L
j , w

−1PL
j + (1− w)−1PR

i

)
,

(39c)

ηFi (w) =
βR
i (w)

cFj (w)
N
(
x̂Ri ; x̂

L
j , w

−1PL
j + (1− w)−1PR

i

)
.

(39d)

Reducing the mixture in (38c) to a single moment-matched

Gaussian density gives

fFj (x) =µ̃F
j N (x, x̂Fj (w), P

F
j (w)) (40)

where

µ̃F
j (w) =(µL

j )
waLj (w)c

F
j (w), (41a)

x̂Fj (w) =

rR∑

i=1

ηFij(w)x̂i|j(w), (41b)

PF
j (w) =

rR∑

i=1

ηFij(w)
(
Pi|j(w)

+ [x̂i|j(w)− x̂Fj (w)][x̂i|j(w)− x̂Fj (w)]
T
)
. (41c)

The fused mode probabilities µ̃F
j have to be normalized across

different modes in the local IMM filter as

µF
j (w) =

µ̃F
j (w)∑rL

i=1 µ̃
F
i (w)

(42)

to obtain

fFj (x) =µF
j (w)N (x, x̂Fj (w), P

F
j (w)). (43)

The optimal value w∗ of w is obtained by minimizing the trace

of PF
j (w).

B. Fusion Strategy-2

In this fusion strategy, the remote information is the Gaus-

sian density moment-matched to the output Gaussian mixture

of the remote IMM filter as in (8). Hence the received remote

information is given as

fR(x) = N
(
x; x̂R(k|k), PR(k|k)

)
. (44)

The information in the jth model of the local IMM filter is

the same as the weighted Gaussian density in (27). Since both

pieces of information is in the form of a weighted Gaussian

density, we can use CI for the fusion.

CI gives the fused information for the jth model of the local

IMM filter as follows.

fFj (x) =
(
fLj (x)

)w (
fR(x)

)1−w
(45a)

= (µL
j )

wNw
(
x; x̂Lj , P

L
j

)
N 1−w

(
x; x̂R, PR

)
(45b)
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Using the result in (36), we get

f
j
F (x) =(µj

L)
waLj (w)a

R(1− w)N
(
x; x̂Lj , w

−1PL
j

)

×N
(
x; x̂R, (1− w)−1PR

)
(46a)

=(µj
L)

waLj (w)a
R(1− w)N

(
x; x̂j|R(w), Pj|R(w)

)

×N
(
x̂R; x̂Lj , w

−1PL
j + (1− w)−1PR

)
(46b)

=µ̃F
j (w)N

(
x; x̂j|R(w), Pj|R(w)

)
(46c)

where

x̂j|R(w) =P
−1
j|R(w)

(
w(P j

L)
−1x̂

j
L + (1− w)(PR)

−1x̂R

)

(47a)

Pj|R(w) =
(
w(P j

L)
−1 + (1− w)(PR)

−1
)−1

(47b)

µ̃F
j (w) =(µj

L)
waLj (w)a

R(1− w)

×N
(
x̂R; x̂Lj , w

−1PL
j + (1− w)−1PR

)
(47c)

The fused mode probabilities µ̃F
j have to be normalized across

different modes in the local IMM filter as

µF
j (w) =

µ̃F
j (w)∑rL

i=1 µ̃
F
i (w)

(48)

to obtain

fFj (x) =µF
j (w)N (x, x̂Fj (w), P

F
j (w)). (49)

where x̂Fj (w) = x̂j|R(w) and PF
j (w) = Pj|R(w). The optimal

value w∗ of w is obtained by minimizing the trace of PF
j (w).

V. SIMULATION RESULTS

In order to test the performances of the strategies and the

fusion methods, a 2D tracking scenario in which the outputs of

two local agents using IMM filters have to be fused. For this

purpose, random trajectories for a target with sampling time

T = 1s are generated using a JMLS which has two 2D nearly

constant velocity models with different process noise standard

deviation (std) values. The process noise std for Model-1

and Model-2 are selected as σp1 = 1m/s2, σp2 = 35m/s2

respectively. The target trajectories are started from the origin

with x-y components of the velocity vector selected inde-

pendently and uniformly in the interval [100, 200]m/s. The

diagonal elements of the transition probability matrix for the

JMLS are given as p11 = p22 = 0.9. The Cartesian x-y

position measurements are collected with measurement noise

std σr = 200 generated independently for each local agent.

The local IMM filters use the true JMLS parameters. For SPCF

and CI approaches, the optimal value w∗ of the parameter w

is obtained by making a search over a uniform grid of 20

elements in the interval [0, 1].
A total of 250 Monte-Carlo runs are made where in each

run a different realization of the target trajectory (of length 100

seconds) and target measurements are used. The RMS position

errors for the Naive (Strategy-1), SPCF (Strategy-1) and CI

(Strategy-2) are obtained. In order to serve as a baseline, a

centralized IMM filter which uses the measurements of both

local agents is also implemented. Similarly the RMS errors of

one of the local agents are also calculated.

TABLE I
AVERAGE (BOTH ENSEMBLE AND TIME) RMS POSITION ERROR VALUES.

Method Local Cent. Naive SPCF CI

RMS (m) 178.9 134.8 2502.2 163.3 170.3
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Fig. 3. RMS position errors for the local agent along with centralized fusion,
SPCF, Naive and CI approaches.

Figure 3 shows the RMS position errors of the local agent

along with those of the centralized fusion, Naive, SPCF and

CI methodologies. Table I lists the time average of the RMS

position errors illustrated in Figure 3. It is seen that Naive

approach diverges at the beginning of the scenario. This

is expected due the fact that the Naive approach does not

compensate for correlated information in the fusion operation.

Due to the feedback in the fusion operation, there is a constant

accumulation of correlated information in the local filter

estimates which makes the local IMM filters using the Naive

approach inconsistent immediately leading to divergence. The

SPCF approach yields the closest results to the centralized

approach which is optimal. The CI fusion performance can

occasionally get very close to the results obtained by the local

agent. The use of Gaussian mixtures in SPCF instead of the

moment-matched single Gaussian densities in CI brings an

improvement of around 7 meters into the fusion operation.

VI. CONCLUSIONS

In this study, a distributed track fusion methodology is

proposed for tracks represented by Gaussian mixtures. The

unknown correlation between the tracks is accounted for by

adopting the correlation independent methodology of Chernoff

fusion to avoid double counting a.k.a. rumor propagation. For

Chernoff fusion a method recently proposed in the literature is

adapted to the IMM framework. The results show that making

track fusion with Gaussian mixtures instead of moment-

matched single Gaussian densities can yield a moderate ad-

vantage in a 2D tracking scenario.
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