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Abstract - For linear-Gaussian non-deterministic dynamics, 

that is, systems with non-zero process noise, it is well known 

that tracklet fusion based on equivalent measurement is 

optimal only for full communication rate, i.e., if the local 

posterior probabilities or estimates are communicated and 

fused after each observation and update time. Despite this 

constraint, tracklet fusion has become very popular because 

it performs well in many real world problems even when 

communication is not at full rate. By including local state 

estimates at multiple times, augmented state (AS) tracklet 

fusion computes the optimal global estimate despite this 

communication constraint. A similar method with this 

property is distributed accumulated state density (DASD) 

fusion, which computes decorrelated local pseudo estimates 

by means of a relaxed evolution model. This paper 

compares these two methods by examining their underlying 

principles. Numerical results compare their performance 

and also with that of a centralized Kalman filter. The results 

show that they have many properties such as the estimation 

accuracy in common despite their different derivations. 

 

Keywords: Track fusion, tracklet fusion, augmented state, 

accumulated state density, centralized Kalman filter, 

distributed Kalman filter. 

 

1 Introduction 

Multiple sensors can provide better estimation performance 

because each additional sensor contributes more information. 

Centralized fusion of the measurements from all sensors at a 

single node is theoretically optimal because the information in 

the measurements is not degraded by any intermediate 

processing. However, centralized fusion is not always feasible 

when communication bandwidth is limited. Thus many 

systems use a distributed estimation or fusion architecture 

where the individual sensors process their measurements to 

generate local estimates and error covariances, which are then 

sent to a fusion node to be combined into global state 

estimates and estimation error covariances. 

In most distributed estimation or fusion systems, the local 

estimates that are fused are optimal state estimates given the 

local sensor measurements and computed using only local 

sensor model information [1]. Since the local estimation 

errors are not independent, fusion algorithms have to address 

this cross sensor dependence or correlation. Some fusion 

algorithms address dependences that can be characterized by 

cross-sensor covariances of the local estimation errors. 

Examples include maximum likelihood estimate [2] [3], best 

linear unbiased estimate (BLUE) [4] [5], and minimum 

variance (MV) estimate [6] [7]. Since cross-covariances are 

used in fusion, the local sensor models have to be 

communicated to the fusion site along with the local 

estimates. Furthermore, the fused estimate may not be 

globally optimal because it is only the best estimate given the 

local estimates characterized by local and cross-sensor 

estimation error covariances. 

A popular approach for distributed fusion is tracklet fusion 

or tracklet, equivalent-measurement, or channel-filter fusion, 

[8]–[10]. A tracklet uses the current and predicted local 

estimates to find the new information received since the last 

fusion time. However, tracklet fusion does not generate the 

optimal global estimate when process noise is present and the 

fusion rate is lower than the sensor observation rate. 

Optimality can be regained if the state is augmented to be the 

entire state trajectory for all observation times since the most 

recent fusion [11]–[14]. In particular, [14] shows that the 

centralized Kalman filter (CKF) estimate can be obtained 

even when the augmented state includes only the states of the 

most recent two or three time instants. This augmented state is 

equivalent to the accumulated state density (ASD) used for 

exact memoryless track fusion [15]–[17]. 

Even though augmented state (AS) tracklet fusion and 

distributed accumulated state density (DASD) fusion are both 

optimal in computing the CKF estimate, the local 

computations are different. In particular, the augmented state 

estimate is the best estimate given the local measurements. On 

the other hand, the local ASD estimate is non-optimal on a 

local perspective because the prediction step uses a relaxed 

evolution model. 

The difference in the equations is due to the different forms 

of fusion equations. The convex combination fusion equation 

in DASD requires a relaxed evolution model in local 

processing. Thus, the local estimate is not the best estimates 

given the local data. On the other hand, augmented tracklet 
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fusion is a natural generalization of the usual tracklet fusion 

by using augmented state to restore conditional independence 

of the tracklet measurements given the state. Thus, the local 

estimates are equivalent to the optimal estimates given the 

local data. 

This paper compares the two fusion methods that use 

augmented state estimates. We discuss the difference in the 

derivations that result in different local processing and 

different global fusion algorithms. We also compare their 

performance by means of simulation experiments. Our goal is 

to understand the similarities and differences in the two 

methods. This may allow us to develop a method that has the 

best features of both approaches. 

The rest of this paper is structured as follows. Section II 

presents the track fusion problem. Section III reviews the 

distributed accumulated state density (DASD) filter fusion. 

Section IV provides a similar review of augmented state 

fusion. Section V describes the simulation experiment, and 

Section VI presents the results. Section VII contains the 

conclusions. 

 

2 Track Fusion Problem 

This section presents the target and sensor models for the 

tracking problem and a track fusion architecture. Even though 

we call the problem track fusion, the results are applicable to 

general distributed estimation problems when the state is not 

that of a moving target. 

2.1 State and Measurement Models 

The state to be estimated is modeled by the linear system 

 
1k k k k k

x F x G w
+
= +  (1) 

where n

k
x R∈  is the state at time 

k
t  with 0,1, 2,...k = , 

k
F  

and 
k
G  are matrices representing the system dynamics, and 

k
w  is a zero-mean Gaussian white random process with 

covariance kQ . 

We assume that the state is observed by S  sensors with 

 s s s

k k k k
z H x v= +  (2) 

for 1,...,s S= , and 1,2,....k = , where s

k
z  is the measurement 

of the s -th sensor at time 
k
t , s

k
H  is the measurement matrix, 

and s

k
v  is a zero-mean white noise process with covariance 

s

k
R . The measurement noises are assumed to be independent 

with each other and the process noise. The initial state 
0
x  is 

independent of the noises with mean 
0
x  and covariance 

0
P . 

For simplicity, we assume synchronous observations by all 

sensors but the results can be generalized to non-synchronous 

measurements with appropriate modifications of the 

algorithms. 

2.2 Fusion Architecture 

Define the cumulative measurements of sensor s  to be 

1( )s s l

l j jZ z
=

= . Let 
|

s

k l
x  and 

|

s

k l
P  be the optimal (local) estimate 

of 
k
x  and its error covariance given s

l
Z . Local Kalman 

filtering at sensor s consists of the following prediction and 

update steps. 

 

 

Prediction 

 
| 1 1 1| 1

s s

k k k k k
x F x

− − − −
=  (3) 

 
| 1 1 | 1 1 1 1 1

s s T T

k k k k k k k k kP F P F G Q G
− − − − − − −
= +  (4) 

Update 

 
1 1

| | | 1 | 1( ) ( )s s s s s

k k k k k k k k k
P x P x i

− −

− −
= +  (5) 

 
1 1

| | 1( ) ( )s s s

k k k k k
P P I

− −

−
= +  (6) 

with initial conditions 
0|0

s
x  and 

0|0

s
P , i

k

s
! (H

k

s )T (R
k

s )−1 z
k

s
, and 

I
k

s
! (H

k

s )T (R
k

s )−1H
k

s
. Each local processor only knows its own 

sensor model. 

At the fusion time 
K
t , each local processor communicates 

some local estimate and its error covariance to the fusion site. 

When fusion takes place after each sensor observation, i.e., 

1K K= + , where 
K
t  is the last fusion time, then 

communicating the local estimates 
|

s

K K
x  and error 

covariances
|

s

K K
P  is sufficient for reconstruction of the 

optimal CKF estimate after fusion. This is the standard 

tracklet fusion method. When 1K K− > , the local processors 

have to communicate augmented state estimates for the fusion 

site to reconstruct the CKF estimates. The following two 

sections discuss two different methods of computing the local 

augmented state estimates and the fusion algorithms.  

In discussing augmented state estimation, it is convenient to 

define Z
k:l

s
! (z

j

s )
j=l

k
 as the sensor s  measurements from 

l
t  to 

k
t , Z

k:l
! (Z

k:l

s )
s=1

S
 as all measurements from 

l
t  to 

k
t , and 

Z
k
! (Z

k

s )
s=1

S
 as all cumulative measurements. 

3 Distributed Accumulated State Density 

(DASD) 

The DASD filter is a distributed, memoryless filter [17], 

which means that the fusion center does not fuse the received 

data to update a central track but combines them without 

using the central track. The result is the global estimate, which 

is not required for future fusion steps. Similar to the 

Distributed Kalman Filter [18], the idea of the DASD is to 

obtain a product representation of the fused posterior density. 

In contrast to the DKF, the DASD requires larger 

communication bandwidths as the transmitted parameters are 

rather high dimensional. However, in contrast to the DKF, the 
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local ASD computation does not require knowledge of all 

measurement models except for the number of sensors. 

3.1 Underlying Principle of Approach 

Let 
:
[ ,......., ]
T T T

k l k l
X x x=  be the augmented state from 

l
t  to 

k
t  with k l> . We present the approach for the general 

problem of computing 
:( | )k l kp X Z , the conditional 

probability density of 
:k l

X  given 
k
Z  in terms of some pseudo 

conditional probability densities 
:( | )sk l kp X Z! . From Bayes 

rule, we have 

 1

: : : : 1( | ) ( | ) ( | )k l k k l k l k l lp X Z C p Z X p X Z−

−
=   (7) 

where C  is a normalizing constant. Since the sensor 

measurements 
:

s

k l
Z  for the S  sensors are conditionally 

independent given the augmented state 
:k l

X , (7) becomes 

 1

: : : : 1

1

( | ) ( | ) ( | )
S

s

k l k k l k l k l l

s

p X Z C p Z X p X Z−
−

=

 
=  

 
∏   (8) 

Define !p(X
k:l
| Z

l−1
)  so that 

 p(X
k:l
| Z

l−1
) = !p(X

k:l
| Z

l−1
)( )
S

  (9) 

Then (8) becomes  

 p(X
k:l
| Z

k
) =C−1

!p(X
k:l
| Z

k

s )
s=1

S

∏   (10) 

with 

  !p(X
k:l
| Z

k

s ) =C
s

−1p(Z
k:l

s | X
k:l
) !p(X

k:l
| Z

l−1
)  (11) 

The probability !p(X
k:l
| Z

k

s )  is not necessarily the true 

conditional probability of 
:k l

X  given the local measurements 

s

k
Z  because (11) uses !p(X

k:l
| Z

l−1
)  instead of 

: 1( | )k l lp X Z
−

.  

When the probability densities are Gaussian, (10) becomes  

a convex combinations of the local estimates and information 

matrices, and (11) becomes the local processing equations for 

ASD. Equation (9) leads to the relaxed evolution model. 

3.2 Local Processing and Fusion Equations 

The derivations for the following equations can be found in 

[17]. 

 

3.2.1 Local processing 

Let 
: |

s

k l k
X  and 

: |

s

k l k
P  be the mean and covariance of 

!p(X
k:l
| Z

k

s ) , and 
: | 1

s

k l k
X

−
 and 

: | 1

s

k l k−
P  be the mean and 

covariance of !p(X
k:l
| Z

k−1

s ) . These are not the local optimal 

estimates and their error covariances since from (11), the 

DASD filter only computes pseudo estimates at the sensor 

platforms. Then local processing consists of the following 

prediction and update steps.  

 

Prediction 

  1 1| 1

: | 1

1: | 1

s

k k ks

k l k s

k l k

F x
X

X

− − −
−

− −

 
=  
  

  (12) 

 1 1| 1 1 1 1 1 1 1: | 1

: | 1

1: | 1 1 1: | 1

s T T s

k k k k k k k k k l ks

k l k s T s

k l k k k l k

F P F SG Q G− − − − − − − − − −
−

− − − − −

 +
=  
  

F P
P

P F P
 (13) 

where 
1 1 ( 2 )0

k k n n k l
F− − × − −
 =  F and the initial conditions are 

| |

s s

l l l l
X x=  and 

| | .
s s

l l l l
SP=P  

 

Update 

For local information parameters representing the 

measurement z
k

s
,  the update formulas are given by  

 
1 1

: | : | : | 1 : | 1( ) ( )s s s s s

k l k k l k k l k k l k k k
X X J i

− −

− −
= +P P   (14)  

 
1 1

: | : | 1( ) ( )s s s T

k l k k l k k k k
J I J

− −

−
= +P P   (15) 

where  
( 1)[ ,0 ]T

k n n n k l
J I

× − −
=  is a ( )n k l n− ×  matrix that 

selects the 
k
x  in 

k
X  to generate the measurement s

k
z . 

 

3.2.2 Communication 

At the fusion time 
K
t , each local node sends the pseudo 

estimate 
: |

s

K l K
X   and pseudo error covariance 

: |

s

K l K
P  to the 

fusion node. 

 

3.2.3 Fusion processing 

The global estimate 
: |K l K

X  and error covariance 
: |K l K

P  are 

obtained by the following fusion equations 

 

1 1

: | : | : | : |

1

( )
S

s s

K l K K l K K l K K l K

s

X X
− −

=

=∑P P

 (16) 

 
1 1

: | : |

1

( )
S

s

K l K K l K

s

− −

=

=∑P P  (17) 

4 Augmented State Track Fusion 

When the communication (and fusion) rate is lower than the 

observation rate, the new measurements 
: 1

s

K K
Z

+
 collected by 

the sensors since the last fusion time are no longer 

conditionally independent given the state at a single time 

because of the common process noise. Thus equivalent 

measurement or tracklet fusion no longer produces the 

optimal global estimate. However, the measurements 
: 1

s

K K
Z

+
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for the S  sensors are conditionally independent given the 

augmented state 
: 1K K

X
+

. This conditional independence 

motivates the augmented state fusion algorithm, which is 

similar but not the same as the DASD fusion algorithm 

presented in Section III. 

4.1 Underlying Principle of Approach 

Let 
K
t  and 

K
t  be the current and last fusion times. Then 

 1

: 1 : 1 : 1 : 1
( | ) ( | ) ( | )

KK K K K K K K K K
p X Z C p Z X p X Z

−

+ + + +
=   (18) 

where C  is a normalizing constant. Since the sensor 

measurements 
: 1

s

K K
Z

+
 for the S  sensors are conditionally 

independent give the augmented state 
: 1K K

X
+

, (18) becomes 

1

: 1 : 1 : 1 : 1
1

( | ) ( | ) ( | )
S

s

KK K K K K K K K K

s

p X Z C p Z X p X Z
−

+ + + +

=

 
=  

 
∏

(19)  

The likelihood 
: 1 : 1

( | )s

K K K K
p Z X

+ +
 represents the new 

information on the augmented state received by sensor s  

since 
K
t  and can be computed from the local conditional 

probabilities by 

 
: 1 : 1 : 1 : 1

( | ) ( | ) / ( | )s s s

s KK K K K K K K K K
p Z X C p X Z p X Z

+ + + +
=  (20) 

Equation (19) is the fusion equation that combines the 

conditional probability density at the last fusion time with the 

local likelihoods of the individual sensors. These likelihoods 

represent the new information in the tracklet of measurements 

received since the last fusion time and can be computed from 

true local conditional probabilities densities. When the 

probability densities are Gaussian, (19) and (20) become the 

augmented state (AS) tracklet fusion equations. 

The difference between DADS and AS tracklet fusion is 

that DASD forces the fused conditional probability density 

into a product of local conditional probability densities (10) 

when conditional dependence does not support the 

factorization. On the other hand, AS fusion decomposes the 

fused conditional probability into products of local likelihoods 

and the conditional probability after the last fusion. 

4.2 Local Processing and Fusion Equations 

 

4.2.1 Local processing 

 
The local processor performs the prediction and update 

functions to estimate the local state and its error covariance. 

In addition, it also computes
| | 1|
[( ) ,.., ( ) ]s s T s T T

k k k k K k
X x x

+
= , the 

estimate of the augmented state vector 
: 1k K

X
+

 given the 

measurements s

k
Z , and 

|

s

k k
P , its error covariance by the 

following equations. 

 

Prediction 

 1 1| 1

| 1

1| 1

s

k k ks

k k s

k k

F x
X

X

− − −
−

− −

 
=  
  

  (21) 

 | 1 1 1| 1

| 1

1| 1 1 1| 1

s s

k k k k ks

k k s T s

k k k k k

P − − − −
−

− − − − −

 
=  
  

F P
P

P F P

  (22) 

where 
1 1 ( 2 )

0
k k n n k K

F− − × − −
 =  F and the initial conditions are 

| |

s s

K K K K
X x=  and 

| |
.s s

K K K K
P=P  

 

Update 

 
1 1

| | | 1 | 1( ) ( )s s s s s

k k k k k k k k k k
X X J i

− −

− −
= +P P   (23)  

 
1 1

| | 1( ) ( )s s s T

k k k k k k k
J I J

− −

−
= +P P   (24) 

where  
( 1)

[ ,0 ]T
k n n n k K
J I

× − −
=  is a ( )n k K n− ×  matrix that 

selects the 
k
x  in 

k
X  to generate the measurement s

k
z . 

Note that local processing only uses the local sensor model. 

This is different from DASD local processing that uses a 

relaxed evolution model with explicit dependence on the 

number of sensors. These local estimates and error 

covariances are optimal or exact given the local 

measurements. 

 

4.2.2 Communication 

At the fusion time 
K
t , each local node s  sends its  

augmented state estimate 
|

s

K K
X  ( ( )n K K−  vector) and error 

covariance 
|

s

K K
P  ( ( ) ( )n K K n K K− × −  matrix) to the fusion 

node. 

 

4.2.3 Fusion processing 

The fusion node computes recursively the predictions 
|

s

K K
X  

and 
|

s

K K
P  for sensor s  using the following equations 

 
1 1|

|

1|

s

k k Ks

k K s

k K

F x
X

X

− −

−

 
=  
  

  (25) 

 
1 1 1 1 1 11| 1|

|

11| 1|

s T T s

k k k k k kk K k Ks

k K s T s

kk K k K

F P F G Q G− − − − − −− −

−− −

 +
=  
  

F P

P

P F P

  (26) 

with initial conditions 
|

s

K K
X  and 

|

s

K K
P  received at the last 

communication time. It also computes 
|K K

X  and 
|K K

P  from 

the last fused estimate 
|K K

X  and error covariance 
|K K

P  using 

similar equations. 
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The global estimate 
| | 1|

[ ,.., ]T T T

K K K K K K
X x x

+
=  of the 

augmented state and its error covariance 
|k kP  are given by 

( )1 1 1 1

| | | || | | |
1

( ) ( )
S

s s s s

K K K K K K K KK K K K K K K K

s

X X X X
− − − −

=

= + −∑P P P P   

  (27) 

 ( )1 1 1 1

| || |
1

( ) ( )
S

s s

K K K KK K K K

s

− − − −

=

= + −∑P P P P  (28) 

The global estimate
|K Kx  and error covariance 

|K KP  can be 

extracted from the augmented estimate and error covariance.  

The augmented state fusion algorithm computes the optimal 

global estimate when the number of states equals the number 

of observations for all sensors between fusion times (note the 

difficulty for non-synchronous observations). Reducing the 

length or dimension of the augmented state produces a 

suboptimal global estimate but requires less communication 

bandwidth. It is shown in [14] that augmented state with a 

very short length such as 2 has performance similar to full 

augmented state under some conditions. 

5 Simulation Experiment 

We use the following simulation to compare the 

performance of the fusion algorithms. 

5.1 Target Model 

The target moves according to the 2 dimensional Ornstein-

Uhlenbeck model used in [14] with the process noise intensity 
2

2
VEL

q βσ=  and 

 F
k
! exp A∆t( );  A !

0 I
2

0 −β I
2















  (29) 

 G
k
Q
k
G
k

T
! e

Aτ 0 0

0 qI
2















0

∆t

∫ e
A
Tτ
dτ   (30) 

The initial condition at 
0
t  is 2 2

0 2 2diag[ , ]
POS VEL

P I Iσ σ= . 

5.2 Measurement Model 

Five sensors observe the position of the target, i.e., 

2 2 2
[ , 0 ]

s

k
H I

×
=  for s =1, 2,...,5  at time 

k
t  with 

1k k
t t t
+
− = ∆ . 

 Communication and fusion take place at times 
1 2
K K
t t< <!  , 

with K
!+1
− K

!
" ∆K , when each sensor sends its local 

estimate and error covariance for processing. 

The nominal simulation parameters are: 1t∆ = , 10
POS

σ = , 

σ 2

VEL
=100 , β = 0 , q=1.0 , and the covariance of the 

measurement noise of all sensors is given by 

R
s
=

100 10

10 100









 . 

The total number of scans is 50.  

6 Simulation Results 

We evaluate the performance of the AS tracklet fusion, the 

distributed ASD, and a centralized Kalman filter (CKF). The 

scope of the evaluation is on communication issues. Thus, we 

consider six different scenarios in which the communication 

or other parameters differ. The figures plot the root mean 

square position error (RMSE) of 100 Monte Carlo simulations 

as a function of time. 

6.1 Scenario 1. Perfect Communication. 

The term “perfect communication” refers to a high 

bandwidth setup where all sensors are able to transmit their 

local data at each instant of time. Thus in Scenario 1, all 

sensors transmit their measurements at each time step to the 

fusion center. The fusion center then computes the global 

estimate by the three fusion methods. 
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Fig. 1: Performance for perfect communication 

 
As expected, Fig. 1 shows that CKF, DASD, and AS 

tracklet fusion produce the same results. 

6.2 Scenario 2. Batch Communication. 

In Scenario 2, all sensors keep their local data until the very 

last time step at 50s. Then, they transmit the batch containing 

measurements, ASD estimates, or augmented state estimates 

to the fusion center.  
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Fig. 2: Performance for batch communication 

 
In Fig. 2, the RMSE results are computed from the 

smoothed estimates at time 50s. Thus they are smaller than 

those in Fig. 1. CKF, DASD, and AS tracklet fusion all have 

the same performance. 

6.3 Scenario 3. Frequent Communication. 

In Scenario 3, all sensors are able to transmit their local data 

at every n-th time step, where n = 10. The data transmitted 

refers to the complete lag.  
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Fig. 3: Performance for frequent communication 

 
The CKF results in Fig. 3 are the filter estimates and the 

DASD and AS fused estimates are smoothed after each fusion 

time. Thus CKF has larger RMSE than DASD and AS tracklet 

fusion estimates between fusion times.  
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Fig. 4: Performance for frequent communication with smoothing by CKF. 

 
As expected, Figure 4 shows that the smoothed estimates of 

CKF have smaller RMSE than the fused augmented state 

estimates. 

6.4 Scenario 4. Random Losses. 

In this scenario, the sensors try to send the data of a single 

time step after each update. However, three out of the five 

sensors fail to transmit successfully, so that only the data of 

two sensors will be received by the fusion center. The sensor 

indices of the transmission losses are permutated randomly.  
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Fig. 5: Performance for communication with random loss 

 
Since the sensor index of a communication failure is 

random, the augmented state estimate may contain more 

information than the measurement of a single time step. If 

some previous transmissions of sensor s  have failed, the 

augmented state still contains information from measurements 

that are communicated. Thus DASD and AS tracklet fusion 

perform better than CKF in Fig. 5. 
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6.5 Scenario 5. Mismatched Number of 

Sensors. 

Since local processing in the DASD algorithm depends on 

the number of sensors S, this scenario evaluates the effect of a 

model mismatch in the number of sensors. The real number of 

sensors is two but both local ASD processing and global 

fusion assume the number of sensors to be 500. Fig. 6 shows 

the results when the both local ASD processing and fusion 

have the same prior. More specifically, the priors are: 

Sensor 1 and Sensor 2 ASD for s = 1,2:   

x
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Fusion Center ASD for l = 1,…,500: 
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
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
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
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
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Fusion is performed only at time 50s. It turns out that the 

DASD fusion center can compensate this model mismatch 

when it assumes the same number of sensors as local ASD 

processing and has the same prior. This can be explained as 

follows. When the fusion center of the DASD does not 

receive the ASD of a sensor, it predicts the ADS from the 

previous transmission. If there was never any transmission, as 

when the number of assumed sensors is larger than the true 

number, the prior is used to make the prediction. When both 

the fusion center and the local ASD processing have the same 

prior, the sensor number mismatch has no effect on the fusion 

equation. This can be seen from (8) to (11) of Section III A. 

The fusion center of the DASD computes the estimate under 

the assumption that the fictitious sensors never had any 

detection. Fig. 6 shows that the optimal estimate can be 

recovered despite the mismatch. 
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Fig. 6: RMSE for mismatched number of sensors. The DASD fusion center 

can compensate the mismatch by means of a common prior. 

 

Since the assumption of a common prior is not always 

satisfied, we consider a different scenario when local ASD 

processing and fusion assume the same incorrect number of 

sensors but the fusion center is not aware of an initial prior. 

As a consequence the fusion center cannot predict the 

fictitious estimates and only relies on the transmissions. 

This is the case of a model match between local ASD 

processing and fusion processing. Figure 7 shows that DASD 

fusion has degraded performance as compared to CKF or 

augmented state tracklet fusion. 
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Fig. 7: RMSE for mismatched number of sensors. The DASD fusion center 

and local processing have different priors. 

 

6.6 Scenario 6. Communication Outage  

Communication links in real applications often cannot be 

assumed to be stable and reliable during the complete tracking 

process. In this scenario, the communication breaks down for 

ten time steps after 10s and after 30s again.  
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Fig 8: Performance for communication outages. 

 
Fig. 8 shows that all fusion methods have the same 

performance. 
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7 Conclusions 

We review two fusion methods that use augmented state 

estimates involving the states at multiple times. Although the 

local processing and fusion equations are different, both 

methods compute the optimal CKF estimate when the target 

dynamics involves non-zero process noise and the fusion rate 

is lower than the sensor observation rate. The difference in the 

equations is due to the different derivations required to obtain 

the fusion equations.  

Simulation results show that both methods have good 

performance as compared to CKF. In particular augmented 

state tracklet fusion has the same performance as CKF at the 

fusion times. When there is a mismatch in the number of 

sensors, DASD fusion computes the optimal estimate when 

both fusion and local processing assume the same number of 

sensors and same prior. When they have different priors, 

performance degradation is observed. 

Since DASD and augmented state tracklet fusion has 

similar performance, and [14] shows that augmented states 

with very short lengths are adequate for most fusion problems, 

either methods can be used for track fusion. However, track 

association performance can be improved significantly by 

using augmented state estimates of the tracks [19]. Since these 

are true estimates computed by the local augmented state 

estimation equations, augmented state tracklet fusion may be 

a better approach for track fusion than DASD fusion.  
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