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Abstract - Track association has not received as much 

attention as track fusion in distributed multi-sensor multi-

target tracking, especially for targets whose motion 

models involve process noise. One exception is an 

association metric that uses the cross-covariance of the 

track state estimates at a single time. For track fusion, it 

has been shown that the centralized state estimate can be 

obtained by fusion of augmented state estimates 

consisting of state estimates at multiple times. Association 

using augmented state estimates is even more natural 

because the association likelihood should consider the 

entire state trajectory of a track, and not just the estimates 

at the last time. Starting with a general association 

likelihood function, we show that augmented states allow 

exact evaluation of the track association likelihood. For 

problems involving Gaussian densities, the association 

metric is the standard Mahalanobis or chi-square metric 

with the single time state estimate replaced by the 

augmented state estimate. Simulations compare the 

performance of association using augmented state 

estimates of different lengths and the method using cross-

covariances. Results demonstrate excellent performance 

for augmented state association even when the full 

augmented state is not used and filtered estimates instead 

of smoothed estimates are used. 

 

Keywords: association likelihood, augmented state 

estimates, cross-covariance association, non-zero process 

noise, track association, track fusion 

 

1 Introduction 

In multi-sensor multi-target tracking, a centralized 

processing architecture can produce the best performance 

because the processing site can utilize all the sensor 

measurements without loss of information due to 

intermediate processing. However, centralized processing is 

not always practical because communicating measurements 

require high communication bandwidth. Thus, most real 

world tracking systems utilize a hierarchical or distributed 

architecture with local tracking at the sensors and 

processing of tracks from multiple sensors at a fusion site 

[1], [2].  

In a distributed tracking architecture, the fusion site has to 

perform two main functions. The first function is 

associating local tracks from the sensors to form global 

tracks corresponding to the same targets. The second 

function is fusing the state estimates for the associated local 

tracks to form estimates of the global tracks. 

The first function is frequently called track fusion even 

though strictly speaking track fusion should include both 

track association and track state estimate fusion. Fusing 

track state estimates is more challenging than fusing sensor 

measurements because the state estimation errors may be 

dependent due to past communication or common process 

noise. An overview of available track fusion techniques can 

be found in [3], [4]. The most common approach [5]–[7], 

frequently called tracklet fusion or equivalent measurement, 

uses the current and predicted local estimates to find the 

new information received since the last fusion time. 

However, it does not generate the optimal global estimate 

when process noise is present and the fusion rate is lower 

than the sensor observation rate. Optimality can be regained 

if the state is augmented to be the entire state trajectory for 

all observation times since the most recent fusion [8]–[10]. 

Reference [11] contains the detailed equations for tracklet 

fusion with augmented state and shows that an augmented 

state with very short length, e.g., at the last two or three 

times, produces almost optimal results. 

Other track fusion algorithms address dependence that 

can be characterized by cross-sensor covariances of the 

local estimation errors. Examples include maximum 

likelihood estimate [12], [13], best linear unbiased estimate 

(BLUE) [14], [15], and minimum variance (MV) estimate 

[16], [17]. These approaches require computation and 

communication of cross covariances and the fused estimate 

may not be globally optimal because it is only the best 

estimate given the local estimates characterized by local and 

cross-sensor estimation error covariances. 

Track association has to address the same dependence 

issues in the local tracks. In particular, computation of the 

association likelihood or metric between two tracks has to 

account for the dependence in the track state estimation 

errors. As compared with track fusion, little has been 

published on association for tracks with dependent state 

estimation errors. Reference [18] uses the cross-covariance 

of [12] to compute the association metric between two 

tracks. 

Association using augmented state estimates is intuitive 

because association should consider the track state estimates 

at multiple times and not just the most recent state 

estimates. It was suggested in [19] and further developed in 

[20]. Performance evaluation in [16], [3], [4] shows much 

better performance than association with state estimates at a 

single time, even when cross-covariance is used. Despite 
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good performance of association with augmented state 

estimates, it has not received much attention because 

communicating the full augment state estimates may not be 

practical. 

There is resurgent interest in augmented state estimation 

because efficient algorithms have been developed to 

compute the augmented state estimate and its covariance. 

Furthermore, accumulated state density (ASD), which is 

another name for augmented state, can be used in estimation 

problems such as out of sequence measurement processing 

[21]. In [11], [22], it is shown that augmented state fusion 

can produce an estimate that is almost optimal for very short 

state lengths.  

This paper provides a review of track association with 

augmented state estimates and evaluates its performance for 

different track lengths and sampling times. We will develop 

the augmented state association metric for a general 

problem and the specific equations for the Gaussian case. 

The numerical examples will show that good association 

performance can be obtained without using the full 

augmented state. Furthermore, performance degradation is 

minimal when filtered estimates are used instead of 

smoothed estimates. 

The rest of this paper is structured as follows. Section 2 

presents the track association problem and a general form 

for the track association likelihood. Section 3 reviews 

augmented state estimation for Gaussian problems. Section 

4 derives the association metric using augmented states and 

presents the cross-covariance association metric that will be 

used for comparison. Section 5 presents numerical results 

that demonstrate the performance of association with 

augmented state estimates. Section 6 contains conclusions. 

2 Association problem and solution 

Track association is the first step in distributed multi-

sensor multi-target tracking. The local tracks from the 

individual sensors have to be associated to form global 

tracks before their state estimates can be fused to compute 

the state estimates of the global tracks. 

2.1 Track association problem 

For simplicity, we consider a multi-target tracking 

problem with two sensors. Each sensor observes the target 

states and processes the measurements to generate tracks 

with state estimates. Each track consists of a sequence of 

measurements hypothesized to be from the same target, so 

that 
1

iτ , track i  from sensor 1, has measurements 

1 1

1( )i i K

k kZ z == , and 2

jτ , track j  from sensor 2, has 

measurements 2 2

1( )j j K

k kZ z == . The measurements 1i

kz  and 

2 j

kz  are collected at synchronous times , 1,...,
k

t k K= , but 

this assumption can be removed without much difficulty. 

Given a track, the probability densities of the state at any 

time or the state estimates and error covariances can be 

computed from the associated measurements. 

We assume that the measurements in each track are 

correctly associated with a target. The track association 

problem or track-to-track association problem for two 

sensors is to find the pairs of tracks 
1 2( , )i jτ τ  that originate 

from the same targets. 

2.2 Maximum a posteriori probability 

association 

The best association hypothesis can be found as the 

hypothesis that maximizes the posterior probability of the 

association hypothesis. The general form for the probability 

is first introduced in [19] and generalized in [23]. In this 

paper, we assume perfect detection with no false alarms. 

Thus, for n  targets, the two sensors will produce two sets 

of tracks 
1

1( )
n

i i
τ =  and 

2

1( )n

j jτ = . We further assume that n , the 

number of targets, is a Poisson random variable, and that the 

target states are modeled as independent identically 

distributed random processes. The measurements 
si

k
z  are 

conditionally independent given the target state 
i

k
x . 

The association hypothesis is a permutation a  on the set 

{1,..., }n  that maps a track of sensor 1 to a track of sensor 2. 

It can be shown that the posterior probability of the 

association hypothesis a  is given by 

 
1

1

( ) ( , ( ))
n

i

p a C l i a i
−

=

= ∏   (1) 

where C  is a normalizing constant and ( , )l i j  is the 

likelihood of associating 
1

i
τ  and 

2

jτ  with the same target. 

Furthermore, the track association likelihood can be 

expressed as 

 
1 2

( , ) ( , )
i j

l i j p Z Z=   (2) 

The best association hypothesis can be found as the 

permutation â  that maximizes the probability ( )p a  in (1). 

If we define the track association metric ( , )L i j  as 

 ( , ) ln ( , )L i j l i j=   (3) 

then the best association hypothesis is found by minimizing 

the association cost  

 
1

( ) ( , ( ))
n

i

J a L i a i
=

=∑   (4) 

This is a bipartite assignment problem that can be solved by 

many efficient algorithms [24], [25]. 

2.3 Track association likelihood 

The key to track association is computing the track 

association likelihood ( , )l i j  given two tracks 
1

i
τ  and 

2

jτ . 

Let x  be a random “state” of the target that causes 1iZ  and 
2 jZ  to be conditionally independent given x , i.e.,  
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1 2 1 2

( , | ) ( | ) ( | )
i j i j

p Z Z x p Z x p Z x=   (5) 

Then,  

 

1 2 1 2

1 2

1 2
1 2

( , ) ( , | ) ( )

( | ) ( | ) ( )

( | ) ( | )
( ) ( )

( )

i j i j

i j

i j
i j

p Z Z p Z Z x p x dx

p Z x p Z x p x dx

p x Z p x Z
p Z p Z dx

p x

=

=

=

∫
∫

∫
  (6) 

According to (6), the likelihood of associating two tracks 

depends on the similarity between the conditional 

probability densities of the target “state” for the two tracks. 

In fact the integral in (6) is the normalizing constant for 

computing the conditional probability of the “state” x  

given the combined measurements 
1 2

( , )
i j

Z Z , i.e.,  

 
1 2 1 2

1 2

1 2

( ) ( ) ( | ) ( | )
( | , )

( )( , )

i j i j
i j

i j

p Z p Z p x Z p x Z
p x Z Z

p xp Z Z
=  (7) 

Thus track association likelihood calculation and distributed 

estimation [26] are closely related. Since the terms 
1 2( ) ( )i jp Z p Z  in (6) do not affect the overall optimization 

problem, they can be left out in the track association 
likelihood computation. 

For deterministic target dynamics, when there is no 

process noise, the target state Kx  at the last measurement 

time Kt  satisfies the conditional independence assumption 

(5). Thus, the track association likelihood can be computed 

from the conditional probability densities ( | )si

Kp x Z , 

1, 2s = , 1,..,i n= , i.e., 

 

1 2
1 2 ( | ) ( | )

( , ) ( ) ( )
( )

i j
i j K K

K

K

p x Z p x Z
l i j p Z p Z dx

p x
= ∫

 (8) 

For non-deterministic dynamics, when the process noise 

is non-zero, the cumulative measurements siZ , 1, 2s = , 

1,..,i n= , are no longer conditionally independent given 

Kx . However, they are conditionally independent given the 

augmented state 1( )K

K k kX x == , consisting of the target 

states at all measurement times. Thus, the track association 

likelihood is computed as 

 

1 2
1 2 ( | ) ( | )

( , ) ( ) ( )
( )

i j
i j K K

K

K

p X Z p X Z
l i j p Z p Z dX

p X
= ∫

 (9) 

where ( | )si

Kp X Z  is the posterior density of the augmented 

state KX . 

3 Association for Gaussian problems  

Since the track association likelihoods in Section II are 

developed for general target and sensor models, their 

computation requires integrals on probability densities. The 

computation can be simplified significantly if the 

probabilities are Gaussian. Let ( )p x , 1( | )ip x Z , and 

2( | )jp x Z  be Gaussians with means x , 
1̂ix , and 

2
ˆ

jx , and 

covariances P , 
1iP , and 

2 jP . 

3.1 Metric of similarity with fused estimate 

This section sketches the derivation of the metric that is 

introduced in [3], [4], [16], [19] without derivation. Let 
1 2( | , )i jp x Z Z  be a Gaussian density with mean ˆ

Fx  and 

covariance FP . From (6) and (7), 

 

1 1
1 2

1 1

1 2 1 2

1 2

1 2

1 2

1/2

1 2

2 2

1 2

2 2

( | ) ( | ) ( , )

( ) ( ) ( )

( | ) ( | )

( ) ( | , )

| || |

| || |

ˆ ˆ|| || || ||
exp( 1/ 2)

ˆ|| || || ||

i j

F

i j i j

i j

i j

i j

F

i j

i jP P

F P P

p x Z p x Z p Z Z
dx

p x p Z p Z

p x Z p x Z

p x p x Z Z

P P

P P

x x x x

x x x x

− −

− −

=

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞− + − −⎜ ⎟− ⎜ ⎟− − −⎝ ⎠

∫

  (10) 

If we set  

 

 
1 1

ˆ ˆ ˆ ˆ( ) ( )
i F F i

x x x x x x− = − + −  (11) 

 
2 2

ˆ ˆ ˆ ˆ( ) ( )
j F F j

x x x x x x− = − + −   (12) 

 ˆ ˆ( ) ( )
F F

x x x x x x− = − + −   (13) 

 
and use the fusion equations [26] 

 
1 1 1 1

1 2F i jP P P P− − − −= + −   (14) 

 
1 1 1 1

1 1 2 2
ˆ ˆ ˆ

F F i i j jP x P x P x P x− − − −= + −   (15) 

then (10) becomes 

 
1 1

1 2

1

1/ 2
1 2

1 2

2 2

1 2

2

| || |( | ) ( | )

( ) | || |

ˆ ˆ ˆ ˆ|| || || ||
exp( 1/ 2)

ˆ|| ||

i j

i j

F

i j

F i F jP P

F P

P Pp x Z p x Z
dx

p x P P

x x x x

x x

− −

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞− + − −⎜ ⎟− ⎜ ⎟−⎝ ⎠

∫
  (16) 
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Since the determinant terms cancel out in the 

optimization, the track association metric, which is the 

logarithm of (16), becomes 

 1 1 1
1 2

2 2 2

1 2
ˆ ˆ ˆ ˆ ˆ( , ) || || || || || ||

i j
F i F j FP P P

L i j x x x x x x− − −= − + − − −  

                                                                                        (17) 

This metric evaluates the association likelihood by 

comparing the fused track state estimate with the individual 

estimates of the tracks associated to form the fused track. 

3.2 Metric of similarity between local 

estimates 

This metric, first introduced in [27], is the Mahanolobis or 

chi-squared distance commonly used for track association. 

It can be derived by assuming no prior ( )p x  for the target 

state. Then the track association likelihood becomes 

 
1 2 1 2( , ) ( ) ( ) ( | ) ( | )i j i jl i j p Z p Z p x Z p x Z dx= ∫   (18) 

From the Appendix, 

 1 2

1 2 1 2
ˆ ˆ( | ) ( | ) (0; , )i j

i j i j
p x Z p x Z dx g x x P P= − +∫  (19) 

where 
1/2 1

( ; , ) | (2 ) | exp( 1/ 2)( ) ( )
n T

g x m P P x m P x mπ − −= − − −  is 

the Gaussian density function with mean m  and covariance 

P . Thus the track association metric is 

 1

1 2 1 2 1 2
ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )T

i j i j i jL i j x x P P x x−= − + −   (20) 

The state estimates and error covariances in (20) may be 

for the state at a given time or the augmented state 

consisting of states at multiple times. The two metrics (17) 

and (20) are similar but (20) is more convenient because it 

depends only on the local track estimates and does not 

require track state fusion to generate ˆ
F

x . 

3.3 Cross-covariance track association metric 

This association metric addresses the dependence in target 

tracks due to process noise by using the cross-covariance 

between the track state estimates of the two sensors at a 

single time [18]. It is included in this paper because its 

performance will be compared with the augmented state 

association metric. 

Let 
12ij

P  be the cross-covariance between the state 

estimates 
1̂i

x  and 
2

ˆ
j

x . Then the cross-covariance 

association metric is 

 1

1 2 1 2 12 12 1 2
ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )T T

i j i j ij ij i jL i j x x P P P P x x−= − + − + −  

                                                                                      (21) 

Since the cross-covariance is only evaluated at the end 

time of the track, this metric does not utilize all the 

information in the tracks. Thus, its performance is expected 

to be better than (20) evaluated at a single time but worse 

than the augmented state association metric that exploits 

information at multiple times. Section 5 will demonstrate 

that this is true. 

4 Augmented state estimation 

This section presents the equations for calculating the 

augmented state estimate and error covariances.  

4.1 State and measurement models 

The state to be estimated is modeled by the linear system 

 
1k k k k k

x F x G w+ = +   (22) 

where 
n

k
x R∈  is the state at time k

t  with 0,1, 2,...k = , 

k
F  and k

G  are matrices representing the system dynamics, 

and k
w  is a zero-mean white random process with 

covariance k
Q . 

For each sensor s , the measurement 
s

k
z  at time k

t  is 

 s s s

k k k k
z H x v= +      (23) 

where 
s

k
H  is the measurement matrix, and 

s

k
v  is a zero-

mean white noise process with covariance 
s

k
R . The 

measurement and process noises are assumed to be 

independent white noise processes. The initial state 0
x  is 

independent of the noises with mean 0
x  and covariance 

0
P .  

4.2 Local Kalman filter 

Let 1( )s s l

l j jZ z ==  be the cumulative measurements of 

sensor s  at time 
k

t , |

s

k lx  and |

s

k lP  be the optimal estimate of 

k
x  and its error covariance given

s

l
Z . The local estimate 

|

s

k kx  and error covariance |

s

k kP  are computed by the usual 

equations. 

 

 

Prediction 

 | 1 1 1| 1

s s

k k k k kx F x− − − −=   (24) 

 | 1 1 | 1 1 1 1 1

s s T T

k k k k k k k k kP F P F G Q G− − − − − − −= +   (25) 

 

Update 

 
1 1

| | | 1 | 1( ) ( )s s s s s

k k k k k k k k kP x P x i− −

− −= +   (26) 
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1 1

| | 1( ) ( )s s s

k k k k kP P I− −

−= +   (27) 

with initial conditions 0|0

sx  and 0|0

sP ,  and 

. 

4.3 Augmented state filter 

Let
1( )k

k j jX x ==  be the augmented state at time 
k

t . The 

estimate 
| | 1|[( ) ,.., ( ) ]s s T s T T

k k k k kX x x= of the augmented state 

kX  given the measurements 
s

k
Z , and its error covariance 

|

s

k kP  are computed by the following prediction and update 

equations [11]. 

 

Prediction 

 
1 1| 1

| 1

1| 1

s

k k ks

k k s

k k

F x
X

X

− − −

−

− −

⎡ ⎤
= ⎢ ⎥⎢ ⎥⎣ ⎦   (28) 

 | 1 1 1| 1

| 1

1| 1 1 1| 1

s s

k k k k ks

k k s T s

k k k k k

P − − − −

−

− − − − −

⎡ ⎤
= ⎢ ⎥⎢ ⎥⎣ ⎦

F P
P

P F P
   (29) 

 

where 
1 1 ( 1)

, 0
k k n n k

F− − × −
⎡ ⎤= ⎣ ⎦F and the initial conditions are 

1|0 1|0

s sX x=  and 
0|0 0|0 .s sP=P  

 

Update 

 
1 1

| | | 1 | 1( ) ( )s s s s s

k k k k k k k k k kX X J i− −

− −= +P P   (30) 

 
1 1

| | 1( ) ( )s s s T

k k k k k k kJ I J− −

−= +P P   (31) 

where 
( 1)[ , 0 ]T

k n n n kJ I × −=  is a nk n×  matrix that selects the 

k
x  in k

X  to generate the measurement 
s

k
z . 

These equations are similar in form to the local 

accumulated state densities (ASD) in [22]. However, the 

augmented state estimates are locally optimal whereas ASD 

are not locally optimal estimates because they use the 

relaxed evolution model. 

Equations (28) – (31) will be used in computing the 

augmented state track association metric of (20). 

5 Numerical example 

This section presents a numerical example to show the 

benefit of track association using augmented states. 

 

5.1 Simulation scenario 

The target moves according to the 2 dimensional 

Ornstein-Uhlenbeck model used in [4], [11], with noise 

parameter 
2

2
VEL

q βσ=  and 

 

 ( ) 2

2

0
exp ;  

0
k

I
F A t A

I
Δ

β

⎡ ⎤⎢ ⎥−⎣ ⎦5 5   (32) 

 

 
20

0 0

0

T
t

T A A

k k k
G Q G e e d

qI

Δ
τ τ τ
⎡ ⎤⎢ ⎥⎣ ⎦∫5   (33) 

 

The initial condition at 0t  is 
2 2

0 2 2
diag[ , ]

POS VEL
P I Iσ σ= . 

We assume two sensors that observe the position of a 

target, i.e., 
2 2 2

[ , 0 ]
s

k
H I ×=  for 1, 2s =  at time kt , with 

1 .k kt t t+ − = Δ  The sensors have error covariances 

1 diag[4,1]kR =  and
2 diag[1, 4]kR = . The complementary 

nature of the sensors implies that each sensor can associate 

its measurements into high quality local tracks but there is 

association uncertainty between the tracks from the two 

sensors.  

Other simulation parameters are 1tΔ = , 10K = , 

10 ,POSσ =  3VELσ = , and 1β = . The white noise intensity 

q  is varied to simulate different levels of non-deterministic 

dynamics. 

Monte Carlo analysis is conducted to generate the results. 

For each run, the association metrics are computed and an 

assignment algorithm is used to associate the local tracks. 

The probability of correct association, defined as the 

probability of each track from sensor 1 being assigned to the 

“correct” track (as defined by the ground truth) from sensor 

2, is computed as the number of correctly associated targets 

over the total number of targets. This probability is then 

averaged over all simulation runs for a particular noise 

intensity. 

 

5.2 Numerical Results 

The numerical results compare the association 

performance using augmented state estimates and the state 

estimate at the last time with cross-covariance metric.  
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Full augmented state (1-10) 

Cross-covariance metric

Augmented state  (8,9,10) 

Augmented state (9,10)

Unaugmented state (10)

 
Figure. 1. Augmented state association that uses estimates of 

states at multiple times performs better than association with 

cross-covariance metric. 

 

Figure 1 shows that association with full augmented state 

has excellent performance even for high process noise. 

When only the state estimates at the most recent two times 

(10,9) or three times (10,9,8) are used, augmented state 

association still performs better than association with the 

cross-covariance metric. As expected, association with 

unaugmented state has the worst performance. 

When communication constraints do not allow the use of 

full augmented states, association performance can be 

optimized by selecting the appropriate augmented states. In 

particular, sampling the states at regular intervals produces 

better performance than using the states at the most recent 

times. Fig. 2 shows that sampling the states at the first and 

last times (1,10), or the first, middle, and last times (1,6,10), 

produces association performance similar to that of full 

augmented state, and much better than using the last two or 

three states. Future research will investigate the optimal 

number of samples and the sampling times. 

In both Figures 1 and 2, the association metric (20) is 

computed using covariance matrices that involve cross-

covariances between the estimation errors at different times, 

i.e., with terms such as 
1 2

| ' '|cov( , )k k K k k Kx x x x− −  for 'k k≠ . 

Fig. 3 shows the association performance when the cross-

covariances for different times are set to zero, i.e., the 

metric is computed using only the error covariances at the 

sampling times, i.e., only 
1 2

| |cov( , )k k K k k Kx x x x− − . Since 

there is hardly any difference between Fig. 2 and Fig. 3, the 

cross-covariances do not have to be communicated, thus 

reducing the bandwidth requirement.  

 

Full augmented state (1-10) 

Cross-covariance metric

Augmented state  (1,6,10) 

Augmented state (1,10)

Unaugmented state (10)

 
Figure 2. Augmented state association performs well by 

sampling at critical times 

 

Full augmented state (1-10) 

Cross-covariance metric

Augmented state  (1,6,10) 

Augmented state (1,10)

Unaugmented state (10)

 
Figure 3. Good association performance with sampled 

augmented states can be obtained without using cross-

covariances 

 

Note that the sampled augmented state estimate is not the 

same as the filtered state estimate at the sampled times. 

Figure 4 shows that using filtered state estimates instead of 

smoothed estimates results in very little performance 

degradation. Since filtered estimates for augmented states 

are computed easily by local processors, track association 

using augmented states is practical for real world systems. 
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Full augmented state (1-10) 

Cross-covariance metric

Augmented state  (1,6,10) 

Augmented state (1,10)

Unaugmented state (10)

 
Figure 4. Filtered estimates can be used in place of 

smoothed estimates with minimal performance degradation 

 

6 Conclusions 

Track association for targets with non-deterministic 

dynamics is an important problem that has not received as 

much attention as track fusion. Association with augmented 

state estimates can be justified theoretically and performs 

better than other methods. However, implementation 

requires more communication bandwidth that association 

with the state estimates at a single time. We show that 

communication may not be an issue because good 

association performance does not need communication of 

full augmented state estimates. In fact, numerical results 

show that only the state estimates at two or three critical 

times are needed. Furthermore, excellent association 

performance can be obtained by using filtered estimates for 

the augmented states and ignoring the cross-covariances for 

estimates at different times. 

 

Appendix: Integral of product of 

Gaussians 
 

Let 
1 1 1
( ) ( ; , )p x g x m P=  and 

2 2 2
( ) ( ; , )p x g x m P=  be the 

densities of independent Gaussian random vectors 
1

x  and 

2
x . Consider the random vector 

1 2
z x x= − . The probability 

density of z  is given by 

 
1 2( ) ( ) ( )z

x
p z p z x p x dx= +∫   (A1) 

Since z  is a Gaussian random vector with mean 
1 2

m m−  

and covariance 
1 2

P P+ ,  

 
1 2 1 2

( ) ( ; , )
z

p x g x m m P P= − +   (A2) 

Thus 

 

1 1 2 2

1 2 1 2

/ 2 1/2 11
1 2 1 2 1 2 1 22

( ; , ) ( ; , )

(0; , )

(2 ) | | exp[ ( ) ( ) ( )]

x

n T

g x m P g x m P dx

g m m P P

P P m m P P m mπ − − −

= − +

= + − − + −

∫
  (A3) 
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