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Abstract—Twitter is an online social networking (OSN) service
that enables users to send and read short messages called
”tweets”. As of December 2014, Twitter has more than 500
million users, out of which more than 284 million are active
users and about 500 million tweets are posted every day. Tweet
sentiment analysis (TSA) identifies a valuable platform for the
OSN study which provides insights into the opinion of the public
about culture, products and political agendas and thereby is able
to predict the trends in specific domains. In order to execute
efficient TSA on a particular topic or domain, a TSA approach
with unified tool, UnB TSA, is proposed consisting of four steps:
tweets collection, refinement (excluding noisy tweets), sentiment
lexicon creation and sentiment analysis. As a key part, the lexicon
is domain-specific that incorporates expressions whose sentiment
varies from one domain to another. Four algorithms including
expanding limited hashtags into a larger and more complete set
to collect tweets have been implemented. Experiments on the
’iPhone 6’ domain which obtains convincing results in all of the
four phases, showing the superiority of the domain-specific TSA
approach over a generic one.

I. INTRODUCTION

Twitter is an online social networking service where users

post status messages called tweets. According to Twitter

website1, there are 271 million monthly active users and

500 million tweets are sent per day. This huge amount of

data can be used to provide insights into the opinion of the

public in various topics, from political affairs, hot news to

commercial products. To be able to extract these information

from tweets, applications need to perform sentiment analysis

of those messages.

Sentiment analysis is a topic of natural language processing

(NLP) in which, the goal is to identify the overall sentiment (or

opinion) of a given text or phrase. Sentiment analysis of texts

has been acknowledged and investigated intensively within

the Tweets context. Most of existing work use a sentiment

lexicon, which is a list of sentiment words or phrases. The

performance of the algorithms is closely related to the quality

of the lexicons. In order to achieve good results on evaluating

tweets in a particular domain, it is interesting to create a

lexicon that is specific for these messages and related to

that domain, so that to incorporate expressions where their

individual sentiment varies from one domain to another.

The objective of this paper is to present a unified tool that

executes efficient TSA on a particular domain. The user inputs

1http://www.twitter.com

Fig. 1. Overview of the System Architecture

a set of initial terms and/or hashtags related to the intended

topic for analysis and the tool outputs a collection of tweets

with tagged sentiments. To cover all the work needed, we

divided our approach into four steps. The first step deals with

collecting tweets related to a specified topic. It is important

to allow the collection of a larger set of related tweets with

a few inputs. The second step is to select tweets relevant to

our application, for instance, English and non-spam tweets.

This is necessary due to the amount of spam tweets that exist,

especially with regards to trending topics. The third step is

to build a domain-specific tweet sentiment lexicon. This is

essential to capture specificities of the domain. Finally, the

last step is to perform sentiment analysis of these tweets. An

overview of the system architecture is shown as Figure 1.

The proposed TSA tool is tested on the ’iPhone 6’ domain

which has obtained convincing results on all four phases.

These results show the superiority of the domain-specific TSA

toll over a generic one. The developed tool builds a lexicon

in an automated and unsupervised way, which makes it easier

to be applied to other domains.

II. RELATED WORK

In this section, we review the related literature and studies

concerning the four phases of our TSA tool, respectively.

A. Hasgtag Expansion

Ozidikis et al. [1] presented an event detection method in

Twitter based on clustering of hashtags by using the semantic
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similarity between them. Carter et al. [2] proposed a method

for finding related hashtags in a target language, given a

hashtag from the source language. Another approach that

is similar to our problem is to recommend hashtags. An

automatic hashtag suggestion tool that returns a short list of

relevant hashtags when given a tweet was proposed by Mazia

et al. [3]. Kywe et al. [4] worked in a similar way, with the

benefit of the recommendation being personalized for the user.

In the research of Tsur et al. [5] for clustering tweets, they

partioned the clustering task into two distinctive tasks: batch

clustering of user annotated data and online clustering of a

stream of tweets. Rangrej et al. [6] focused on clustering

tweets based on its content. They compared various document

clustering techniques and showed that graph-based approach

using affinity propagation performs the best in clustering short

text data in the sense of clustering error.

B. Spam Detection

There are several articles related to identifying spam ac-

counts on Twitter, such as Benevenuto et al. [7] which

collected 54 million user profiles and labeled the users with

manual inspection. Based on this data, they ranked features

that identify spammers. Stringhini et al. [8] created honeypot

profiles and analyzed the friend requests and the messages

sent to them. Klassen [9] explored attribute reduction and data

preprocessing from the aspect of Twitter spam detection using

various machine learning algorithms.

Some studies mention spam detection as a pre-processing

step for their algorithms ( [10], [11] and [12]). There are

also some studies that focus on detecting spam tweets instead

of spam accounts; the same is done in our approach. A

method of identifying spam tweets from a stream source

using information about the user along with features of the

tweets was proposed by Miler et al. [13]. Martinez et al. [14]

presented a methodology involving two aspects: the detection

of spam tweets in isolation and the application of a statistical

language analysis to detect spam in trending topics.

C. Lexicon Building

General lexicons are widely used, since they can be ap-

plyed to several domains. The disadvantage is that they are

usually hard to capture the specificities of the domains, which

leads to low recall percentage. Hu and Liu [15] manually

compiled a lexicon since 2004 which has about 6.800 words.

A large and general polarity lexicon has been developed

semi-automatically from the web using a graph propagation

algorithm [16].

Intensive research has been devoted into building domain-

specific lexicon that are not tweet specific. Tan and Wu [17]

proposed an approach to construct domain-oriented sentiment

lexicon by using labeled data from other domain. Their work

is based on a random walk model by utilizing all relationships

among documents and words from both old and new domains.

The same problem was solved by using a deep learning

approach [18] and integer linear programming [19].

Mohammad et al. [20] built two twitter-specific lexicons:

NRC Hashtag Sentiment Lexicon and Sentiment140 Lexicon.

The first one was built from 78 seed positive and negative

hashtags using a big set of tweets and pointwise mutual in-

formation. The second one used the same approach, but using

Sentiment140 corpus, which is a collection of tweets that con-

tain both positive and negative emoticons. A Twitter-specific

lexicon was created by using an approach to supervised feature

reduction using n-grams and statistical analysis [21]. The

authors augmented this reduced Twitter-specific lexicon with

brand-specific terms for brand-related tweets, such as the brand

’Justin Bieber’. This work is domain and tweet specific, but

their approach is highly manual and hard to be applied to

other domains. Chen et al. [22] presented an optimization-

based approach to automatically extract sentiment expressions

for a given target from a corpus of unlabeled tweets.

D. Sentiment Analysis

With regards to sentiment analysis, there are some com-

prehensive surveys of the algorithms and applications, such

as [23], [24] and [25]. The research of Gonçalves et al. [26]

compared several sentiment analysis algorithms and developed

a new method that combines existing approaches, providing

the best coverage results and competitive agreement. A support

vector machine classifier was created to detect the sentiment

of tweets, using a lexicon and several other features [20]. A

supervised machine learning approach has been developed to

build a tweet sentiment classifier [27]. Saif et al. [28] proposed

using semantic features in Twitter sentiment classification and

explored three different approaches for incorporating them into

the analysis; with replacement, augmentation, and interpola-

tion.

These studies use supervised or semi-supervised approaches

for sentiment analysis. They can obtain better results, but at

the cost of needing to input labeled data. In contrast, we

will develop an unsupervised algorithm, which can be easily

applied to any domain.

III. COLLECTION OF RELATED TWEETS

The first step consists of collecting tweets related to a

specific topic. Instead of a lot of terms and hashtags, the user

is only required to provide a small set of initial terms and/or

hashtags about the topic and related tweets will be collected

by our approach.

In order to extend the initial set of terms and hashtags into a

larger and more complete set, we propose an algorithm namely

the Hashtag Expansion Algorithm. Based on this larger set, we

can search on the Twitter API the tweets that contain these

hashtags and then collect tweets related to that topic.

Particularly, we define that two hashtags are related if

they are referred to the same topic (e.g.: WorldCup2014 and

Brazil2014 talk about the same event), some attributes of that

topic (e.g.: iPhone6 and iPhone6Battery) or a closely related

topic (e.g.: ecig and eliquid).

The input of the Hashtag Expansion Algorithm consists

of three sets: input hashtags, input terms and ignore terms.
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Input hashtags provide the seed hashtags for the algorithm,

i.e., the hashtags concerning the topic chosen. Input terms are

alternative terms related with the topic. Ignore terms are the

terms that we want to exclude from the final set of tweets.

For instance, suppose we want to find hashtags about the

new Apple product: iPhone 6. The input set could be the

hashtag #iphone6, the input terms could be ’iphone 6’, ’iphone

6 plus’ and the ignore set could include ’iphone2’, ’iphone3’,

’iphone4’, ’iphone5’.

A. Hashtag Expansion Algorithm

The main idea of the algorithm is to find hashtags that

contain one or more of the seed hashtags or terms and do not

contain any of the ignored terms. The algorithm is developed

in order to handle a few misspellings of the hashtag, which

occur frequently due to the informal nature of tweets. If a

hashtag is similar enough to one of the seed hashtags or terms,

it will be considered as related. If a hashtag is more similar to

a ignored term than it is to any of the seed hashtags or terms,

it will not be considered as a related term.

This similarity is calculated based on an adapted version of

the Levenshtein distance and taking into account whether one

string is a substring of others. The substring algorithm captures

the hashtags that contain one of the initial hashtags or terms as

a substring and do not contain any of the ignored terms. This

will capture many tweets that talk about some particularity of

the original topic.

We use Levenshtein distance with different weights for

insertion, deletion and substitution. These weights are cus-

tomisable in order to achieve the optimal parameters, which

give the best results. To implement the idea that one letter

changed in a 4-letter word means more than one letter changed

in a 12-letter word, a normalized Levenshtein distance is

developed, by dividing the distance with the size of the smaller

one of the two strings being compared. Mathematically, the

normalized distance between two strings a and b is equal

to leva,b(|a|, |b|)/min(|a|, |b|) where |a| is the size of the

string a, lev is calculated according the equation 1, α is the

insertion cost, θ is the deletion cost and γ is the substitution

cost. We establish a threshold on how different the hashtags

could be which can still be considered related. This threshold

is customizable. This step helps to capture some misspellings

that are common on an informal platform as Twitter.

leva,b(i, j) =















max(i, j) if min(i, j) = 0

min







leva,b(i− 1, j) + α
leva,b(i, j − 1) + θ
leva,b(i− 1, j − 1) + γ(ai 6=bj)

otherwise

(1)

In addition to that, we only take into consideration the

hashtags that appear in more than a defined percentage of the

tweets with our seed hashtags. This threshold is customizable

and is proposed with the intention of ignoring the hashtags

that appear just a few times in our dataset. We also ignore

hashtags with the size smaller than the established threshold,

since they mean nothing.

When optimizing an algorithm, the metric is important. If,

in the intended application of the hashtag expansion algorithm,

we want to minimize false negatives, in order to avoid to leave

out any related hashtag, we should optimize the algorithm

to maximize the recall percentage. If we want to minimize

false positives, in order to avoid to select hashtags that are not

related, we should optimize the algorithm to maximize the

precision. As we do not want to run a manual verification of

the selected hashtags, the best choice is to maximize precision.

In our approach, we use the F-score Fb as the metric where

the weight parameter b can be adjusted. As discussed, we want

to maximize precision, but we cannot ignore the recall. For that

reason, we choose to maximize F0.5.

Algorithm 1: Hashtag Expansion Algorithm

Data: SH, ST, IT
Result: hashtags
/* SH stands for seed hashtags, ST for seed

terms and IT for ignored terms. The algorithm

return a collection of related hashtags. */

1 hashtags = {};
2 allHashtags = getHashtagsThatCooccur(ST, percentage);
/* Return all the hashtags that co-occur in at

least percentage of the tweets with one of the

seed hashtags. */

3 for hashtag ∈ allHashtags do
4 for seed ∈ SH do

5 distance := NLD(hashtag, seed);
/* NLD means Normalized Levenshtein

Distance */

6 minDist1 := minimum(distance,minDist1);
7 end

8 for term ∈ ST do

9 distance := NLD(hashtag, term);
10 minDist1 := minimum(distance,minDist1);
11 end

12 for term ∈ IT do
13 distance := NLD(hashtag, term);
14 minDist2 := minimum(distance,minDist2);
15 end

16 if minDist1 < t AND minDist1 < minDist2 then

17 hashtags.add(hashtag);
18 end

19 end

20 return hashtags;

The code of Hashtag Expansion Algorithm was build in

Python 2.7, using a MySQL database with tweets and hash-

tags. The tweets were captured using the 140dev Streaming

Twitter API Framework 2. This framework is available online,

which is written in PHP and stores the tweets in a MySQL

database. This database was accessed from our Python code to

build the set of related hashtags. All the algorithms presented

in this paper use this architecture. Algorithm 1 shows the

pseudo-code of the algorithm.

The parameters of Algorithm 1 were optimized to achieve

the highest F0.5. We used two domains (World Cup 2014

and Ebola) to train the algorithm to get the best parameters.

The ground-truth was built manually from a large database of

tweets. Then we applied the parameters to the domains iPhone

6 and E-cigarettes to compare the results. Table I shows the

2http://140dev.com
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results for the domains used to train the parameters and table

II shows the results for the domains used to test Algorithm

1. We can see that the results are consistent, since the train

set produces better results than the test set and both of them

produce a good F0.5.

TABLE I
RESULTS WITH TRAIN SET - HASHTAG EXPANSION

Lexicon Precision Recall F0.5

#worldCup2014 1.00000 0.65217 0.90361

#ebola 1.00000 0.94737 0.98901

Average 1.00000 0.79977 0.94631

TABLE II
RESULTS WITH TEST SET - HASHTAG EXPANSION

Lexicon Precision Recall F0.5

#iphone6 0.76470 0.97500 0.79918

#ecig 0.97142 0.97842 0.97282

Average 0.86806 0.97671 0.88600

IV. REMOVE NOISY TWEETS

In order to select only relevant tweets from the ones

collected in the previous step, we need to exclude the noisy

tweets. Firstly, we need to exclude non-English tweets, since

this tool is made for English texts. Secondly, we need to

exclude spam tweets, such as advertisement, requests for

followers and automatically generated tweets (e.g. tweets

generated by games). For identifying non-English tweets, we

used a Python code and the language information reported by

Twitter.

In our approach, we choose to focus on detecting spam

tweets, as we are dealing with a stream of tweets.

Algorithm 2: Spam Detection Algorithm

Data: tweet, parameters
Result: sentiment
/* Return whether the tweet is a spam */

1 if tweet.user.accountAge <= parameters[0] then

2 return true;
3 end

4 if tweet.user.followersCount <= parameters[1] then
5 return true;
6 end

7 if tweet.hashtagsCount <= parameters[2] then

8 return true;
9 end

10 if tweet.spamWordsCount <= parameters[3] then

11 return true;
12 end

13 if tweet.urlCount <= parameters[4] then

14 return true;
15 end

16 if tweet.containsUrlBlacklisted() then

17 return true;
18 end

19 return false;

A. Spam Detection Algorithm

Algorithms that focus on identifying spam accounts usually

take into consideration features regarding the user account and

the history tweets published by that user. Examples of such

features are the age of the account, the number of followers

and followees and the amount of tweets published by day.

Algorithms that focus on identifying spam tweets usually

analyse a tweet separate of other tweets from the same user.

These algorithms commonly use tweet-specific features, such

as the number of hashtags and URLs in that tweet. Sometimes

they also use some features of the user, such as the age of the

account.

With that in mind, we compare the features mentioned

in previous studies that could be applied to our algorithm,

identifying the optimal combination that gives the best results.

These features were then consolidated in a single algorithm

and they are account age in days, number of followers, number

of URLs, number of hashtags, number of spam words and

whether it contains a blacklisted URL. The number of spam

words is a feature very useful to detect spam emails that is also

applied for spam tweets. We consolidate a list of spam words

that contain words that are usually spam in many applications

as well as words that are spam in Twitter, such as ’follow’

and ’please’. These words usually indicates a user asking for

more followers.

Another feature chosen is the account age in days, because

spammer accounts tend to have a short period of life, as they

are usually identified as spam after a few days and excluded

from Twitter. The number of followers is also a significant

feature, as spammer accounts usually have less followers than

a regular account. The number of URLs was chosen because

spammers usually post tweets with URLs, since tweets have

no more than 140 characters, which is usually not enough to

disseminate the information. Related to this, another feature

is whether the tweet contains a blacklisted URL. We used

PhishTank blacklist 3 to make this verification. Finally, the

last feature is the number of hashtags, which is important since

spammers tends to use a lot of hashtags to appear in searches

and trending topics.

A threshold for each of these features was established by

a training process intended to maximize F2. We choose this

metric because we want to minimize false negatives. This is

due to the fact that the impact of ignoring some no-spam tweet

is not critical, as we have a big set of tweets to use, but the

impact of selecting a spam tweet and use it to build the lexicon

is important.

We use 3.000 tweets collected in the previous phase that

are related to iPhone 6 to train Algorithm 2 and the other

500 to test. The result can be seen in table III. The train and

test results are very similar, which means that our training is

consistent. From the training we observe that the number of

hashtags is the most significant feature to identity spam tweets

in this domain.

3http://www.phishtank.com/
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TABLE III
RESULTS WITH TRAIN AND TEST SET - SPAM DETECTION

Lexicon Precision Recall F2

iPhone 6 - train 0.644249 0.934724 0.857471

iPhone 6 - test 0.631285 0.911290 0.837037

The amount of spam in iPhone 6 tweets was quite sur-

prising. In our manually labeled results for tweets collected

in the period 2014/09/08 to 2014/09/18, there are 49.4% of

spam tweets. In other domains, such as World Cup 2014 and

Ebola, the amount of spam tweets is around 5.5%, showing

that the training should be domain-specific. We believe that

this difference is because iPhone 6 launch in 2014/09/09 and

iPhone 6 is a trending topic during the period collected, which

attract spammers.

V. CONSTRUCTION OF SENTIMENT LEXICON

The goal of this step is to build a domain-specific tweet sen-

timent lexicon. This is necessary to improve the performance

of our TSA tool. Since tweets are short and informal texts

and contain a lot of abbreviations and slangs, a traditional

sentiment lexicon built for analysing formal texts is not

suitable. Because of this, it is important to construct a tweet-

specific lexicon, so that the peculiarities of tweets can be

handled properly.

According to Liu [29], sentiment words vary a lot across

different domains, so building a general sentiment-lexicon will

not capture the specificities of each domain. For instance, the

word ’loud’ is positive when referring to a stereo system but

it is negative when referring to a refrigerator. To improve the

performance, we need to build a lexicon that is specific to the

domain.

There are two ways to build a lexicon, supervised and

unsupervised. We choose an unsupervised method to build

the lexicon, because of the facility to apply the algorithm

to other domains. The input required for our algorithm is

an unlabeled set of tweets about the source domain, a set of

domain-independent positive hashtags and emoticons and a set

of domain-independent negative hashtags and emoticons. The

domain-independent sets can be reused to different domains.

Our algorithm is based on the graph propagation algorithm

proposed by Velikovich [16] which applied a graph propa-

gation algorithm to a phrase graph built from the web. We

proposed a different approach to build our graph by using co-

occurence and cosine similarity among tweets.

A. Tokenizing

Tokenizing is the process to split a string into desired

constituent parts which is a fundamental technique in Natural

Language Processing tasks. Having a tokenizer specific for

tweets is important, as tweets have many particularities on its

text, such as mentions, hashtags, URLs and emoticons.

All mentions are substituted by ’@mention’ and all URLs

are substituted by ’www.url.com’. The emoticons and hashtags

do not need to be changed, as they constitute an important

factor in the evaluation of tweet’s sentiment. Besides the

tweet-specific features, our tokenizer also deals with negation

and elongation. All words between a negation word and a

clause-level punctuation mark have a ’ NEG’ appended, which

means that this token has a meaning opposed to the meaning

of the original word. We also deal with double negation,

where the second negation neutralizes the first one. Elongation

concentrates on repeating a character to indicate a heightened

emotion, for instance ’coooooooool’ gives an emphasis to the

word ’cool’. It is very common on tweets and other informal

texts. Our algorithm deals with elongation by substituting it

by the original word appended with ’ LONG’.

To illustrate the behaviour of our lexicon, examples of

tweets and its tokenized version are shown as follows.

Tweet: RT @patlustosa: this is a

typical Twitter tweet :-) #ICWSM

Tokenization: rt, @mention, this, is, a,

typical, twitter, tweet, :-), #icswm

Tweet: I don’t love him anymore. Sooooo

#sad :’( o.O

Tokenization: i, don’t, love_NEG,

him_NEG, anymore_NEG, so_LONG, #sad,

:’(, o.O

Tweet: I didn’t said I wouldn’t buy it.

Tokenization: i, didn’t, said_NEG, i_neg,

wouldn’t, buy, it

Tweet: Let’s just compare them #iPhone6

#iPhone6Plus http://t.co/Zj3b3wfp30

Tokenization:let’s, just, compare, them,

#iphone6, #iphone6plus, http://url.com

B. Building the Graph from Tweets

Graph propagation algorithms rely on graphs that encode

meaningful relationships between nodes. They input an undi-

rected weighted graph G = (V,E), where wij ∈ [0, 1] is the

weight of edge (vi, vj) ∈ E. The node set V is the set of

candidate tokens for inclusion in the lexicon. The weight wij

of an edge between two nodes should encode the semantic

similarity between these nodes. For instance, vi = amazing,

vj = good and vk = disappointing. The semantic similarity

between amazing and good is bigger than between amazing

and disappointing, so we would expect that wij > wik.

The algorithm that builds the graph from tweets is given in

Algorithm 3.

Algorithm 3: Graph Builder Algorithm

Data: corpus
Result: csMatrix
/* corpus is the set of tweet tokens */

/* Returns a matrix representing the graph */

1 d =buildCooccurenceMatrix(corpus);
2 vocab =getSortedVocab(d);
3 csMatrix =buildCosineSimilarityMatrix(vocab, d);
4 return csMatrix;
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To build a graph that attends these restrictions, we first run

the tokenizer in all tweets and consider all tokens found in the

tweets as candidate tokens. Denote T as the set of all input

tweets and tok(t) as the set of tokens returned by the tokenizer

given t as an input. Then, E = ∪tok(t), ∀t ∈ T .

We calculate a matrix with the co-occurence count between

all e ∈ E. This matrix is then converted into a cosine similarity

matrix called CM . The value of the weight between vi and

vj is the cosine similarity between these two nodes, i.e. wij =
CM [i][j].

C. Graph Propagation

The graph propagation algorithm is given in Algorithm 4.

The algorithm works by computing a polarity value for each

node in the graph, which corresponds to tweet tokens. These

values are equal to the sum over the max weighted path from

every seed word to the nodes. Tokens that are connected

to multiple positive seeds by highly weighted paths will be

considered as positive tokens. The variable b is used to mantain

balance to the values, when there is a difference between the

number of positive and negative flows in the graph. T is the

max path lenght considered by the algorithm and l is a treshold

that defines the minimum polarity a token needs to have to be

added to the lexicon.

Algorithm 4: Graph Propagation Algorithm

Data: G = (V,E), wij ∈ [0, 1], P,N, l, T
Result: map(V, pol)
/* Returns a polarity value for each token */

1 polPos, polNeg, lexicon = map(V, pol);
2 set aii = 1 for i;
3 set aij = 0 for i 6= j;
4 for vi ∈ P do

5 F = {vi};
6 for t from 1 to T do

7 for (vk, vj) ∈ E such that vk ∈ F do

8 aij = max{aij , aik ∗ wkj};
9 F = F ∪ {vj};

10 end

11 end

12 end

13 for vj ∈ V do

14 polPos[j] = sum(aoj),∀i ∈ P ;
15 end

/* Repet steps 1 - 14 using N to compute polNeg

*/

16 b = sum(polPos)/sum(polNeg);
17 for vi ∈ V do

18 lexicon[i] = polPos[i]− b ∗ posPos[j];
19 if lexicon[i] < l then

20 lexicon[i] = 0
21 end
22 end

23 return lexicon;

D. Consolidation of the Lexicon

As the output of the graph propagation algorithm, we have

sentiment values associated with each node v. This set can

contain words that are appended with ’NEG’ or ’LONG’ as

they are possible output tokens from the tokenizer. For giving

a final polarity to a word, we should consider the polarities of

word, word NEG and word LONG, as shown in equation 2.

The final lexicon building algorithm incorporates all the

steps presented in this section and is shown in Algorithm 5.

final pol[v] = pol[v] + 1.5 ∗ pol[v LONG]− pol[v NEG]
(2)

Algorithm 5: Lexicon Building Algorithm

Data: tweets, positiveSeeds, negativeSeeds, iteractions
Result: lexicon
/* Returns the lexicon represented as a map of

words and values */

1 tokenizedTweets = tokenize(tweets);
2 graph = buildGraph(tokenizedTweets);
3 tempLexicon =

graphPropagation(graph, positiveSeeds, negativeSeeds, iteractions);

4 lexicon = new Map();
5 for key, value ∈ tempLexicon do

6 lexicon[key] = tempLexicon[key] + 1.5 ∗
tempLexicon[key LONG]− tempLexicon[key NEG];

7 end

8 return lexicon;

E. Test Case

We run the Lexicon Builder Algorithm with 6.000 tweets

related to iPhone 6 and obtained a lexicons with 4.576 entries,

in which 2.280 are positive and 2.296 are negative. Table IV

shows some examples of positive and negative words in the

lexicon.

TABLE IV
EXAMPLES OF POSITIVE AND NEGATIVE WORDS

Positive Negative

Word Value Word Value

yay 3.39 #pissedoff -3.12

lol 2.58 #horrorstory -3.11

:D 2.55 kidney -2.50

#soexcited 1.36 #outdatedalready -1.91

ordering 0.93 #camerafail -0.75

One interesting discovery is that one of the most nega-

tive words related for iPhone 6 is ’kidney’. This might be

surprising at first, but it makes sense when analysing a few

iPhone 6 tweets. By the time of the launch of iPhone 6, many

users were complaining about the price of the cellphone and

claiming that they would need to sell a kidney in order to

buy one. This is an example of domain-dependent words that

are not considered by a general lexicon. A domain-specific

positive word is ’ordering’, which usually means that the user

is ordering one iPhone 6 product.

It is hard to evaluate the quality of a lexicon, because it

requires a great manual work and it is difficult to compare with

other lexicons. Because of this, sentiment lexicons are usually

compared by using a sentiment analysis tool with different

lexicons. This is the approach we choose to follow in our

comparison given in the next section.
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VI. SENTIMENT ANALYSIS

This step concentrates on analysing the sentiment of the

selected tweets. This is important to evaluate the quality of the

lexicon built in the third step and to complete the objective of

the tool.

The Sentiment Analysis Algorithm is built based on un-

supervised learning, which enjoys the facility to apply it to

other domains and lexicons, without the need of training and

labeled data. The only required inputs are a lexicon and a set

of unlabeled tweets.

The idea of the algorithm is to sum the polarity of each

tweet token, considering the negation and elongation of words

for changing its polarity. If a word is negated, we inverse its

polarity and, if a word is elongated, we multiply its polarity

by 1.5. The sentiment is derived by the sum s in the following

equation 3.

sentiment(t) =

{

positive if s(t) > 0
negative if s(t) ≤ 0

(3)

Algorithm 6: Sentiment Analysis Algorithm

Data: tweet, lexicon
Result: sentiment
/* Returns the sentiment of a tweet given the

lexicon */

1 tokens = tokenizer(tweet);
2 polarity = 0;
3 for token ∈ tokens do

4 if token contains NEG then
5 polarity := polarity − lexicon[token];
6 end

7 else

8 if token contains LONG then

9 polarity := polarity + 1.5 ∗ lexicon[token];
10 end

11 else

12 polarity := polarity + lexicon[token];
13 end

14 end

15 end

16 if polarity > 0 then

17 return Positive;
18 end

19 else

20 return Negative;
21 end

To evaluate the quality of our lexicon, namely UnB Senti-

ment Lexicon, we compare the sentiment of iPhone 6 tweets

using four lexicons: Bing Liu Opinion Lexicon, NRC Hashtags

Sentiment Lexicon, NRC Sentiment140 Sentiment Lexicon

and our iPhone6 lexicon. Bing Liu Lexicon is a general

sentiment lexicon manually compiled by Bing Liu [15]. The

NRC lexicons [20] are tweet specific but not domain specific

lexicon.

We run Sentiment Analysis Algorithm with 508 tweets

related to iPhone 6. These tweets were manually labeled and

used as ground truth, resulting in 413 positive and 95 negative

tweets. The results are given in table V.

From these results, we can see that UnB Sentiment Lexicon

obtains better recall indexes. This is because this lexicon

TABLE V
RESULTS OF SENTIMENT ANALYSIS

Lexicon Precision Recall F-measure

BingLiu Lexicon 0.87317 0.43341 0.57928

NRC Hashtag 0.82844 0.88862 0.85748

NRC Sent. 140 0.82989 0.87409 0.85142

UnB Sentiment 0.82452 0.94431 0.88036

captures domain-specific words that other lexicons don’t. But,

the Bing Liu Lexicon has the highest precision. This happens

because it is a general lexicon, compiled manually over years,

and all its entries are verified by humans. Despite of that, it

is not a pratical lexicon for this purpose, because they capture

less than half of the positive tweets, as verified by its low

recall. The NRC lexicons provide a very similar precision

like UnB Sentiment Lexicon, but a smaller recall percentage.

Overall UnB Sentiment lexicon outperforms the other lexicons

and obtains the best results in all.

VII. CONCLUSIONS AND FUTURE WORK

In order to execute efficient TSA on a particular topic or

domain, a unified tool is proposed with several critical con-

tributions made. An algorithm for expanding limited hashtags

into a larger and more complete set of hashtags is proposed to

collect tweets, which is demonstrated to be able to obtain good

results with average precision over 90%. To further speed up

the algorithm and to decrease the amount of inputs needed, the

future work will design a new clustering algorithm to generate

the expanded set of hashtags. The spam detection algorithm

uses several tweet and user features, excluding spam tweets

with recall over 90%. A domain-specific sentiment lexicon is

built to incorporate expressions whose sentiment varies from

one domain to another, without the use of labeled data. The

future work will consider to utilize multiple lexicons, combing

the strong points of them. The proposed TSA tool is tested

on the ’iPhone 6’ domain which obtains convincing results.

This tool is readily to be adapted to work with other domains,

retaining the lowest input requirement of labeled tweets for

spam only.
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