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Abstract - Since the groundbreaking work of the Kalman filter 

in the 1960s, considerable effort has been devoted to discrete 

time filters for dynamic state estimation, especially including a 

variety of suboptimal implementations of the Bayesian filter. The 

essence of the Bayesian filter is to make the (sub)optimum 

fusion of the observation information in time sequence based on 

the hidden Markov model of the state process. While admitting 

the success of filters in many cases, this study investigates the 

cases when they in fact loose to the deterministic observation-

only (O2) inference that infers the estimate by using the 

observation information only without modeling the state 

dynamics. Special attention has been paid to quantitatively 

analyzing when and why the Bayesian filter will underperform 

the O2 inference from the information fusion perspective. 

Classic state space models have shown that the O2 inference can 

perform better (in terms of both accuracy and computing speed) 

than filters in certain cases. Therefore attention is desired for 

the use of a filter when the model is not guaranteed to be 

accurate and much approximation is used.  

 

Keywords: Bayesian statistical inference, Bayesian filter, 
Kalman filter, particle filter, observation-only inference. 
 

1 Introduction 

Dynamic state estimation has been a long-standing 
research topic concerned with the sequential process of 
estimating the state(s) evolving over time that is/are 
periodically observed by sensors. A general solution that 
has been most investigated in literature is based on fusing 
the observations with models, which assume the system as a 
hidden Markov model (HMM) and then a Bayesian filter 
can be employed. Based on the state transition model, the 
Bayesian posterior estimate at time ݐ െ ͳ can be propagated 
(generating a prior estimate) and fused with the newest 
observation received at time ݐ  , generating the Bayesian 
posterior estimate for time ݐ, which will be further updated 
when new observations arrive. This online prediction-
correction recursion forms the basis of Bayesian filters and 
has dominated the field since the groundbreaking work of 
the Kalman filter [1] in the 1960s.  

The optimal recursive state estimator in the Bayesian 
sense requires the complete posterior density of the state to 
be determined as a function of time, which only admit 
closed-form solutions in the linear and Gaussian system 
(namely the Kalman filter) except a few special cases [2]. 
Therefore, considerable effort has been devoted to various 
discrete time filters to deal with nonlinearity models and/or 

non-Gaussian noise, namely suboptimal Bayesian filters. 
This has been accompanied by the rapid development of 
approximation theories and technologies and computers, 
which enables complicated computations. Indeed, optimal 
and suboptimal Bayesian filters have been demonstrated 
powerful and successful in many cases.  

These filters perform well as long as the models are 
assumed accurately with few disturbances/outliers and that 
the approximation (if used) is insignificant. Ideally, the 
posterior Cramér-Rao lower bound [3, 4] can be reached if 
the physical world and the model simulated coincide 
exactly. However, this is rarely the case in real world. In 
general, accurate knowledge of the state dynamics model 
(and noise) that can be time varying (e.g. abrupt motion) 
and unpredictable is often missing. In this case, one has to 
approximate or estimate the model and noise before the use 
of a filter, which more or less differ from the real model and 
noise, leaving a difference we refer to as modeling error.  

It has been well acknowledged that modeling errors (and 
significant disturbances/outliers) can easily cause the failure 
of filters, see e.g. [5-8]. Therefore, dealing with model 
disparities has been a fundamental problem. Within the 
filter framework, many strategies have been proposed to 
deal with the modeling error and system disturbances 
including “adaptive” (see e.g. [9-11]), “robust” (see e.g. 
[12-14]) and “direct” [8] filtering and detection and 
treatment of outlier [15], etc. Similar issues occur in 
Bayesian smoothers as well as some optimization based 
estimators; see [16, 17]. The situation will be much more 
complicated in multiple-target cases in cluttered 
environments, see e.g. [17-19]. We do not intend to detail 
these in this paper. 

Despite these sophisticated Bayesian filters, it is crucial to 
know whether they are still effective when significant 
modeling errors (including disturbances) occur or when too 
much approximation has been used. It has been observed 
that simple deterministic algorithms outperform the particle 
filter in a type of finite-state estimation in digital 
communications [20], even given that the filter is properly 
set up. It will be shown in this paper that the so-called 
observation-only (O2) inference, that infers the observed 
part of the state directly from the noisy observations, can 
significantly outperform many filters in certain cases. Of the 
minimal computational complexity, the performance of the 
O2 inference has identified a benchmark for assessing the 
effectiveness of filters: If a filter cannot outperform the O2 
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inference (given that it is applicable), it simply shall not be 
used. In other words, a filter shall only be applied for a 
particular estimation problem when it outperforms the O2 
inference (if applicable) on average in accuracy under the 
same conditions. 

Simply, one filter can be better than another or some 
others; it does not mean, however, that the best solution for 
a particular problem must be a filter or a smoother as long 
as the comparison has not included the O2 inference. In this 
paper, two primary contributions have been made. 

1) The O2 inference is addressed and is established as a 
benchmark to assess the effectiveness of Bayesian 
filters. In addition, a Monte Carlo (MC) unbiased 
transformation approach is proposed for realizing O2 
inference for nonlinear observation models. 

2) The effectiveness of the optimal Bayesian filter is 
investigated from the information fusion (IF) 
perspective and is evaluated on a classic model. Both 
theoretical studies and simulation results show that, 
the O2 inference can easily outperform the filters in 
certain cases, more than expected. 

An extended and complete version of this study will be 
given in [21]. In the following sections, the Bayesian and O2 
inference are presented in Section 2. Section 3 investigates 
the effectiveness of the optimal Bayesian filter under typical 
Gaussian distributions quantitatively. Section 4 revisits a 
classic state space model (SSM) to show the misuse of 
many filters in certain cases. We conclude in Section 5. 

2 Bayesian filtering and O2 inference 

2.1 Bayesian statistical inference  

The dynamic state estimation, also referred to as filtering, 
is often modeled as a HMM where the system being 
modeled is assumed to be a Markov process of unobserved 
state. The problem is generally formulated as a SSM ࢞௧ ൌ ௧ሺ࢞௧ିଵǡࢌ ࢛௧ሻ                               (1) ࢟௧ ൌ ௧ሺ࢞௧ࢎ ǡ ࢜௧ሻ                                   (2) 

where ݐ indicates the time instant, ࢞௧  denotes the state 

vector, ࢟௧  denotes the observation (also called 

measurement) vector, and ࢛௧  and ࢜௧  denote the noise 

affecting the state transition equation ࢌ௧ሺȉሻ  and the 

observation equation ࢎ௧ሺȉሻ  respectively. In particular, the 
state transition equation is a difference equation for the 
discrete time while for the continuous time it is a differential 
equation. 

In the framework of the Bayesian statistical inference, 
the Bayesian posterior distribution ݌ሺ࢞௧ȁ࢟ଵǣ௧ሻ given all the 
historical observations  ࢟ଵǣ௧ ൌ ࢟ଵǡ ࢟ଶǡ ǥ ǡ ࢟௧  solves the 
filtering problem, which basically consists of predicting and 
correcting two steps. The predicting step combines the 
previous filtering distribution ݌ሺ࢞௧ିଵȁ࢟ଵǣ௧ିଵሻ with the state 
transition ݌ሺ࢞௧ȁ࢞௧ିଵǡ ࢟ଵǣ௧ିଵሻ as ݌ሺ࢞௧ȁ࢟ଵǣ௧ିଵሻ ൌ ׬ ሺ࢞௧ȁ࢞௧ିଵǡ݌ ࢟ଵǣ௧ିଵሻ݌ሺ࢞௧ିଵȁ࢟ଵǣ௧ିଵሻ ݀࢞௧ିଵ 

(3) 
This forms a prior probability distribution (often called 

simply the prior). To note here, such predictions assume 

that the transforms are predictable, which is not always the 
case [16, 19]. Given a new observation  ࢟௧ , the prior 
distribution will be updated by Bayes’ rule as follows ݌ሺ࢞௧ȁ࢟ଵǣ௧ሻ ൌ ௣ሺ࢟೟ȁ࢞೟ሻ௣ሺ࢞೟ȁ࢟భǣ೟షభሻ௣ሺ࢟೟ȁ࢟భǣ೟షభሻ                         (4) 

where ݌ሺ࢟௧ȁ࢞௧ሻ is the likelihood. This gives the Bayesian 
posterior distribution (often called simply the posterior). 

The Kalman filter, which is the closed form solution to 
the linear system with additive Gaussian noise (a special 
case of HMM), can be presented as one of the simplest 
dynamic Bayesian networks. For general nonlinear systems 
with non-Gaussian noise, approximations have to be made 
which can be parametric or non-parametric. In the former, 
the Kalman filter and its approximate extensions e.g. [2, 12, 
14, 22] calculate estimates of the true values of states (in 
terms of both Gaussian mean and variance) recursively over 
time, while in the latter the particle filter e.g. [9, 15, 20, 23] 
and the point mass filter e.g. [24] calculate the probability 
density function (PDF) of the state recursively over time. 
All these filters need to assume a Markov process model 
(i.e. the state transition model ࢌ௧ሺȉሻ) as well as the system 
noise ࢛௧ and ࢜௧, which are very critical for the accuracy of 
the filter.  

However, the performance of all of these modeling-based 
filters will depend greatly on the matching between the 
physical world and the model (and parameters) assumed. 
The importance of the model to the performance of the filter 
cannot be overestimated. We will quantitatively show in 
Section 3 that a bad prediction (whether because of 
modeling error or too much approximation) will be worse 
than useless. Arguably, the more assumption and 
approximation there are, the more unreliable the filter is. In 
contrast, an estimator that makes fewer model assumptions 
will be of relatively better quality to achieve the desired 
results in real world as supposed. The following section 
presents an estimator that only requires the observation 
function ࢎ௧ሺȉሻ that is arguably the minimum requirement for 
the utilization of the observations, regardless the state 
transition ࢌ௧ሺȉሻ, and system noise ࢛௧ and even ࢜௧.  

2.2 Observation-only inference  

Given the observation function ࢎ௧ሺȉሻ, a straightforward 
way to estimate the state is to infer it directly from the 
observation(s) namely the observation-only (O2) inference, 
which is independent of the state transition process. The O2 

inference can be conceptually written as follows (as long as 
the observation function is invertible): ૏ො௧ ൌ ௧ିࢎ ଵሺ࢟௧ ǡ ࢜௧ሻ                        (5) 
where ࢎ௧ି ଵ is the “generalized” inverse function of ࢎ௧  in the 
real coordinate system, ૏ො௧  is the O2 inference of “the 
observed part of” the state ࢞௧.  In a fully observed system, ૏ො௧  is a full-dimensional state estimate.  

Obviously, the O2 inference yields a deterministic 
accuracy that is only consistent with the quality of the 
observation as will be demonstrated in our simulation. This 
non-Bayesian solution is different to Bayesian statistical 
inference but the result is equivalent to that of the KF for 
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the linear observation function when the observation error 
variance goes into zero and to that of the maximum 
likelihood estimation for the linear observation function 
with additive noise of the symmetric probability 
distribution. 

Given the observation noise࢜௧ , it is straightforward to 
calculate the mean and variance of the O2 inference for 
linear inversing functions as the distribution will maintain 
the same form after linear transformation while for 
nonlinear inversing function, we propose a Monte Carlo 
nonlinear transformation methods in section 2.2.1.  

It is necessary to point out that a more general situation 

would include an unknown observation function ௧ሺȉሻࢎ  , 

which is an indispensable requirement for the utilization of 
the observations in all kinds of estimators and therefore has 

to be identified before filtering. Here we do not include this 
issue for avoiding distraction from the main contribution of 
this paper. Nor is it our intention to comprehensively cover 
all the cases of inversing calculation of an arbitrary 
function, which is a fundamental mathematical task. We 
point out here that ࢎ௧ሺȉሻ is generally given in a few simple 
forms in real life problems. For example, in the tracking 
content, it, whether for radar, sonar or camera, is readily 
suitable for the O2 inference especially when multiple 
sensors are used.  Regarding the variety of realistic 
problems, the O2 inference may still be inapplicable. In 
particular, there are several cases that need special 
treatments for calculating (5) as follows.  

A Inversing bias/error 

The inversing will introduce biases (i.e. the expectation of 
the estimate is not equal to the true state) if ࢎ௧ሺȉሻ is 
nonlinear or if the noise has non-zero expectation, where the 
state-dependent bias highly depends on both the noise, the 
true state and the nonlinearity. Simply, a nonlinear 
conversion of a Gaussian distribution is no more Gaussian 
and therefore the situation can be very complicated. This 
has been recognized when converting polar/spherical 
measurements to Cartesian coordinates for the use of filters, 
see e.g. [25]. To a degree, the converting bias can be 
removed explicitly for simple inversing function and noise 
(e.g. Gaussian). Significantly different to filters, the O2 
inference does not assume the observation noise and 
therefore works with unknown and even time-varying 
observation noise. Hence, we omit this bias when the noise ࢜௧  is unknown by setting it to be zero. Eq. (5) is then 
reduced to  ૏ො௧ ൌ ௧ିࢎ ଵሺ࢟௧ ǡ ૙ሻ                           (6) 
This calculation is directly based on deterministic values.   

If the observation noise is known, we propose to use a 
Monte Carlo debiasing method to remove the inversing bias 
as follows. This is different to the algebraic approximate 
methods given in [25] and the references therein and is 
model-free and computational easier. The idea is sampling a 

group of samples from the noise distribution ࢜௧ሺ௜ሻ̱࢜௧ ǡ ݅ ൌͳǡʹǡ ǥ ǡ  and use them as noise separately in the inversing ܫ
calculation of (5) as 

૏ො௧ሺ௜ሻ ൌ ௧ିࢎ ଵ൫࢟௧ ǡ ࢜௧ሺ௜ሻ൯ǡ ݅ ൌ ͳǡʹǡ ǥ  (7)           ܫ
Based on this, we can easily calculate the mean and 
covariance of the O2 inference, respectively as follows ૏ො௧ ൌ ଵூ σ ૏ො௧ሺ௜ሻூ௜ୀଵ                          (8) Covሺ૏ො௧ሻ ൌ ଵூିଵ σ ൫૏ො௧ሺ௜ሻ െ ૏ො௧൯൫૏ො௧ሺ௜ሻ െ ૏ො௧൯்ூ௜ୀଵ             (9) 

The covariance of the estimate is helpful for multi-sensor 
data fusion when multiple sensors are available [26, 27]. 
Obviously, this Monte Carlo debiasing is regardless the type 
of noise and the observation function. To reduce the number 
of samples used, deterministic sampling e.g. [28] might be 
used to replace the random sampling. 

B Irreversibility 

One of the primary challenges for the application of the 

O
2
 inference is the irreversibility of the observation function, 

for which the inversing calculation is not directly applicable. 

This can be viewed as an underdetermined system. Under-
determination occurs when the total dimensions of the 
observations are smaller than the total freedoms of the state 
that need to be estimated. In contrast, over-determination 
occurs when the total dimensions of the observations are 
more than the total freedoms of the state that need to be 
estimated. The over-determined system (e.g. multiple 

sensors are used) is beneficial, as it will provide a more 

accurate estimate [26, 27]. However, it is challenging to 

infer the state of an under-determined system, for which the 

observations are just too few to properly determine the state. 
The under-determination is the same challenging for the 

filters. In practice, it should be avoided to design/use an 

under-determined observation system. A general solution 

that is worktable in practice is to improve the observability 

of the system by adding more sensors to make the system 

properly or even over determined. For an over-determined 

system, the O
2
 inference shall use each minimum but 

adequate subgroup of observations to infer the estimate and 

finally fuse all estimates in an optimal way, where different 

sources of observations shall be treated equally. That is, for 

state ࢞௧, we seek a set of observations (e.g. corresponding to ݊ sensors) as࢟௜ǡ௧ ൌ ௜ǡ௧൫࢞௧ࢎ ǡ ࢜௜ǡ௧൯ǡ ݅ ൌ ͳǡʹǡ ǥ ǡ ݊. Denoting the 

covariance of ࢜௜ǡ௧ as ௜ǡ௧ࡾ  , the nonlinear (weighted) least 

square estimation is given conceptually such as  ૏ො௧ ൌ argmin࣑೟ σ ቀ࣑೟ିࢎ೔ǡ೟షభ൫࢟೟ǡ࢜೔ǡ೟൯ቁቀ࣑೟ିࢎ೟షభ൫࢟೟ǡ࢜೔ǡ೟൯ቁ೅ࡾ೔ǡ೟௡௜ୀଵ     (10) 

For the case of multiple or massive sensor O2 inference and 
further discussions, please refer to [26, 27].  

As a common irreversible case, the observation function 

is a non-monotonic function and its inversing calculation 

involves a sign problem (the sign can be viewed as an 

additional freedom of the state. In cases when the state is 

bounded in a positive or negative space only, the sign 

problem is not involved; otherwise it needs to be separately 

determined. There are two ways to determine the sign of the 

estimate: the first is to estimate based on the state transition 

function and the previous estimate, i.e. we have the sign 

function sgnሺෝ࢞௧ሻ ൌ sgnሺࢌ௧ሺෝ࢞௧ିଵሻǡ Ͳሻ. This can be taken as 
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the default method. The second way is to use an additional 

estimator to estimate the sign, which is computationally 

more intensive. In both cases, the O
2
 inference will not only 

utilize the observation information but also use the state 

transition information, which is no more strictly 

“observation only” and can be referred to as the O
2
+

 

inference. Both method are demonstrated in [21] 

The O2 inference represents the probably most intuitive 
solution for state estimation. However, it is in fact involved 
directly in the triangulation, trilateration and multilateration 
positioning technologies based on angle of arrival, signal 
strength measurements and time difference of arrival 
techniques respectively, just to name a few. In addition, 
many visual tracking methods involves inferences from 
image data directly where no filter is used. Unfortunately, 
the O2 inference has rarely been considered in the 
evaluation of filters/smoothers. However, we will show that 
the O2 inference can easily outperform than filters. 

3 Filtering: worth or not? 

3.1 Probability of filter benefit 

The predicting and correcting steps of the Bayesian filters 
correspond to two sources of information about the state: the 
prediction based on the previous estimate and the inference 
from the newest observation. The predicting step employs 
the state transition equation (that is assumed to be a Markov 
process) to infer an a priori estimate while the updating step 
uses the observation to correct the estimate a priori. Using 
the observation to update the prediction, obtaining the state 
a posteriori, which is the core art of the Bayesian filter. 
Therefore, whether the filter/fusion is beneficial depends on 
whether a better (closer to the true state) estimate will be 
obtained as compared with the estimate directly inferred 
from the observation. For which, we define a new metric 
called probability of filter benefit (PoFB) to refer the 
probability that the posteriori estimate is more accurate, 
statistically, than the estimate inferred from the observation.  

For simplicity, both the estimate from the prediction ݔ௣ and the inference ݔ௢  from the observation are assumed to 

be subject to 1D Gaussian distribution, either biased or 

unbiased, with regard to the true state, i.e., ݌ሺݔ௢ሻ ൌࣨሺ݉௢ǡ ௢ଶሻߜ ௣൯ݔ൫݌ , ൌ ࣨ൫݉௣ǡ ௣ଶ൯ߜ . The Bayesian filter 

fuses ݌ሺݔ௢ሻ and ݌൫ݔ௣൯ to get a fused distribution ݌൫ݔ௙൯ ൌࣨ൫݉௙ ǡ  ௙ଶ൯ as an estimate of the posterior distribution of theߜ

true state ்ݔ. The Kalman filter gives the optimal fusion of 
two Gaussian distributions according to the covariance in 
the sense of minimizing the square estimate error, obtaining  ݉௙ ൌ ఋ೚మ௠೛ାఋ೛మ௠೚ఋ೚మାఋ೛మ ௙ଶߜ (11)              ൌ ఋ೚మఋ೛మఋ೚మାఋ೛మ                (12) 

We refer to this as optimal fusion under Gaussian 
conditions. 

We will show that  ௙൯ might not be a betterݔ൫݌௙̱ݔ 
estimate than ௢ሻݔሺ݌௢̱ݔ  , although the variance of the 
estimate is smaller as ߜ௙ଶ ൑ minሼߜ௢ଶǡ  ௣ଶሽ. It is when and onlyߜ

when ȁ்ݔ െ ௢ݔ  ȁ ൐ ห்ݔ െ ௙ݔ  ห, that the estimate ݔ௙  is better 
than ݔ௢. The probability of filter/fusion benefit is defined as PoFB ൌ P൫ȁ்ݔ െ ௢ݔ  ȁ ൐ ห்ݔ െ ௙ݔ  ห൯  ൌ P ቀሺ்ݔ െ ௢ሻଶݔ ൐ ൫்ݔ െ ௙൯ଶቁ  ൌݔ ܲ൫ሺʹ்ݔ െ ௙ݔ െ ௙ݔ௢ሻሺݔ െ ௢ሻݔ ൐ Ͳ൯  ൌ ܲ ቀݔ௢ ൏ ௙ݔ ൏ ሺʹ்ݔ െ ௢ሻቁݔ ൅ ܲ൫ʹ்ݔ െ ௢ݔ ൏ ௙ݔ ൏  ௢൯     (13)ݔ

It is known that the cumulative distribution function of 
the Gaussian distribution ݌൫ݔ௙൯ ൌ ࣨ൫݉௙ ǡ ሻݔ௙ଶ൯is  Ȱ௙ሺߜ ൌ ଵఋ೑ξଶగ ׬ ݁ିሺ௧ି௠೑ሻమȀଶఋ೑మ௫ିஶ  (14)                 ݐ݀

Therefore, Eq. (14) can be written in terms of expected 
values as  PoFB ൌ ׬ ቀȰ௙ሺʹ்ݔ െ ሻݔ െ Ȱ௙ሺݔሻቁ ௫೅ିஶݔሻ݀ݔሺ݌ ൅׬ ቀȰ௙ሺݔሻ െ Ȱ௙ሺʹ்ݔ െ ሻቁݔ ஶ௫೅ݔሻ݀ݔሺ݌                  (15) 

where ݌ሺݔሻ ൌ ଵఋ೚ξଶగ ݁ିሺ௫ି௠೚ሻమȀଶఋ೚మ ܤܨ݋ܲ  . ൑ ͲǤͷ just means the prediction/prior is useless or 
even harmful for the filter. In the general setting of the 
Bayesian filter, the observation is assumed to be unbiased. 
We define the variance ratio (VR) ݎ , the ratio of the 
variances of two distributions, and the bias ratio (BR) ݌, the 
ratio of the prediction bias of ݌൫ݔ௣൯  over the standard 
deviation of the observation ݌ሺݔ௢ሻ, respectively as   ݎ ൌ ఋ೛మఋ೚మ           (16) ݌ ൌ ௠೛ି௠೚ఋ೚           (17) 

The PoFB in this case is highly related to VR ݎ and BR ݌. 
Due to the symmetry of the Gaussian distribution, we only 
consider the case of a positive BR ݌ ൒ Ͳ  and the result 
holds the same for a negative BR. 100,000 random samples 
are generated separately from distributions as ௢ሻݔሺ݌௢̱ݔ   ௙൯ to calculate the PoFB for differentݔ൫݌௙̱ݔ ௣൯ andݔ൫݌௣̱ݔ ,
VR ݎ א ሾͲǤͲͳǡ ͳͲͲͲሿ  and BR ݌  א ሾͲǡͳͲሿ . In particular, ݌ ൌ Ͳ means that two distributions are unbiased. The PoFB 
results are given in Fig.1. The results show that 

1) The PoFB will tend to be stable with 0.5 when ݎ goes 
to infinite. In particular, for ݌  ൒ ʹ , the larger VR ݎ  is, 
approximately the larger the PoFB is; for ݌ ൑ ͲǤͶ, the larger 
VR is, the smaller the PoFB is; for ͲǤͶ ൏ ݌ ൏ ʹ, the PoFB 
goes up and then reduces down to 0.5 with the increasing of 
VR ݎ. This agrees with the fact that a larger ݎ corresponds 
to a larger ߜ௣ଶ of ݌ሺݔ௣ሻ which will have a smaller effect on 
the fusion distribution ݌ሺݔ௙ሻ. In the information theory, it is 
uninformative prior. For a very large ݎ, the effect can be 
omitted, after which we have ݌൫ݔ௙൯ ൎ  ௙൯ݔ൫݌௙̱ݔ ௢ሻ, andݔሺ݌
vs ݔ௢̱݌ሺݔ௢ሻ is then 50-50. This demonstrates that the O2 
inference is nothing else but equivalent to the KF when the 
variance ratio (the observation error variance divided by the 
prior estimate error variance) goes to zero. 

2) When the bias ݌ ൑ ͲǤ͸, PoFB ൐ ͲǤͷ i.e. the fusion has 
more than an approximately 50% possibility of obtaining a 
more accurate estimate than the original estimate. This 
indicates that when the bias of the biased distribution is not 
significant, the fusion will be acceptable and is still more 
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likely to benefit. This is the case (when the prior estimate is 
only slightly biased) whereby the filter is recommended.  

3) When the bias ݌ ൒ ͲǤͺ (and the VR ݎ ൒ ͲǤͳ or a little 
larger), PoFB ൏ ͲǤͷ  i.e. the fusion has less than an 
approximately 50% possibility of obtaining a more accurate 
estimate. This indicates, when the bias of the prediction is 
significant (whether because of large modeling/ 
approximation error or disturbances), the fusion will be 
more likely to obtain a worse result than simply inferring 
from the observation. This is the case whereby the O2 
inference but not the filter is recommended.  

 
Fig.1 PoFB for different variance ratio ݎ and bias ratio ݌ 

As shown in Fig.1, for ݎ ՜ Ͳ , the prediction ݌ሺݔ௣ሻ  is 
relatively extremely accurate (with very small variance; but 
biased) and will dominate the fusion result fully, leaving us 
with ݌ሺݔ௙ሻ  ൎ  ௣ሻ then PoFB will almost fully depend onݔሺ݌
the bias of the prediction ݌: the smaller ݌ is, the larger the 
PoFB is. However, in general the prediction of a filter that 
is affected by both the process noise and the observation 
noise cannot be so accurate (as compared with the 
observation).  

The results also indicate that if the prediction is slightly 
biased or just unbiased, accurate prediction (of small 
variance) will be beneficial; otherwise it will be harmful for 
the filter (the filter is useless).  

In a more general case, both the prediction and the 
observation can be biased. In the quantitative study, we use 
different true state ்݉  which is chosen by adjusting a 
scaling parameter ݉ defined as ݉ ൌ ௫೅ି௠೚ఋ೚                (18) 

This parameter indicates the level of the bias of ݌ሺݔ௢ሻ. 
For  ݉ ൌ ሼെͳͲǡ െͷǡ െʹǡ െͳǡ െͲǤͳǡͲǤͳǡͳǡʹǡͷǡͳͲǡ ͵Ͳሽ , the 

results of (13) for the PoFB are plotted separately in Fig.2 
which compares the observation-based inference ݔ௢̱݌ሺݔ௢ሻ 
(the estimate obtained if no filter is employed) to the 
fusion ݔ௙̱݌ሺݔ௙ሻ.  

The results show again that, all PoFBs will converge to 
50% when ݎ goes into infinite. Furthermore,  

1) When ݉ ൑ Ͳ (i.e. ்ݔ ൑ ݉௢ ൑ ݉௬; the prediction bias is 
larger than that of the observation), all PoFBs will be 
smaller than 50% and the larger ݌, the smaller PoFB; 

2) When ݉ ൒ i.e. ݉௢) ݌  ൑ ݉௣ ൑ ்ݔ ; the prediction bias 

is smaller than that of the observation), all PoFBs will be 
larger than 50% and the larger ݌, the larger PoFB; 

3) When Ͳ ൏ ݉ ൏ .i.e) ݌  ݉௢ ൏ ்ݔ ൏  ݉௣ ), the PoFB 
depends on ݎǡ ݉ǡ ݌  (see the sub-plots for  ݉ ൌ ͳǡʹǡͷ ): 
generally, with the increase of ݎ ൐ ͳ, the PoFB will go 
up over 0.5 and then decrease to 0.5 finally.  

 
Fig. 2 PoFB for different scaling parameter ݉, variance ratio ݎ and bias ratio ݌; the red line is for ݌ ൌ Ͳ, the green line is 

for ݌ ൌ ͳͲ while the blue lines are in between 

3.2 Discussions 

The above result has clearly demonstrated that prediction-
observation fusion is not guaranteed to provide a benefit. It 
is only when 1) both the observation and the prediction are 
unbiased, 2) the bias of the prediction is very small while 
the observation is unbiased or 3) the bias of the observation 
is more serious than the prediction, that the fusion/filter is 
likely to get a more accurate estimate than the O2 inference, 
namely being effective otherwise, the filter can easily be 
ineffective. To note, we have only considered the error on 
the mean of the estimate (bias) but not on the variance 
which is not used in the O2 inference. If there is an error 
with the assumption of the variance, the performance of the 
filter will likely be worse (see e.g. [29]), which however 
does not matter the performance of the O2 inference.  

However, we must be aware that the fusion discussed so 
far maximally corresponds to one filter iteration, while in 
the time sequence the condition of the system varies. That is 
to say, ݎǡ ݉ and ݌  vary with time, which gives way to a 
situation in which at some stages when a filter is effective 
(the prediction obtained is good enough) while at other 
stages (the prediction is relatively poor) it is not. It is 
desirable albeit challenging to distinguish these in real-time 
so that an “optimal” decision is made so that the O2 
inference and filters work interactively. Here we may 
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extend the results obtained under Gaussian filtering to a 
general conclusion  

Remark 1 Whether the filter is effective or not primarily 

depends on the quality of the prior, especially the bias of the 

prior (the lesser, the better); the extent of effectiveness will 

depend on the variance of the prior (as compared to the 

variance of the observation) 

It is clear that many issues can affect the quality of the 
prediction such as initialization errors, system disturbances, 
modeling errors. This, together with the approximation that 
has to be used in suboptimal Bayesian filters, can lead to 
large discrepancies between the prediction and the true 
states. More seriously, any bias once generated in the 
Markov process, whether due to mismodeling or 
approximation, will affect the subsequent steps as the 
posterior is based on all the history information. All of these 
indicate that the filter can easily be ineffective as compared 
with the O2 inference in practice, more than expected; see 
our further discussion and demonstrations given in [21]. 
Therefore, it is fair to say a filter shall only be applied when 
it at minimum outperforms the O2 inference on average in 
estimation accuracy. More precisely, we have several 
general principles as follows on the use or not of the 
Bayesian filter. 

1) The O2 inference is comparably more sensitive to 
the observation noise than filters: it enjoys small 
noise the same greatly as it suffers from bad noise. 
To note, if the observation noise is significant, 
neither the O2 inference nor the filter can be good. 

2) If the system is fully known that can be (close to) 
correctly modeled and a filter can be well 
initialized, affected with no or small disturbance, 
the filter will then work well as supposed.  

3) If the state model cannot be correctly simulated (or 
the filter has to make great approximation) and there 
are relatively large disturbances from time to time, 
the filter will not work well; instead, it might be 
better to use the O2 inference rather than a filter. 

4) In case of multiple sensors, the more sensors, the 
better accuracy and reliability for the O2 inference 
which can additionally filter clutter; see [26, 27].  

We point out here that through ‘fitting/smoothing’ the 
results of the O2 inference between successive scans by 
using the state transition information (if available), more 
accurate or further information about the state can be 
inferred. This forms a key part of our future work. 

4 Simulations 

In this simulation, we use another SSM that has also 
been widely employed for filter evaluation since first 
proposed in [23], with the state transition equation and the 
observation equation respectively given as follows  

௧ݔ  ൌ ͳ ൅ sinሺݐߨݓሻ ൅ ߶ଵݔ௧ିଵ ൅ ௧ݕ ௧                  (19)ݑ ൌ ൜߶ଶݔ௧ଶ ൅ ௧ݒ ݐ                  ൑ ͵Ͳ߶ଷݔ௧ െ ʹ ൅ ௧ݒ ݐ          ൐ ͵Ͳ              (20) 

where ݔ௧ ǡ ߱ the scale parameters ,ݐ ௧ are respective the state and observation at timeݕ ൌ ͲǤͲͶ, ߶ଵ ൌ ͲǤͷ, ߶ଶ ൌ ͲǤʹ and 

߶ଷ ൌ ͲǤͷ  , the process noise ݑ௧  is a Gamma ࣡ܽሺ͵ǡʹሻ 
random variable and the observation noise is Gaussian ݒ௧ ׽ ࣨሺͲǡ ܴሻ. 

To carry out the O2+ inference (default), inversing Eq. 
(20) after taking off the unknown noise item ݒ௧ , we have  ݔො௧ ൌ ൝sgnඥȁݕ௧Ȁ߶ଶȁ           ݐ ൑ ͵Ͳ௬೟ାଶథయ ݐ                            ൐ ͵Ͳ (21) 

where sgn stands for sgnሺͳ ൅ sinሺݐߨݓሻ ൅ ߶ଵݔො௧ିଵሻ. To note 
here, the state transition noise is useless. 

If the observation noise ݒ௧ is available, the proposed MC 
debiasing strategy can be further applied for the nonlinear 
inversing calculation when ݐ ൑ ͵Ͳ. That is, we have  ݔො௧ ൌ sgn ൈ ଵூ σ ቆටห൫ݕ௧ െ ௧ሺ௜ሻ൯Ȁ߶ଶหቇூ௜ୀଵݒ ݐ   ൑ ͵Ͳ (22) 

where ܫ ൌ ͳͲͲ. 
A series of filters are employed for comparison that 

include extended KF (EKF), Unscented KF (UKF) [28], the 
SIR PF, the PF that use EKF and UKF separately as the 
proposal [23]. We use 200 particles for the PF and we use 
the initial state variance as  ͲǤ͹ͷ  for the EKF/UKF. The 
unscented transform parameter is set as ߙ ൌ ͳǡ ߚ ൌ Ͳǡ ߢ ൌ ʹ 
(the same as used in [23]). The true state and the initial 
unbiased estimate of all filters are all starting from ݔଵ ൌ ͳ. 
Here, no initialization error is applied for all filters. Since 
UKF/EKF cannot be used directly for this Gamma noise, we 
assume equivalent variance 0.75 as alternative for them, i.e. 
they admit a modeling error/bias of 1.5 of the process noise, 
as ࣡ܽሺ͵ǡʹሻ is of mean 1.5, variance 0.75. This corresponds 
to the real life situation where the processing noise is 
unknown and has not be estimated correctly when a filter is 
employed. But, the PFs use the correct model and 
parameters (via weighted particles for approximation). They 
represent respective realistic and ideal cases for filtering. 

To capture the average result, 100 MC runs are performed 
with random re-initialization for each run, generating much 
large RMSE variance for the O2 inference. Each run consists 
of 60 time-steps. We first set ܴ ൌ ͲǤͲͲͲͲͳ. These are the 

default parameter settings in many publications. The true 
state and estimates given by different filters for one run are 
plotted in Fig.3. In particular, as shown in Fig.3, if the 
simulation is properly assumed that the state is known to be 
always positive, the sign for the estimate can just be set as 
positive and no separate sign estimation is needed. Then, the 
O2 inference will computer faster. This, however, puts the 
O2 inference in a favorable situation, otherwise the sign can 
cause significant problems [21]. 

The RMSE of different methods are plotted in Fig.4. The 
mean and variance of RMSE over time and the computing 
time of each method are given in Table 1. It shows that the 
O2 method (whether biased or unbiased) has outperformed 
all the filters by several orders of magnitude in terms of both 
RMSE and computing speed, which indicates these filters 
are actually useless for this model for the specified 
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parameters. The unbiased O2 inference outperforms the 
biased O2 inference slightly, indicating that the bias caused 
by the inversing calculation is insignificant, through really 
exists. According to our knowledge, such a good result 
exhibited by the O2 inference has never been reported before 
(except when a huge number of particles are used for 
particle filtering, it can perform comparably), although 
many filters have been proposed to apply to this model.  

Furthermore, for a range of different observation noise 
variances ܴ ൌ ሾͲǤͲͲͲͲͳǡͳͲͲሿ, the average RMSE (mean) is 
given in Fig.5. It can be seen that (approximately): 
when  ܴ ൏ ͲǤͲͶ , all these filters are ineffective; 
when  ͲǤͲͶ ൏ ܴ ൑ ͳ, PF is effective while others are not; 
when ʹ ൏ ܴ ൏ ͶͲ, PF, UKF and EKF are effective while 
the EKPF and UKPF are not; when ͶͲ ൏ ܴ, all filters used 
become effective. The simulation results just indicate that 
these filters can be easily underperform to the simple O2 
inference on this particular model, regardless that the 
straightforward O2 inference is much computationally faster 
than any filter. This not unique. More simulation results and 
discussions can be found in [21]. This is a critical fact that 
shall not be omitted but instead great cautions shall be paid 
to the effectiveness of filters: It is not always advisable to 
apply the Bayesian filter especially when the unknown 
system cannot be modelled correctly or much approximation 
has to be used. 

Table 1 Performance of different filters and the O
2
 inference 

 RMSE Computing time 
(s) mean variance 

EKF 0.353 0.181 0.008 
UKF 0.277 0.113 0.035 
SIR(PF) 0.554 0.090 1.845 
EKPF 0.353 0.188 3.793 
UKPF 0.240 0.089 9.512 
O2 inference 0.005 1.085×10-5 7.23×10-5

Unbiased O2 inference 0.005 1.083×10-5 4.26×10-4 

 

 
Fig.3 The true state and estimates of different estimators 

 
Fig.4 RMSE of different estimators of 100 MC runs 

 
Fig.5 Average RMSE of different estimators of 60 stepsൈ100 

MC runs for different observation noise variances 

5 Conclusion 

This paper presents a non-Bayesian solution for dynamic 
state estimation, referred to as the observation-only (O2) 
inference, which infers the state directly from the 
observations regardless of the state transition process. In 
addition, a Monte Carlo sampling-based debiasing approach 
is proposed for unbiased nonlinear O2 inference.  

Good filtering results require correct and accurate models 
and few system disturbances and little approximate 
otherwise the filter does not guarantee a benefit as 
compared to the O2 inference and plus (O2+). We have 
quantitatively investigated when and why the Bayesian 
filter does not give a more accurate estimation than the O2 

inference from the information fusion perspective, which is 
further demonstrated by the simulation on a typical filtering 
model. Arguably, the filter is not always preferable. 

While the posterior CRLB provides a lower bound on the 
mean-square error of any “unbiased” estimator of the 
random parameter, the O2 takes a more practical approach 
by setting a higher bound on the mean error of any 
“effective” estimator. Our future work includes extending 
the O2 inference for state prediction and the multi-sensor O2 
inference for multi-target tracking in cluttered environment. 
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