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Abstract - In this paper, we consider a special multi-source 

data clustering problem for which the data-points from the same 

source cannot be grouped into the same cluster, namely cannot 

link (CL) constraint, and the sizes of the generated clusters are 

subject to maximum thresholds. No prior information is given 

about the level of clutter (namely noisy data) or the number of 

clusters. Particularly, the clusters might be closely distributed in 

the space (overlapping clusters) with one another and have to be 

carefully partitioned to meet the CL constraint. This particular 

CL constrained data mining problem corresponds to a 

significant problem of multi-sensor data fusion (MSDF) raised 

in the multi-target detection context. A novel clustering method 

as well as the online parameter learning procedure is proposed 

for this particular dataset model. Clustering results are provided 

to demonstrate the validity of the present approach. 
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1 Introduction 

One of the most fundamental tasks in data mining is to 

identify manageable, meaningful groups of data-points of 

“similar” or “relatively homogeneous” attributes/features, 

as well as to exclude noisy data, namely cluster analysis or 

clustering, where a group that contains similar data-points is 

called a cluster. In the past several decades, clustering has 

been a very active and vibrant research topic and is still 

experiencing very rapid growth. Simply for numerical data, 

there are many algorithms proposed based on different data 

models, including the popular hierarchical methods [1, 2], 

k-means clustering [2], spectral clustering [3], subspace 

clustering [4] and density-based clustering [5, 6], just to 

name a few. In this paper, we are interested in an efficient 

clustering approach for multi-sensor data fusion (MSDF) 

raised in the multi-object detection problem.  

Clustering is usually taken as “unsupervised” as no 

information is available concerning the association of data 

items to any predefined group. Nevertheless, in many 

problems including the multi-sensor data fusion problem to 

be solved in this paper, more or less a prior information is 

available and therefore can benefit the clustering; see semi-

supervised clustering [7]. The semi-supervised clustering is 

demonstrated to be more effective and efficient in which, 

one would like to take into account all the available 

information [1]. Clearly, a prior information such as the 

potential number of clusters is critical both to the clustering 

results and to the clustering speed. For example, if the 

number of clusters, namely the parameter  ݇ , can be 

correctly predefined, the ݇ -means will be particularly 

preferable for many cases [2]. Cluster center initialization 

can also significantly affect the speed of convergence and 

the final output [8, 9].  

Particularly, must link (ML) and the converse cannot link 

(CL) constraints, may be specified/applied for encoding a 

prior knowledge, namely constrained clustering. The former 

corresponds to the requirement that two objects should be 

assigned to the same cluster label, whereas the cluster labels 

of two objects participating in the latter should be different. 

The addition of constraints allows users to incorporate 

domain expertise into the clustering process by explicitly 

specifying the desirable properties in the final clustering 

outcome, e.g. constrained k-means clustering [10], 

constrained hierarchical clustering [11] and the graph-cut 

based clustering with cluster size (value of the cluster) 

constraint [3],  see also [12, 13, 14].  

In this paper, we are facing with a multi-source dataset in 

which the data originates from ݊  i.i.d (independent and 

identically distributed) sensors, leading to a strong CL 

constraint that the data from the same source cannot be 

grouped into the same cluster. In other words, all the data in 

the same cluster must belong to different sources while 

data-points from the same source have to be partitioned into 

different clusters even they are very closely distributed. 

This multi-source data clustering (MSDC) problem is 

extracted from a significant engineering problem involved 

in multi-sensor multi-target tracking [15, 16]. All the sensor 

data except an unknown number of outlier belong to an 

unknown number of clusters, each of which corresponds a 

target of interest. This multi-source i.i.d problem is different 

to and more specific than the similar-called multi-

source/view or subspace data clustering problem proposed 

in [17-20], where the i.i.d condition does not hold and that 

data from different sources/views can be heterogeneous. 

The CL constraint will significantly affect the clustering 

output. As a result, the size of the cluster ܥ (i.e. the number 

of data-points in the cluster) is subject to an upper threshold 

(ȁܥȁ  ݊). Data-points from the same source have to be 

partitioned into different clusters if they are very closely 

distributed (namely overlapping clusters).  

This multi-source CL constraint here is different to the 

traditional data point-pairwise CL instance constraint [10-

14]. It resembles somewhat semi-supervised learning [7, 

21], although differently in that training is carried out. 

Particularly, overlapping clusters are involved if the 

corresponding targets are closely distributed. In existing 
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research, mixed data between them are to be considered as 

outliers, to belong to one or multiple clusters or to belong to 

a given cluster to a certain degree; see [22-24]. All of these 

however do not meet our requirements subject to the multi-

source CL constraint. 

Despite that several attempts have been made to employ 

mature clustering approaches within filtering [25] and target 

detection [26, 27] and to address a variety of sensor fusion 

issues [28], they offer no solution for this particular CL 

constrained MSDF problem. This paper aims to formulate 

this problem and proposes a novel clustering method as 

called multi-source n-points clustering.  

The rest of the paper is organized as follows. Section 2 

formulates the clustering problem model. Section 3 presents 

the n-points clustering idea. The simulation results and 

discussion are shown in Section 4. Finally, Section 5 

concludes the paper. 

2 Problem formulation 

2.1 Multi-source data fusion 

We start from an interesting multi-source data fusion 

problem raised in the task of multi-target detection in the 

planar position space. Consider that a sensor is used to 

monitor a scenario containing an unknown number of 

targets of interest e.g. infrastructures or crops in remote 

sensing images or diseased cells or cracks in X-ray 

scanning tomographic images, to name a few. This scenario 

can be modeled by the following assumptions: 

(A.1) each target generates observation reports (data-points 

of interesting) independently of others and one target 

generates no more than one observation at each scan; 

this forms the CL constraint that observation reports 

in the same scan are independent of each other and 

cannot be linked. 

(A.2) the observations generated from targets are coupled 

with unimodal noise, e.g. zero-mean Gaussian;  

(A.3) the sensor may miss-detect targets with a probability 

(miss-detection probability) that is often related with 

the distance between the target and the sensor; 

(A.4) there is clutter within the observations received by the 

sensor, which are noisy observations generated from 

no target; the clutter is assumed to be generated 

randomly, independently of the targets, having a 

local distribution density that is significantly lower 

than the density of the observations of targets around 

the true position of targets. 

Given that the targets are stationary against time, the 

observations received at different scans are independent and 

identically distributed (i.i.d.). The i.i.d. condition can be 

relaxed to accommodate a scenario where targets are 

moving with a relatively low speed that is insignificant as 

compared to the scanning frequency of the sensor 

(therefore, their movement is very small between different 

scans, similar to the case of static targets), or where massive 

homogeneous sensors are used to scan the scenario 

synchronously and their observation noise on the same 

target are approximately equivalent, e.g. [15, 16]. We do 

not intend to detail these scenarios, which would distract 

from the main contribution of this paper. Both i.i.d. multi-

scan and multi-sensor can be collectively referred to as 

multi-source. The problem is referred to as CL-constrained 

MSDF for which the observations from the same source 

cannot be associated to the same target. To solve this 

problem, we propose a novel CL-constrained clustering 

method for which the input data-points from the same 

source cannot belong to the same cluster.  

For instance, Fig. 1 gives the real observation reports of 

different targets (colored data-points) and clutter (black 

data-points) collected in 50 sources under assumptions 

(A.1-4), which can be mapped into the same planar x-y 

space as shown in Fig.2 (a). The goal of the required 

clustering is to distinguish these groups of observations 

from each other and from the clutter, as shown in Fig.2 (b). 

The number of targets and their positions can then be 

further estimated [15, 16], which is beyond the scope of this 

paper. Here we are only interested in associating the 

observation data-points into different clusters corresponding 

to different individual targets.  

Intuitively, the observations of a particular target are 

subject to a unimodal distribution and so will concentrate 

locally (around the true state of the target) while the clutter 

will not. Therefore, the data distribution density as well as 

the CL constraint form the two key factors to partition the 

observations of targets from clutter and from that of each 

other in our approach. 

2.2 Problem formulation 

The MSDF problem can be formulated as a strict CL-

constrained clustering problem. Consider a dataset ܺ 

consisting of data points ݔ ൌ ሾݔଵǡ ଶǡݔ ǥ ǡ ௗሿݔ א ܲǡ ݅ ൌ ͳǡ ǥ ǡ ܰ      (1) 

where  ݀  is the dimensionality, ܲ  is the parameter space, ݔ א ܲ  is the ݅ th attribute or feature, ܰ  is the number of 

data-points to be clustered. It should be noted that the data-

points are not specified to be numeric or categorical values. 

However, in this paper we focus on the spatial data-points 

defined on numeric values. 

The dataset can be written with respect to the source. 

Denoting all the data-points from the ݏ th source as  ܵ௦ ൌ൛ݔଵ௦ǡ ଶ௦ǡݔ ǥ ೞ௦ݔ ൟ where ݉௦ is the number of data-points in the ݏth source, the multi-source dataset can be written as  

 ܺ ൌ ሼ ଵܵǡ ܵଶǡ ǥ ܵሽ ൌ ൛ݔଵଵǡ ଶଵǡݔ ǥ భଵݔ ǡ ଵଶǡݔ ଶଶǡݔ ǥ మଶݔ ǡ ǥ ǡ ଵǡݔ ଶǡݔ ǥ ݔ ൟ   (2) 

where ݊ is the number of sources (scans or sensors as stated 

in the MSDF). The i.i.d. condition specifies that different 

sources of data-points are (approximately) subject to the 

same spatial distribution, to say ݍ, written as  ǣ ݏ א ሼͳǡʹǡ ǥ ǡ ݊ሽǡ ܵ௦̱(3)        ݍ 

The goal of clustering here is to assign the data-points 

from different sources to a finite number of ݇  subsets 

separately, called clusters ܥଵǡ ଶܥ ǥ ܥ . Particularly, the CL 

constraint asks for that 
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ǡ݅ ݆ א ሼͳǡʹǡ ǥ ǡ ݉௦ሽǡ ݏ א ሼͳǡʹǡ ǥ ǡ ݊ሽǣ ܿஷሺݔ௦ǡ  ௦ሻ  (4)ݔ

where ܿஷሺݔ௦ǡ ௦ሻݔ  means that ݔ௦ǡ ௦ݔ cannot belong to the 

same cluster. To realize this, the distance between data-

points from the same source can be re-defined as infinite. 

It is necessary to note that there are often noisy data-

points (called clutter) that shall be excluded and shall not be 

associated to any target. Here, we refer to all of these noisy 

data-points as a set of outliers ܥ. The union of these subsets 

is equal to a full data set: ܺ ൌ ଵܥ  ଶܥ  ǥ  ܥ               (5)ܥ

Moreover, these subsets do not interact in our approach, i.e.  ݅ǡ ݆ א ሼͳǡʹǡ ǥ ݇ǡ ሽǣ ܥ ת ܥ ൌ  (6)          ߔ

But, this is violated in some other clustering methods.  

As addressed so far, the clustering goal can be described 

as to group the multi-source data given in (2) to the multiple 

clusters given in (5) while satisfying the CL constraint (4) 

and non-interacting condition (6). Given that the distance 

between two data-points from the same source is defined as 

infinite (to include the CL constraint), the partitioning of 

the oversized cluster shall maximally minimize the distance 

sum between points within the same cluster. In addition to 

the CL constraint, another challenge for clustering comes 

from the unknown number of clutter and targets/clusters. 

Particularly, the clutter could be significant as the number 

of noisy data can be larger than that of the real data. 

2.3 CL constraint and the size of clusters 

The CL constraint (4) will limit the number of data-

points in each cluster (namely the size of the cluster) to an 

expected level, which cannot be larger than the number of 

sources. That is, the sizes of the generated clusters have to 

be subject to constraints  ݅ א ሼͳǡʹǡ ǥ ݇ሽǣ ȁܥȁ د  ݊         (7) 

whereȁܥȁ  means the number of data-points in cluster ܥ , 

namely the size of the cluster, د   means being slightly 

smaller than or equal to, and ݊ is the upper limit which can 

be specified as the total number of sources. As one cluster 

corresponds to one target, the notation ݅ can also be used to 

index a target. 

More precisely, we can estimate the expectation of the 

size of each cluster, namely the number of observations 

received from each target ݅ (more precisely to say, target at 

position ݅). With regard to the general condition (A.3), we 

denote the detection probability of the sensor on target ݅ as ሺ݅ሻ   ͳ which is usually a function defined on the 

position of the cluster/target, then we can statistically have  ܧሺȁܥȁ ሻ ൌ ሺ݅ሻ ൈ ݊          (8) 

Since the accurate position of targets is unknown, ሺ݅ሻ is 

roughly estimated based on the potential area containing 

target ݅. In a simple case, the detection probability of the 

sensor ሺ݅ሻ  is a constant that is independent of 

targets/clusters, i.e.݅ǡ ݆ א ሼͳǡʹǡ ǥ ݇ሽǣ ȁሻܥሺȁܧ  ൌ   .ห൯ܥ൫หܧ

The challenge arising in the multi-sensor case is that the 

view-scopes of the sensors can be different, causing a 

different number of sensors observing different areas with 

interaction. Denoting the total number of sensors as ݊, the 

number of the sensors whose view fields cover area/cluster ݅ 
as ݊ and the detection probability of sensor ݏ in the area of 

target ݅ as ǡ௦ሺ݅ሻ   ͳ, (8) will be extended to  ܧሺȁܥȁሻ ൌ σ ǡ௦ሺ݅ሻ௦ୀଵ  ݊           (9) 

This accommodates a more general case for different-

positioned heterogeneous sources.  

Owning to the CL constraint, a cluster has to be divided 
into multiple individual sub-clusters if its size exceeds 

threshold ݊ . Here in our approach, the number of sub-

clusters in each connected area/cluster ܥ is estimated as 

 ݇ ൌ ቂ ȁȁாሺȁȁሻቃ              (10) 

where ሾȉሿ represents the rounding operation which gives the 

nearest integer to the content. In practice without exact 

knowledge of ሺ݅ሻ or ǡ௦ሺ݅ሻ to calculate ܧሺȁܥȁሻ as given 

in (8)/(9), one can use the average number of data-points 
that are both from the same source (for all sources) and 

grouped into the cluster ܥ, to estimate the number of sub-
clusters that shall be formed. This can be written as  ݇ ൌ ቂ ଵ σ หሼݔ௦ȁ݆ א ሼͳǡʹǡ ǥ ݉௦ሽǡ ௦ݔ א ሽห௦ୀଵܥ ቃ     (11) 

Figure 1.   Multi-source i.i.d data (black dots represent clutter 
while different colors mark observations of different targets) 

Figure 2. Multi-source i.i.d data mapped in the planar space (a) 
all the data (b) desired clustering result (ground truth)  
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This is very helpful to determine the number of close-

distributed targets. 

In both calculations of (10) and (11), the parameter ݊ is 

needed which does not need to be very accurate when the 

level of clutter is low and targets are well distant from each 

other. Generally, ݊ is known or can be approximated on 

basis of the known configuration of the sensors including 

their located positions and observing scopes. The following 

section will detail the proposed CL constrained n-points 

clustering method with an online learning method to 

estimate the key required parameter. 

3 Multi-source n-points clustering 

3.1 Proposed clustering solution 

As previously mentioned, a key piece of information that 
can be employed to cluster the data is the distribution 
density of the data-points, for which the data-points that 
concentrate significantly locally are more likely to be the 
observations from targets; this inherently resembles the 
density-based clustering in that clusters are high density 
regions in the feature space separated by low density 
regions. In addition, the CL constraint (4) has to be taken 
into consideration. Overall, we propose a more efficient 
clustering solution based on the CL constraints (10) or (11) 
as shown in Algorithm 1, consisting of two steps 1) 
searching across sources to identify different groups of 
closely connected data-points, and 2) for each group of an 
adequate number of connected data-points (e.g. more 

than ͲǤͺ ൈ  ȁሻ), determining whether to form it as aܥሺȁܧ

single cluster or divide it into multiple sub-clusters. 
To carry out the first step, which connects closely 

distributed data-points across different sources, a distance 

parameter ݀ is needed to distinguish close data-points from 

clutter, where ݅ indicates different clusters/targets.  

Remark 1. Parameter ݀ corresponds to the maximum 

distance between a data-point and its neighbors from the 
other sources for their direct connection to be included in 
the same cluster, which can be determined with respect to 

the standard deviation ߪ of the cluster distribution, e.g. ݀ ൌ ሺͳ̱͵ሻߪ where ߪ corresponds to the magnitude of the 

noise affecting the observation on target/cluster ݅. Clearly, 

the larger the observation noise, the larger  ݀ . If the 

observation noise is infeasible in practice, a constant value 
can be estimated from the dataset as shown in section 3.2 
but there is no clue/information to specify different values 
for different clusters/targets.  

To conduct the CL constraint in the second step, a 
detection of the number of data-points in each cluster shall 
be applied to distinguish and further partition oversized 
clusters into several sub-clusters as the final output.  

Remark 2. Given the number of sub-clusters to divide 
from an oversized cluster as shown in (10) or (11), existing 
clustering methods such as k-means are readily able to 
obtain sub-clusters of approximately equivalent size. 
However, this might violate the CL constraint somewhat as 
data-points from the same source might be grouped into the 
same sub-cluster. Therefore, we must apply the CL 

constraint (e.g. by setting the distance between two data-
points that are from the same source as infinite) in the 
clustering process using e.g. the CL constrained k-means 
[10] to avoid violating the constraint.  

By using the presented procedure, the clustering results 

for the data-set given in Fig.1 are shown in Fig.3. In the 

figure, clustered data-points are circled with different colors. 

Again, the color of the circles are independent of the color 

of the data-points. As can be seen, the results appear very 

reasonable. Particularly, it is possible to distinguish 

between the overlapping clusters (red and blue), although 

there are a few mismatching data-points. 

Algorithm 1 multi-source -points clustering 

  

Step 1: Calculate the distances between any two data-
points from different sources in the parameter space. Two 
data-points will be identified as connected and classified 

into the same group ܥ if their distance is smaller than a 

threshold vector ݀; see Remark 1 and Algorithm 3. Any 

group ܥ containing more than ͲǤͺ ൈ ȁሻܥሺȁܧ  data-points 

forms a cluster; here the parameter 0.8 is only a reference 

and can be chosen roughly between ͲǤ̱ͲǤͻͷ. 

Step 2: Calculate (10) or (11) for each cluster obtained in 

the first step. If ݇  ʹ, the ‘oversized’ cluster has to be 

further partitioned into ݇  sub-clusters based on the CL 

constraint; see Remark 2 and Algorithm 2. 
 

 

Algorithm 2 Partitioning overlapping clusters 

  

Step 2.1 Identify the source ܵ that contributes the least 

number of data-points to the underlying oversize cluster 

Step 2.2 Starting from a data-point in source ܵ, associate it 

with the nearest data-points in all the other sources to form a 

group; assuming the group has ݊ data points in total, it 

forms a new sub-cluster if and only if ݊  ͲǤͺ ൈ  ;ȁሻܥሺȁܧ

Step 2.3 Repeat Step 2.2 till all the data-points in source ܵ 

are grouped into separate sub-clusters; 

Step 2.4 Do Step 2.1-2.3 in the rest sources excluding ܵ. 

Step 2.5 The procedure stop when totally ݇ sub-clusters 

are formed. 

 

3.2 Online estimating parameter ࢊ 

A constant value of the threshold ݀ can be estimated 

through unsupervised learning of the data; see algorithm 3 

given below. This is calculated as:  ݀ ൌ minאሼଵǡଶǡǥǡಽሽ൫ ݀ሺܶǡ  ሻ൯          (12)ܮ

where ܮ ൌ argmaxȁ ܵȁ                     (13) ݀ሺܶǡ ሻܮ ൌ ܶth min א൛ଵǡଶǡǥǡൟאሼଵǡଶǡǥǡሽǡஷ ݀൫ݔǡ ݔ ൯  (14) 

where ܮ represents the source containing the largest number 

of data-points, ܶthminǡ ௦Ǥ௧Ǥ  ீ ݀ሺݔǡ ݔ ሻ  gives the ܶ th 
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smallest value of the Euler distance ݀൫ݔǡ ݔ ൯ between 

data-points ݔ  and ݔ  in the parameter space for any ݉ǡ  

satisfying condition ܩ.  

Given that the neighbors are ranked according to their 

distances to the underlying data-point, parameter ܶ specifies 

one of the neighbors for calculating its distance to the data-

points as an average estimate of the “neighbor distance” (it 

resembles the neighbor radius parameter ߳ used in 

DBSCAN). ܶ does not need to be precise and as a rule of 

thumb it can be chosen between max ቀହ ǡ ʹቁ and ͲǤͻ ൈ ݊ , 
e.g. ሾ݊Ȁʹ ሿ or even just a constant number e.g. 5. For 

instance (choosing ܶ ൌ ͷ), the rank of ݀  (as defined in Step 

2 of Algorithm 3) for the dataset given in Fig. 1&2 is given 

in Fig.4. As shown, the minimum ݀ሺܶǡ  . ሻ  is roughly Ǥܮ

Therefore, we can choose ݀ ൌ ͷ̱ͺ.  

Algorithm 3 Estimating the distance threshold ݀ 

  

Step 1 Identify the source ܮ that contains the most data-

points ܮ ൌ argmaxȁ ܵȁ . 
Step 2 Calculate the distances of each data-point of ܵ to 

its ܶ nearest data-points from the other sources, denoting the 

largest of them as ݀ ǡ ݆ ൌ ͳǡʹǡ ǥ ǡ ȁܵȁ;  
Step 3 Rank ݀  for all data-points from ܵ, obtaining the 

minimum value  min ݀  which can be estimated as the 

required ݀.  

 

3.3 Null/Full cluster 

It is possible that all the data-points are clutter in the 

scenario or, conversely, are from a single target. If the 

parameter ݀  is (approximately) given, it will be easy to 

identify them, as very few data-points can be clustered if all 

the data are clutter or almost all the data-points will be 

clustered to one if all the data-points are from the same 

target. However, if the parameter ݀  is not given, it is a 

dilemma to distinguish them unless further information 

about the level of clutter is provided. Here, we have omitted 

this rare situation in our current work as we will treat this 

dilemma to be no cluster existing (full of clutter).  

4 Simulations 

Although existing clustering methods offer no explicit 

mechanism to deal with the multi-source CL constraint, we 

still implement typical DBSCAN and k-means methods in 

their best possible parameter setting for comparison with 

our multi-source (MS) n-points clustering.  

4.1 Given parameter ࢊ 

For the k-means clustering, the correct parameter ݇ ൌ  is 

used, which puts its performance into the best possible 

situation. Furthermore, the parameter k is known to be hard 

to choose when not given by external constraints and is very 

critical to the clustering performance. Automatically 

determining the number of clusters has been one of the most 

difficult problems in data clustering. Most methods focus on 

model selection or matching. In practice, clustering 

algorithms are run with different values of k; the best value 

of k is then chosen based on a predefined criterion [29, 30]. 

The DBSCAN needs two parameters ߳ and ݉. Parameter ߳ gives the neighborhood radius for which we set it as ߳ ൌͳͲ. Parameter ݉ gives the minimum number of points in a 

neighborhood for its inclusion in a cluster for which we 

adopt two different values ݉ ൌ ʹǡ Ͷ. The simulation results 

for ݊ ൌ ʹͲǡ ͷͲ are given in Fig.5 and 6 respectively. The 

color of the circles (which represents different clusters) are 

assigned randomly in each run and is independent of the 

color of the data-points (which represents the true clusters 

for different individual targets). 

The results show the obvious advantage of our approach 

over other methods which are unable to deal with 

overlapping/hinged clusters. Particularly, the basic k-means 

is unable to efficiently deal with clutter and is insensible to 

the density of data-points. Advanced implementations of 

the basic k-means and DBSCAN based on the multi-source 

constraint might achieve much better results but will also 

cause more computation.  

The average computing time of different clustering 

methods over 100 Monte Carlo trials is given in Table 1 for 

the dataset given in Fig.5 and 6. It shows that the proposed 

CL constrained n-points clustering is somewhat slower than 

the others but is still quite fast. Regarding that the CL 

constraint that has been fully satisfied, the proposed 

clustering approach is arguably computationally fast. 

 
Figure 3. Clustered data-points (circle ‘o’ with different 
color), corresponding to Fig.1 & 2. 

 

Figure 4. Rank of ݀, corresponding to Fig.1 & 2 
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Table 1 Computing time of different clustering methods (s) 

 k-means DBSCAN 2 DBSCAN 6 MS n-points

Fig.5 0.0075 0.0156 0.0119 0.0436 

Fig.6 0.01363 0.0422 0.0399 0.0834 

 

4.2 Unknown parameter ࢊ 

Based on the same dataset as given in the last section, we 

assume that parameter ݀ is unknown in the proposed multi-

source n-points clustering, which has to be learned online 

through algorithm 2 from the dataset. The upper and bottom 

sub-figures of Fig. 7 give the distribution of ݀  for the 

Figure 5. Outcomes of different clustering methods on data from 20 i.i.d sources 
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Figure 6. Outcomes of different clustering methods on data from 50 i.i.d sources 
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dataset shown in Fig. 5 ( ݊ ൌ ʹͲ ) and 6 ( ݊ ൌ ͷͲ ) 

respectively. The outcomes for estimating parameter ݀ are 

approximately 6.6 and 4.6 respectively. Based on these 

estimates, the clustering results of the multi-source n-points 

clustering are given in Fig. 8. Compared with the results 

shown in the last section, the estimated parameters are 

shown to be suitable and well qualified to provide good 

clustering results, which is very close to the results shown 

in Fig.4 and 5. This demonstrates that our online learning 

procedure for parameter ݀ is effective. 

 
Figure 7. Rank of ݀, w.r.t. Fig.5 and 6 respectively 

 
Figure 8. Clustering results using online learned 

parameter ݀ 

5 Conclusion 

We have established a multi-source data fusion-oriented 

clustering model where the data are coming from different 

sources and the data from the same source cannot group 

into the same cluster (namely cannot link constraint). The 

dataset may be affected by a high level of clutter (namely 

noisy data), clusters may be overlapped with each other and 

there is no prior information about the number of potential 

clusters, posing significant challenges for cluster analysis.  

Based on this particular albeit significant problem, a new 

multi-source n-points clustering approach is proposed 

which resembles the density-based clustering algorithms in 

which clusters are high density regions in the feature space 

separated by low density regions (of clutter). Particularly, 

the proposed clustering method is able to partition closely 

connected clusters based on the source-label of data-points 

reasonably and accurately. In addition, an online learning 

procedure is proposed for estimating the key parameter 

required by the clustering approach, thus allowing the 

clustering method to be used for more general cases with 

little prior knowledge. Simulation results on synthetic data 

are presented to demonstrate the validity of the present 

approach with either known or unknown parameter.  

The proposed clustering method has a unique potential 

for massive sensor data fusion to carry out multi-target 

detection and state-estimation in dynamic cluttered 

environments. Our future work will employ the proposed 

multi-source n-point clustering method for the challenging 

problem of multiple (massive) sensor multiple (massive) 

object detection and estimation. 
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