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Abstract—Scene classification is often solved as a machine
learning problem, where a classifier is first learned from training
data, and class labels are then assigned to unlabelled testing
data based on the outputs of the classifier. In this paper, we
propose a novel scene classification framework that uses both
training data and open resources on world wide web. This
framework is inspired by human’s capability to use external
knowledge such as reference books or Internet when classifying
something ambiguous or unknown. Specifically, we bring in the
web resources in the form of text to aid visual recognition tasks.
Both the classifier learned from training data and knowledge
extracted from web resources are conclusive factors in the scene
classification. Experimental results show that the new framework
can improve scene classification accuracy by 9%.

Keywords—scene classification, information fusion, web re-
sources, heterogeneous data.

I. INTRODUCTION

In this paper, we consider the problem of scene classifi-
cation, which is an important issue in many fields such as
robotics and Unmanned Aerial Vehicle (UAV). Scene clas-
sification is often solved as a machine learning problem. A
machine learning-based scene classification system consists
of two main components, namely feature extraction and pat-
tern classification. In previous studies, a number of feature
extraction methods based on low-level bag-of-features (BoF)
[1] have been proposed (e.g., SIFT [2], GIST [3], etc.). Li
et al. propose Object bank [4] as high-level image features
in terms of the semantic meanings. In recent years, effective
sparse coding based Spatial Pyramid Matching (SPM) [5],
and its variants such as Sc+SPM [6], LScSPM [7], LR-
Sc+SPM [8], and CCLR-Sc+SPM [9] have received con-
siderable attentions. Although substantial progress has been
made in scene classification using single feature space, recent
research has shown that fusion of multiple feature spaces could
significantly improve classification performance. Most existing
fusion models are in feature level. Transfer learning methods
such as self-taught learning [10] and heterogeneous transfer
learning (HTL) [11] have been proven to be effective and
helpful. For instance, HTL aims to build a bridge to transfer the
knowledge of heterogeneous data from the web. Nevertheless,
the feature level fusion method for scene classification has
some limitations. It is generally acknowledged that the scene
classification performance deteriorates with the increase of
semantic difficulty within images. In addition, the performance
of some feature level fusion-based models is limited by the la-
tent feature representation as the difference of image properties

Scene Category: bocce Scene Category: croquet

Objects: 

grass, people, ball

Objects: 

grass, people, ball, tree, mallet

Fig. 1. Two similar but different scenes, bocce and croquet.

in terms of shape and appearance may be ambiguous in latent
feature space.

Suppose we are given two visually similar but semantically
different scenes “bocce” and “croquet”, as shown in Fig. 1, to
classify. The two scenes in the two images are ambiguous to
machines since both scenes contain some identical objects:
grass, balls, people, etc.. Moreover, the similar motion of
the people in the images makes the scene classification even
more difficult. Consequently, the classification accuracies of
the SPM method for the two classes in a 8-class scene
classification problem are as low as 42% and 48% respectively
[4]. In fact, classification of similar scenes like those in Fig.
1 is challenging even for humans, especially for those who
are not familiar with sport events. But humans naturally have
the capability to cope with unseen pictures and recognize
the scenes. One may ask: how do human brains outperform
machine learning-based approaches in recognizing ambiguous
or unseen scenes? This is a complicated question. The superb
performance of humans in recognizing ambiguous or unseen
scenes is partly due to their remarkable ability to collect
and amalgamate knowledge. For example, humans rapidly
think of adopting information on the Internet when they not
knowing the answer to general-knowledge problems [12]. In
particular, people tend to perceive the semantic meanings of
new observations by the aid of web resources if possible.
External knowledge not only helps reconfirm the original
judgements on ambiguous scenes but also enhance the human’s
capability to recognize even unknown scenes.

Inspired by human cognition [12] and the work in [13],
we proposed a new framework for scene classification. The
central idea is to use fusion of training images and auxiliary
text data extracted from resources on the Internet to improve
scene classification. Humans are naturally conscious of how to
properly coordinate and use the previous learned knowledge
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and the external knowledge in visual recognition. We thereafter
imitate the logic by the way of fusion of training data and
web knowledge in high level. The new framework trains an
additional combiner in addition to the image-based classifier.
This combiner adaptively combines the decision scores of the
training image-based and the auxiliary text-based classifiers.
Thus, the web text-based classification results literally con-
tribute to the original classification performance even after the
classifier training is done.

The human logic-based new framework consists of three
parts, including training image-based scene classification, web
text-based scene classification, and the fusion of the decision
scores of the two classifiers. Details of the new framework are
described in the following section.

II. A NEW FRAMEWORK OF SCENE CLASSIFICATION

A. Motivation and System Overview

A classifier learned from training data may mis-classify an
ambiguous or unseen scene. This is just like the scenario that a
man may fail to recognize such scenes if the decision is only
dependent on the prior experience/knowledge. However, the
man may ultimately recognize the ambiguous or unseen scene
by the way of searching and using supplementary materials,
such as reference books or web resources. This is because
human has remarkable learning ability to collect, analyze, and
amalgamate external knowledge. Human logic intentionally
searches for relevant text descriptions by browsing the scene
alike images in the books or on the Internet. The text descrip-
tions explicitly or implicitly contain some helpful information
(e.g., semantic categories). Combining the significant clues
found from the books and his original decision according to
his prior knowledge of scene fragments, the man is able to
update his classification decision, which is more likely to be
correct.

Inspired by human cognition, we propose a new framework
for scene classification as shown in Fig. 2. In this new
framework, classification of a scene is performed in three
steps. First, an initial classification is performed by the pattern
classifier learned from training images. Second, we search
similar images on the Internet, and extract text descriptions of
visually similar web images. Auxiliary scene classification will
be made based on the text descriptions. Last, a decision-level
fusion is performed. The fusion is actually done by applying
a pre-trained weight vector to pairwise concatenate image-
based and web text-based classification scores. The web text
helps disambiguation, which in turn leads to more accurate
and robust performance.

B. Training Image-based Scene Classification

As mentioned in Section I, a variety of feature extraction
methods have been proposed in the literature. SIFT has been
proven to be an effective descriptor capturing texture or
appearance features. Using appearance descriptors with the
image spatial layout, Bosch et al. [14] proposed a type of fast
dense SIFT descriptor: Pyramid Histogram Of visual Words
(PHOW) descriptor for appearance.

In this paper, we employ PHOW descriptor as the lo-
cal image descriptor because of its ease of implementation
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classification

Two results fusion
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p

t

Fig. 2. A flowchart of our framework for improving scene classification. This
model can be interpreted as the fusion of training data + web resources. The
classification results of a testing image are obtained from training data-based
classifier and web resources separately. The weighting parameter λp and λt

integrate the two classification results.

and superior performance. PHOW features are extracted at
multiple scales and quantized into M bins of visual words
using pyramid-based k-means clustering. In order to use high
dimensional discriminative features, we construct a sequence
of levels of the pyramid. Suppose that the pyramid level
l = 0, . . . , L, and the grid at level l has 4l cells. Multiplied
by the size of visual words, level 0 has M bins of the
histogram intersections, level 1 is represented by 4M bins and
so on. The final concatenated histogram has a dimensionality

of M
∑L

l=0 4
l. After the spatial pyramid representation is

formed, we match the image by computing a three dimen-
sional approximated histogram map for the Chi-Square kernel.
Thus, each histogram descriptor is expanded into a vector of
three dimensional outcome. Consequently, we should acquire

3M
∑L

l=0 4
l dimensional PHOW features in total.

After extracted from an image, the features are input to a
classifier. In this study, we use a linear support vector machine
(SVM) [15] classifier. Suppose the labelled training images
and unlabeled test images are from h classes, we thereafter
train a h-class SVM classifier to derive the decision scores
as expected outcomes. In particular, we implement one-vs-rest
(one-vs-all) linear SVM. In this approach, h binary classifiers
are employed, each of which separates class j, j = 1, . . . , h
from the rest h−1 classes. Once the SVM classifier is carefully
trained, the PHOW feature vector of a testing image is fed to
the h SVM classifiers. The outcome of this testing instance is a

h-dimensional vector p = [p1, . . . , ph]
T

, where pj denotes the

decision score of this testing sample belonging to the jth class.
Here, the classification results refer to the decision scores. In
general, the highest score max1≤j≤h {pj} reflects the correct
class the testing instance belongs to.

C. Web Text-based Scene Classification

In Fig. 1, we have shown two scene examples “bocce”
and “croquet”, which are visually very similar. The features
extracted from the images may not be sufficient to lead to
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Fig. 3. An example of the procedure of Google reverse image searches results
when n = 5. It is clear that the label information is in the image caption and
description. The label information in the form of text is circled in red.

correct classification. In this study, we propose to incorporate
information on the web to help, whenever the trained classifier
faces some challenges to assign a class label to a scene.
Web images are crawled according to local image query from
Google Images (website: http://images.google.com/). Google
Images is a web searching service that allows users to search
web image contents by image since 2011 (officially entitled
reverse image searches). Unlike traditional keyword-based im-
age query, the new features involve computer vision algorithms
and relieve the dependence of text information. Users search
by uploading an arbitrary image as their query.

Given a testing image, we upload this image as a query
to search visually similar images on the web using Google
Image. Fig. 3 shows the results of the Google Image search.
The returned images are sorted based on visual similarity. We
therefore retrieve the first n returned images. Fortunately, all
these similar images from web resources are already annotated
by the web pages or personal uploading. It is observed that
the semantic category, i.e. class label of each of the returned
images, might be contained in the captions or descriptions of
the images, as highlighted by the red cycles in Fig. 3. Thus,
the class label of the query image maybe extracted from the
tags or descriptions of the returned images. Next, we discuss
the procedure of class label extraction.

The class labels are the most interested information that we
seek. Class label information can be extracted by using natural
language processing (NLP) [16] techniques. Now we take the
images in Fig. 3 as examples to explain. The text information
including image captions and descriptions of the returned
images will be downloaded and stored as n documents. First,
the raw text is tokenized into a sequence of alphabetic and
non-alphabetic characters. Tokenization is followed by a pro-
cess of removing morphological affixes from words, called
word stemming. For example, snowboard is the word root
of snowboarding and snowboarder, and both of them will be
automatically transformed to snowboard after stemming. Next,
according to the classes of the training images, we make a
list of word roots of h image categories. Only the words
within the list will be retained in the stemmed documents.
Finally, we convert the collection of the documents into a
matrix by detecting the presence or absence of the words in

the list. We call this process as class label extraction. The
extracted class label information is in the form of a matrix
D = {dij} ∈ R

n×h, where dij takes value 1 or 0 to denote

the presence or absence of class label j in the ith document.
The text data processing is summarized as the first three steps
in Algorithm 1.

In contrast to the training image-based scene classifica-
tion, the web text-based scene recognition is performed in a
straightforward way. Since the web image-to-label matrix D
contains important class label information, the classification
decision scores can be explicitly derived from it. By taking the
average of every column of D, we obtain image-to-label vector

t = [t1, t2, . . . , th]
T

of the query image, where tj denotes the
decision score of the testing (query) image belonging to the
jth class. This corresponds to the last step in Algorithm 1.
The highest score max1≤j≤h {tj} indexes to the class that the
testing image belongs to.

Algorithm 1 Web Text Data Processing and Classification

Input: n returned documents of a testing image.
Output: Decision scores vector t of a testing image.

1: Tokenize raw text into a sequence and then stem the words.
2: Retain the stemmed words in the list of word radicals of

h image categories.
3: Detect the occurrence of the list words from the retained

documents and save it in the matrix D ∈ R
n×h.

4: Compute the decision scores t of the testing image by
averaging the nonzero rows in D

D. Fusion of Two Heterogeneous Components

In the proposed framework shown in Fig. 2, the training
image-based classification and web text-based classification
are fused at the decision level. The decision scores from
the h SVM classifiers and the decision scores extracted from
web resources are linearly combined. The linear combination
weight vector is learned through K-fold cross validation in the
present study.

Assuming there are N labelled training images from h
classes. In K-fold cross validation [17], the N training images
are partitioned into K parts. In each of the K repeats, one part
is used for validation, and k − 1 parts are used for training.
After completion of the K repeats, each of the N training
images has been used once as a validation image.

Assuming that the weight vectors for training image-
based decision scores and web text-based decision scores are
denoted by λp = [λp1, . . . , λph]

T and λt = [λt1, . . . , λth]
T

respectively, where λpi and λti denote the two weights of class
i. Different classes use different weights because the reliability
of training data and web resources of different classes might
be different.

As mentioned above, in K-fold cross validation, each of
the training data is used once as a validation data. When used
as a validation, the decision scores of image i are denoted by

pi = [pi1, . . . , pih]
T

and ti = [ti1, . . . , tih]
T

respectively. The
fusion result is a linear combination of ti and pi:

qi = [qi1, . . . , qih]
T , (1)
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where

qij = pijλpj + tijλtj , (1 ≤ i ≤ N). (2)

Weight vectors λp and λt should make qi be close to its

target yi ∈ R
h, which is a column vector with value 1 at

the cth position and 0 at other positions, and c is the class
label of image i. λp and λt can be obtained by minimizing
the following cost function:

J(λp, λt) =
1

N

N
∑

i=1

‖qi − yi‖
2
. (3)

By Defining

X =









p11 t11 0 0 . . . 0 0
0 0 p12 t12 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . pNh tNh









(4)

y =









y1
y2
...

yN









(5)

and parameter vector w = [λp1, λt1, . . . , λph, λth]
T , we can

rewrite Eqn (3) as:

J(w) = ‖Xw − y‖
2

(6)

Setting the gradient of (6) with respect to w to zero, yields:

w = (XT X)
−1

XT y (7)

Since w is the combined column vector of λp and λt parame-
ters alternating with each other, the weight vectors λp and λt

are retrieved respectively by simply reshaping w.

Given a testing image, the classification outcomes from
the training image-based classifiers and web resources are first

obtained: p′ = [p′1, . . . , p
′
h]

T
, t′ = [t′1, . . . , t

′
h]

T
. The decision

scores are then combined using the learned weight vectors λp

and λt:

q′ =
[

λp1p
′
1 + λt1t

′
1, . . . , λphp

′
h + λpht

′
h

]T
(8)

The classification decision is finally made by the highest
decision score in q′

c′ = arg max
1≤j≤h

q′j (9)

The above fusion procedure is summarized in Algorithm 2.

III. EXPERIMENTS AND RESULTS

In this section, we assess our image data and web resources
fusion model for scene classification using the benchmark
UIUC-Sport events dataset [18]. In order to verify the effective-
ness of our framework, we measure the experimental results
and compare our classification performance with other state-
of-the-art methods.

Algorithm 2 Fusion System Formulation

Input: N labelled training image data, decision scores matrix
T based on the web text of training data, a testing image,
decision scores vector t′ based on the web text of testing data.
Output: The classification decision c′ of a testing image.

1. Conduct a K-fold cross validation on N training data.

2. while k not exceed K

1: Perform a classifier on N/K training images and obtain

the decision scores matrix P(k).

2: Repeat computing for other K − 1 trails.

3. end while

4. Construct (4) using P and T and evaluate (6).

5. Solve the least squares estimate and obtain the weight vector
w denoted by (7).

6. Perform a classifier on the testing images and obtain the
decision scores vector p′.

7. Fuse p′ and t′ and retrieve the decision scores vector q′ by
applying λp and λt.

8. The final classification decision c′ is made by the highest
score in q′.

A. Dataset and Experiment Setup

The UIUC-Sport dataset contains 8 sports event categories:
rock climbing (194 images), badminton (200 images), bocce
(137 images), croquet (236 images), polo (182 images), rowing
(250 images), sailing (190 images), and snowboarding (190
images). The image number in each class ranges from 137 to
250, and there are 1579 images in total. It is noted that the
difficulty levels of classification within a category are varying
with the distance of the foreground objects. Fig. 4 shows some
example images in the dataset.

The auxiliary unlabelled images are searched through
Google Images by using the images as the query. We upload
every local image and search for the visually similar web
images. Note that these images are found and ranked according
to the similarity to query images. In addition, we filter out
images whose sizes exceed 800 × 600 pixels. In this work,
we extract text descriptions of the first 5 returned web images
for each training and testing image, and this results in a total
collection of 7895 auxiliary text documents.

As discussed in Section II-B, we utilize PHOW features
to describe the images. To begin with, an image is down-
sized to 640 × 480 pixels. Next, SIFT descriptors of 6 × 6
pixels are computed over regular grids spacing of 4 6 8
10. The pyramid level number is set to 2. We quantize the
pyramid histogram vectors into a typical 200 visual words
in k-means clustering. After matching procedure, we obtain
12600 dimensional PHOW features for a single image. Adding
image label vector given by the UIUC-Sport dataset, the image
dataset is now represented by a matrix I ∈ R

1579×12601. We
implement PHOW descriptor extraction via VLFeat toolbox
[19]. On the other hand, we now have 7895 unlabelled web
image descriptions. Using the text information retrieval method
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Fig. 4. Example images for the UIUC-Sport dataset.

discussed in Section II-C, we derive the target image-to-label
matrix T ∈ R

1579×8. The text analytics is implemented by
the natural language toolkit (NLTK) [20] and Scikit machine
learning toolkit [21].

The event recognition task is an 8-class classification
problem. Following the experiment setting of [18], 70 local
images are randomly selected for training and we test on
60 images. Accordingly, we split every web instances of T
into the corresponding training and test subsets. In order to
achieve statistically significant experimental results, we repeat
50 times of the training/ test data random split process and
present the averaged results. In this paper, we conduct three
experiments and report their results. In the first experiment,
we implement linear SVM as the multi-class classifier on I
alone using LIBSVM [22], where the hyperparameter C is set
to default value, and b is set to 1. In the second experiment, we
use the proposed fusion framework to combine classification
results from training data and web resources. In the third
experiment, we extend the proposed framework to other types
image feature extraction methods to test the effectiveness of
the proposed framework.

B. Results

In this section, we show the experimental results. We
report the averaged overall accuracies of 50 trials. Table
I and Table II show the confusion tables of the first and
the second experiments. In the confusion matrix, the rows
represent the instances of actual scene categories, while each
column denotes the instances of predicted scene categories.

For the training data-based approach using PHOW features
only, we obtain an overall accuracy of 83.95 ± 1.11%. In
contrast, a remarkable improvement has been achieved with
an overall accuracy of 88.19 ± 1.25% by using our fusion
framework. It is observed that categories bocce and croquet
confuse the most in both confusion tables. This phenomenon
is in line with all previous reported works on UIUC-Sport event
dataset. The similarity of the foreground objects shared in this
two categories causes substantial difficulties in the scene dis-
crimination. Moreover, the performance of category badminton

TABLE I. CONFUSION MATRIX FOR THE UIUC-SPORT EVENT

RECOGNITION EXPERIMENT WITH LOCAL IMAGE DESCRIPTOR ALONE.
THE AVERAGE ACCURACY AND THE STANDARD DEVIATION ARE 83.95%

AND 1.11%, RESPECTIVELY.
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g

rockcliming .93 0 .02 .01 0 .01 0 .3

badminton 0 .92 .02 .02 .01 .01 .01 .02

bocce .04 .04 .64 .15 .06 .02 0 .05

croquet .02 0 .15 .76 .03 .01 .01 .01

polo .01 .02 .03 .03 .85 .02 .01 .03

rowing .01 .01 .02 .01 .02 .88 .02 .02

sailing 0 0 .01 .02 .01 .04 .91 .01

snowboarding .05 .01 .05 .01 .02 .03 .01 .81

TABLE II. CONFUSION MATRIX FOR THE UIUC-SPORT EVENT

RECOGNITION EXPERIMENT WITH FUSION FRAMEWORK. THE AVERAGE

ACCURACY AND THE STANDARD DEVIATION ARE 88.19% AND 1.25%,
RESPECTIVELY.
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rockcliming .97 0 0 .01 0 .01 0 .01

badminton 0.01 .88 .07 0 .01 .01 .01 .02

bocce .03 .03 .66 .13 .07 .02 0 .05

croquet .02 0.01 .14 .77 .03 0 .01 .02

polo .01 .01 .02 .02 .91 .01 0 .02

rowing 0 0 0 0 0 .96 .02 0

sailing 0 0 0 0.01 0 .01 .98 0

snowboarding .02 .01 .02 0 .01 .01 .01 .90
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TABLE III. PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART

SCENE RECOGNITION ALGORITHMS WITH/ WITHOUT OUR FUSION

FRAMEWORK

Algorithm Image feature only (%) Fusion (%)

GIST [3] 64.15± 1.95 77.44± 1.94
Sc+SPM [6] 80.28± 0.93 85.91± 0.92

Object bank [4] 77.87± 0.91 86.98± 1.01
PHOW 83.95± 1.11 88.19± 1.25

degrades to 88.13% as shown in Table II, and it is the only
category that is not improved in our fusion experiment. We
found that most badminton images in the UIUC-Sport dataset
have the background of multipurpose indoor courts, while
the backgrounds of the Google images badminton collection
are mostly exclusive badminton courts. This mismatch may
cause inaccurate web query results, and this in turn leads
to deterioration of fusion performance. On the other hand,
we observe considerable improvements of our model in other
event categories as shown in Table I and II. Among these
categories, the accuracy of rockclimbing and sailing are the
highest, at 97.11% and 97.94% respectively. Furthermore, the
results of rowing and snowboarding categories are improved by
8% and 9% respectively. These results indicate that our method
has good noise immunity to learn the contextual semantic
meaning within the images.

In Table III, we show the classification results of other
state-of-the-art feature descriptors when they are used alone
or combined with web resources under the proposed fusion
framework. The boldfaced numbers denote the performance
with the web resources aid. Obviously, significant improve-
ments are achieved in all the 4 feature extraction methods. In
addition, it is noted that the most recent and best result on the
benchmark dataset reported in the literature is CCLR-Sc+SPM
[9] with an overall accuracy of 87.75 ± 1.29%. Our training
data and web resources fusion framework produces even better
results with less computational complexity in terms of the
dimensionality of the feature space. The experiment results
indicate that the proposed framework is a general architecture,
any image feature extraction methods can be used.

IV. CONCLUSION

In this paper, we have proposed a novel framework that
uses both training data and web resources for scene classifica-
tion. Experimental results on the benchmark dataset show that
the proposed fusion framework could significantly improve
classification performance. This fusion framework imitates hu-
man way of learning by using external knowledge, and hence
has a sound cognitive basis. Experimental results also show
that the proposed framework is a general architecture, under
which any feature extraction method can be used to combine
with web resources to improve performance. Exploration of
the proposed framework in other applications is undergoing,
and results will be reported in our future publications.
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