
Variational Inference for Graphical Models

of Multivariate Piecewise-Stationary Time Series

Hang Yu and Justin Dauwels

School of Electrical and Electronics Engineering,

Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Abstract—Graphical models provide a powerful formalism
for statistical modeling of complex systems. Especially sparse
graphical models have seen wide applications recently, as they
allow us to infer network structure from multiple time series (e.g.,
functional brain networks from multichannel electroencephalo-
grams). So far, most of the literature deals with stationary time
series, whereas real-life time series often exhibit non-stationarity.
In this paper, we focus on multivariate piecewise-stationary time
series, and propose novel Bayesian techniques to infer the change
points and the graphical models of stationary time segments.
Concretely, we model the time series as a hidden Markov model
whose hidden states correspond to different Gaussian graphical
models. As such, the transition between different states represents
a change point. We further impose a stick-breaking process
prior on the hidden states and shrinkage priors on the inverse
covariance matrices of different states. We then derive an efficient
stochastic variational inference algorithm to learn the model
with sublinear time complexity. As an important advantage of
the proposed approach, the number and position of the change
points as well as the graphical model structures are inferred in an
automatic manner without tuning any parameters. The proposed
method is validated through numerical experiments.

I. INTRODUCTION

Inferring sparse graphical models is currently en vogue,

since such models can represent the dependence between a

great number of variables in a succinct manner [1], [2]. For

example, given a large collection of genes, a sparse graphical

model (a.k.a a gene regulatory network in this example) can

be used to automatically detect the gene pairs with strong

correlation, thus greatly reducing the time and effort for further

experimental analysis. As a result, there is substantial literature

on learning graphical models from various types of data, such

as Gaussian [3], [4], non-Gaussian [5]-[7], and discrete [8].

While the previous works are limited to estimating a single

static graphical model from independent and identically dis-

tributed (i.i.d) samples, real data are often associated with non-

stationarity, and proper consideration of it will greatly help

interpret the data. In [9], for instance, the functional brain

network is shown to evolve through a distinct topological

progression during the seizure, thus providing new insights

into the mechanisms of seizures and novel intervention strate-

gies. However, the authors simply defined a time window

with fixed length and inferred a network for each window,

introducing artifacts to the analysis. To resolve the issue,

change points detection is required, yet modeling changing

dependency structure in multivariate time series has only

received limited attention so far.

Below, we present a brief review of multiple change points

detection for multivariate time series. Xuan et al [10] extended

the Bayesian change point detection approaches for univariate

time series to the multivariate setting: they adopt a geometric

prior on the time segment lengths, and then iterate between

MAP segmentation and graphical model inference. Despite the

time-consuming Monte Carlo Markov chain (MCMC) method

used in the paper, the main restriction is that the graph for all

segments must be decomposable. As an alternative, a greedy

binary segmentation scheme is proposed in [11]. A change

point is inserted such that the Bayesian information criterion

(BIC) of the two graphical models of the data before and after

the change point is minimized; this procedure is repeated until

no further splits reduce the BIC score. Unfortunately, besides

the high computational complexity, the binary segmentation

can be misleading and overestimate the number of change

points, as pointed out in [12]. To overcome the problem,

dynamic programming is applied in [13], leading to joint

estimation of all the change points. However, the method has

computational complexity of order O(T 3) in the number of

fixed points T , which is impractical for most real-life time

series with length of hundreds or thousands. In our previous

work [14], we formulate the change point detection problem as

maximizing the log-likelihood of all segments with a penalty

on the number of change points. The optimization problem

is then solved using a pruned dynamic programming method

with linear time complexity [15]. Graphical models associated

with each segments are inferred via convex optimization

techniques proposed in [3], [4]. We also put forward adaptive

methods to choose the penalty parameters for both change

points detection and graphical model inference. This method

is still computational demanding in practice though, since the

algorithm has to be run on every possible choice of the penalty

parameters in order to find the best ones.

To address the abovementioned concerns, we propose in

this paper a novel variational Bayes method to infer the

abruptly changing graphical models for multivariate piecewise-

stationary time series. Specifically, we describe the piecewise-

stationary time series using a hidden Markov model (HMM),

in which the emission distribution of each state is given

by a Gaussian graphical model (GGM). We further assume

that the transition matrix is upper triangular such that the

resulting HMM is equivalent to the classical change point

detection models in which data of different time segments

are independent of each other. Consequently, the number of
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states equals the number of change points in the time series,

and a transition between different states represents a change

point between two time segments. In order to infer the number

of hidden states, we impose a stick-breaking process on the

transition probabilities. Such a prior automatically selects a

proper number of hidden states to express the data. On the

other hand, to obtain a sparse graphical model for each hidden

state, we put a shrinkage prior on the corresponding preci-

sion (inverse covariance) matrix of the GGM. The resulting

Bayesian model is then learnt using a stochastic variational

inference approach [16]. To be more explicit, we borrow the

idea from [17] and compute the stochastic (natural) gradients

in each iteration based on a minibatch of subchains sampling

from the HMM. Therefore, the time complexity can be reduced

to sublinear, and the resulting model can be applicable to

time series with length of thousands or millions. Note that

Wulsin et al. [18] utilizes a similar framework when describing

changing correlations in brain recordings. However, in their

model, the structure of the graphical model is fixed to be

the neighboring structure of the electrodes. Furthermore, in

order to automatically infer the number of hidden sates, a

hierarchical Dirichlet process (HDP) prior is leveraged. Due to

the lack of conjugacy between the two levels of Dirichlet pro-

cess, it is not straightforward to derive fast variational Bayes

algorithms. Instead, they apply MCMC methods, and hence

this method is computationally intensive. On the other hand,

in [19], a HMM with an upper triangular transition matrix is

integrated in a Bayesian framework to identify change points

in univariate time series. The model is inferred by MCMC

methods. Different from these models, the proposed model

deals with abruptly changing graphical models of multivariate

time series. Moreover, we develop low-complexity stochastic

variational inference algorithms to learn the model such that

the proposed model is applicable to large scale data.

Experimental results show that the proposed algorithm can

infer the number and position of the change points as well

as the sparse graphical model of each state in an automatic

manner.

This paper is structured as follows. In Section II, we present

the proposed graphical models for multivariate piecewise-

stationary time series in length. We then derive the stochastic

variational inference algorithm in Section III. Numerical re-

sults for both synthetic data are presented in Section IV. We

close the paper by offering concluding remarks in Section V.

II. GRAPHICAL MODELS OF MULTIVARIATE

PIEICEWISE-STATIONARY TIME SERIES

Let us suppose that we have an ordered time sequence of

data y = (yt), where t = 1, · · · , T and yt ∈ R
P . We aim to

partition the T samples into K stationary time segments, thus

introducing K − 1 change points τ1:K−1 = (τ1, · · · , τK − 1).
Each change point is an integer between 1 and T − 1. We

further define τ0 = 0 and τK = T , therefore, the k-th segment

is given by y
(1:P )
(τk−1+1:τk)

, where k = 1, · · · ,K.

A hidden Markov model (HMM) defines a probability

distribution of y by introducing another sequence of hidden

states s = (st)
T
t=1, where st ∈ {1, · · · , Ns} and Ns ≤ K

is the number of states. The sequence of hidden states is a

Markov process. Given the state st at time t, the observed yt is

independent of other variables in the model. As a consequence,

the model is well defined by three sets of parameters, including

the initial distribution p(s1), the transition matrix A such that

Aij = p(st+1 = j|st = i), and the emission distribution

p(yt|st = i) = N (yt;0, (J
i)−1), where we assume that the

mean is zero and J i is the precision matrix (inverse covariance

matrix) characterizing the Gaussian graphical model (GGM)

of the P variables y
(1:P )
t indexed by the state at time t (i.e.,

st = i). We further define p(s1) to be a uniform distribution

over all possible states for simplicity. Note that the HMM

introduces a change point automatically when st+1 6= st.
In previous works [10]-[14], the product partition model

(PPM) is often utilized to identify change points, in which data

is independent across different time segments. In other words,

in the PPM, we can never enter an old state once we have

left the corresponding time segment. Therefore, to resemble

the PPM, we assume that the transition matrix of the HMM

is upper triangular. As a result, in our model, the number of

hidden states equals the number of change points plus one.

Here, our objective is to infer the state variables s, thereby

obtaining the change points, as well as the precision matrix

J i corresponding to all states st = i. For the problem of

change points detection, we aim to use the smallest number of

change points (i.e., number of states) that can well explain the

piecewise-stationary property of the time series. As mentioned

in Section I, imposing a nonparametric hierarchical Dirichlet

process prior on the transition matrix has proven effective to

infer the number of states automatically [18]. However, this

prior does not extend to fast variational algorithms due to the

non-conjugate issue. Instead, we resort to the stick-breaking

process [20] that is conjugate to the transition probabilities.

For the upper triangular transition matrix, the stick breaking

process can be defined as follows:

Aij = Vij

j−1
∏

k=i

(1− Vik), (1)

Vij ∼ Beta(αij , βij). (2)

The process can be interpreted as iteratively breaking the

portion of Vij from the remaining of a unit-length stick
∏j−1

k=i(1 − Vik). According to the definition, the process is

infinite, that is, we may allow a countably infinite number

of hidden states as the length of the time series increases.

Moreover, although the state space is infinite, the resulting

posteriors p(Ai:|y) will only have “large” probabilities in

a finite number of states that are useful in explaining the

observed data, whereas all others are nearly equal to zero [20].

As such, the stick-breaking process prior can effectively select

a proper number of states. We can find from (2) that the

stick-breaking process requires an infinite parameterizations.

To simplify this, we follow [20] to fix αij = 1 and put a

conjugate gamma prior Gamma(βij ; a, b) on βij . The hyper

parameters a and b are set to be 10−6 and 0.1 respectively,
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such that the state transition is properly encouraged to detect

the entire state structure [20].

On the other hand, we wish to infer a sparse J i for every

possible state i, thus we can unveil the changing network

structure of the observed data. We thus associate the off-

diagonal elements J i
jk of J i with Gaussian priors with zero

means and precisions λi
jk, i.e.,

p(J i
jk|λi

jk) ∝
√

λi
jk exp

(

− 1

2
λi
jkJ

i
jk

2
)

, (3)

for all j > k. As shown in our numerical experiments, many

of the precisions λi
jk will take very large values during the

learning process, and consequently, the prior can successfully

shrink most elements of J i to zero, and yield sparse graphical

models. We further impose conjugate Gamma hyperprior on

the precisions λi
jk:

p(λi
jk) = Gamma(λi

jk; c, d) ∝ λi
jk

a−1
exp(−bλi

jk). (4)

The parameters c and d are set to small values (e.g., 10−10)

to obtain a flat non-informative prior. Note that

∫

p(J i
jk|λi

jk)p(λ
i
jk)dλ

i
jk =

Γ
(

c+ 1
2

)

Γ(c)
√
2πd

(

1

1 + 1
2dJ

i
jk

2

)c+ 1

2

,

which is a t distribution. Therefore, we essentially put a t prior

on J i
jk. Such shrinkage prior is often used in the Bayesian

framework to promote sparsity [22], [23]. Note that in the

literature of learning graphical models [3], Laplace priors are

often used since they amount to ℓ1 norm penalties on the

precision matrix and the resulting optimization problem is

convex. Although Laplace priors can also be regarded as a

scale mixture of Gaussian, the hyperprior on precisions λi
ij

is the inverse Gamma distribution that is not conjugate to the

Gaussian distributions parameterized by precisions [24]. As a

result, we employ t prior here since it is more tractable for

Bayesian inference.

We now turn our attention to the overall model, which can

be expressed as:

p(y, s, V,α,β, J,λ)

= p(y|s, J)p(V |β)p(β)p(J |λ)p(λ)

= p(s1)

T
∏

t=2

p(st|st−1, V )

T
∏

t=1

p(yt|st, Jst)×

∞
∏

i=1

∞
∏

j=1

[

p(Vij |βij)p(βij)
]

∞
∏

i=1

P
∏

k=1

P
∏

j=k+1

[

p([J i]jk|λi
jk)p(λ

i
jk)

]

.

(5)

III. STOCHASTIC VARIATIONAL INFERENCE

In this section, we derive a stochastic variational inference

algorithm [16] to learn the model parameters. Concretely, we

seek a variational distribution q(s, V,α,β, J,λ) that maxi-

mizes the evidence lower bound L:

log p(y) ≥ Eq[log p(y, s, V,α,β, J,λ)]− Eq[log q] = L.
(6)

Maximizing L is equivalent to minimizing the KL divergence

between the variational distribution q and the intractable

posterior p(s, V,α,β, J,λ|y) as measured by KL(q|p) =
∫

q log(q/p). Here, we apply the mean-field approximation,

and therefore, the variational distribution can be factorized as:

q(s, V,α,β, J,λ) =q(s)

K
∏

i=1

K−1
∏

j=i

[

q(Vij)q(βij)
]

×
K
∏

i=1

q(J i)

K
∏

i=1

P
∏

k=1

P
∏

j=k+1

q(λi
jk), (7)

where

q(Vij) = Beta(Vij ;W1ij ,W2ij), (8)

q(βij) = Gamma(βij ;W3ij ,W4ij), (9)

q(J i) =
P
∏

j=1

δ(J i
j:P,j − J i

j:P,j

∗

), (10)

q(λi
jk) = Gamma(λi

jk;W5
i
jk,W6

i
jk), (11)

δ(J i
j:P,j − J i

j:P,j

∗

) is a delta function which equals 1 when

J i
j:P,j = J i

j:P,j

∗

and 0 otherwise, and J i
j:P,j denotes the

jth to P th elements in the jth column. Since p(J |λ) is not

conjugate to p(y|J) in the proposed model (5), there is no

closed-form variational distribution q(J) in the framework of

mean-field variational inference. Instead, it is convenient to use

a point estimate of J i (10) as in [23], [24]. Furthermore, as the

algorithm proceeds, many of the precisions λi
jk will become

very large, and then the delta functions can well approximate

the true posterior distribution.

Additionally, in expression (7), we truncate the variational

stick-breaking process to yield K levels, since the infinite

large state space is computationally intractable for variational

inference. In other words, the variational transition probability

Ã is given by:

Ãij =











Vij

∏j−1
k=i(1− Vik) for j < K

∏j−1
k=i(1− Vik) for j = k

0 for j > K

, (12)

Vij ∼ q(Vij). (13)

We emphasize that using the truncation level is quite different

from setting a finite state-space in a statistical perspective.

The proposed model is still a full stick-breaking process and

is not truncated. K should be sufficiently large to ensure the

accuracy of the approximation.

Finally, note that making a full mean-field approximation of

the latent states q(s) =
∏T

t=1 q(st) would lose critical infor-

mation about the hidden Markov chain required for accurate

inference. Instead, we will infer a joint variational distribution

q(s) over the states of all time points.

The stochastic variational inference algorithm aims to find

the variational parameters Wi (i = 1, · · · , 6) and J∗ that

maximizes the evidence lower bound L. To this end, the

algorithm proceeds by updating the variational parameters in

810



the direction of the stochastic natural gradient. More precisely,

in each iteration, Wi, for example, can be updated as:

W
(κ+1)
i = W

(κ)
i + ρκ∇̃Wi

L(W
(κ)
i ), (14)

where ∇̃Wi
L(W

(κ)
i ) denotes the stochastic natural gradients

of L w.r.t. Wi at the value of W
(κ)
i . In the sequel, we first list

the natural gradients of all variational parameters, and further

elaborate on the stochastic version of the gradients.

Natural gradients have a convenient form if the prior and

the complete-data likelihood corresponding to the variational

distribution are a conjugate pair of exponentials family distri-

butions. This condition is satisfied by q(V ), q(β), and q(λ).
Specifically,

1) For the variational parameters of V ,

∇W1ij
L(W1

(κ)
ij )

=1 + Eq(s)[

T
∑

t=2

log p(st|st−1)]−W1
(κ)
ij

=1 +
T
∑

t=2

q(st−1 = i, st = j)−W1
(κ)
ij , (15)

∇W2ij
L(W2

(κ)
ij )

=
W3

(κ)
ij

W4
(κ)
ij

+ Eq(s)[
T
∑

t=2

log p(st|st−1)]−W2
(κ)
ij

=
W3

(κ)
ij

W4
(κ)
ij

+
T
∑

t=2

q(st−1 = i, st > j)−W2
(κ)
ij . (16)

2) For the variational parameters of β,

∇W3ij
L(W3

(κ)
ij ) = a+ 1−W2

(κ)
ij , (17)

∇W3ij
L(W3

(κ)
ij ) = b− Eq(Vij)[log(1− Vij)]−W3

(κ)
ij , (18)

3) For the variational parameters of λ,

∇W5
i
jk
L(W5

i
jk

(κ)
) = c+

1

2
−W5

i
jk

(κ)
, (19)

∇W6
i
jk
L(W6

i
jk

(κ)
) = d+

J i
jk

2

2
−W6

i
jk

(κ)
. (20)

Note that natural gradients are closely related to traditional

variational Bayes (VB) algorithms [25]. By setting the natural

gradients to zero in each iteration, we obtain the update rules

of the VB algorithm. In other words, the natural gradients can

be regarded as the difference between two consecutive VB

updates. This approach is employed to compute the gradient

of L w.r.t J∗. In this case, the corresponding prior p(J |λ) is

not the conjugate to the data likelihood p(y|s, J). Specifically,

we first sequentially set the gradient of the L w.r.t J i
j:P,j

∗

to

zero, as in the VB framework. As such, we can update J i
j:P,j

∗

TABLE I: SVI of Graphical models for Multivariate

Piecewise-Stationary Time Series.

Input: observed multivariate time series y, maximum number of possible
change points K, number M = 50 and length Ls = 2 of subchains
drawn from the HMM in each iteration
Iterate the following steps until convergence.

1) draw M subchains from the entire Markov chain, each with length L

2) For each subchain s
sub
m

, compute q(st) and q(st−1, st) for t ∈ s
sub
m

as follows:

a) Initialize qold(st) (t ∈ ssub
m

) by running the forward-backward in
s

sub
m

. u = 1.
b) Augment s

sub
m

in each direction by u observations and compute
qnew(st) (t ∈ ssub

m
) using the augmented subchain.

c) If ‖qnew(st)− qold(st)‖ ≤ ǫ, return q(st) = qnew(st); otherwise,
set u = u+ 1, qold(st) = qnew(st) and go back to Step 2b.

3) Compute the (natural) gradients for all parameters of variational
distributions following Eq. (15) to Eq. (23).

4) Update the parameters following Eq. (14).

as:

J i
j+1:P,j

∗(κ+1)
= −

[

Si
jj

[

J i
−j,−j

∗−1
]

j:P−1,j:P−1

+ diag(Eq(λ)[λ
i
j+1:P,j ])

]

−1(

Si
j+1:P,j

+ Si
jj

[

J i
−j,−j

∗−1
]

j:P−1,1:j−1
J i
1:j−1,j

∗

)

, (21)

J i
jj

∗(κ+1)
= N i/[Si]jj + J i

j,−j

∗

J i
−j,−j

∗−1
J i
−j,j

∗

. (22)

where N i =
∑T

t=1 q(st = i) and Si = N iEq(s)[yty
T
t ]. Next,

we can calculate the corresponding gradient as:

∇Ji∗L(J i∗(κ)) = J i∗(κ+1) − J i∗. (23)

Note that J i is always positive definite during the update

procedure given that its initial value is positive definite, as

proven in [24].

We can tell from Eqs. (15), (16), (21), and (22) that in

order to compute the accurate natural gradient for W1, W2

and J , we need to run forward-backward algorithm on the

entire Markov chain to get q(st) and q(st−1, st). Although the

time complexity of the message passing algorithm is linear, it

may still be prohibitive for very long time series. Therefore,

we instead borrow the idea from [17] and compute noisy

stochastic natural gradients using the q(st) and q(st−1, st)
from subchains ssub containing consecutive observations. As

a consequence, the time complexity of the proposed model

is sublinear. In order to consider the forward and backward

messages passing into the subchain, when computing the local

beliefs q(st) (t ∈ ssub), the subchain is augmented adaptively

to include enough extra observations on each end, until further

augmentation of the subchain will not significantly change the

local beliefs. In other words, the local beliefs are within an

ǫ-ball of the optimal q∗(st) resulting from the entire chain.

Foti et al. [17] has proven that such stochastic natural gradient

ascent method converges to a local maximum as long as step

sizes ρκ satisfy
∑

κ ρ
2
κ < ∞ and

∑

κ ρκ = ∞. We adopt the
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Fig. 1: 25-dimensional synthetic data, change points (red lines), and the true graphical models of all the segments.

automatic methods proposed in [26] to tune step sizes. The

entire algorithm is summarized in Table I.

IV. NUMERICAL RESULTS

In this section, we present our results on synthetic data; we

benchmark the proposed Bayesian model with the optimization

method-based model [14] ,and the graphical lasso method [3]

that is used to infer GGMs from stationary data. The penalty

parameters in the second and third model are chosen by

adaptive methods, cf [14].

The synthetic dataset has 25 variables and 5850 samples.

The true value of change points are {1000, 2800, 3900, 4800}.

The signals and the graphical models of the five time segments

are shown in Fig. 1. We then test the three models using

this dataset. More specifically, we compare the accuracy

of change point detection, the accuracy of graphical model

inference, and the running time. For graphical model inference,

we consider three criteria, that is, precision, recall, and F1-

score. Precision is defined as the proportion of correctly

estimated edges to all the edges in the estimated graph;

recall is defined as the proportion of successfully estimated

edges to all the edges in the true graph; F1-score is defined

as 2·precision·recall/(precision+recall), which is a weighted

average of the precision and recall. We set K = 10, Ls = 2,

and M = 98 when running the proposed stochastic varia-

tional inference algorithm. Due to the stochastic natural of

the algorithm, the running time may vary depending on the

variance of the stochastic gradient in each iteration. Therefore,

we average the value of the running time as well as other

criteria over 100 trials. All the simulations are running on a

20-core 3GHz CPU. Parallel computing is implemented for

the penalty parameter selection procedure of the optimization

model and the graphical lasso, as well as the forward-backward

algorithm in the M subchains in the proposed model. The

results are summarized in Table II.

TABLE II: Quantitative comparison of different models

Models Bayesian Model Optimization Model Graphical Lasso

Change Points {995.44, 2800, 3900, 4800} {995, 2800, 3900, 4800} N.A.
Precision 0.8962 0.9474 0.2855

Recall 0.9708 0.8417 0.6007
F1-score 0.9316 0.8914 0.3870

Running Time 947.75 6763.51 23.69

We can find from the table that both the proposed Bayesian

model and the optimization-based model performs well in

terms of the accuracy of change point detection. The Bayesian

model yields slightly better estimates of the first change point

in some trials. The estimated position is 997, which is more

close to the ground truth 1000. For graphical model inference,

the recall of the Bayesian model is much larger than that of

the optimization model, indicating that the proposed Bayesian

model can reliably recover the true graph. On the other hand,

the precision of the Bayesian model is slightly lower than

the optimization, implying that the Bayesian model introduces

few more false positives. In summary, compared with the

optimization model, the proposed Bayesian model yields a

relatively dense graph, successfully recovering the true graph
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at the cost of including a few extra edges. Such slightly dense

graphs are often favored in practice, as false positives can be

identified in further analysis whereas false negatives are buried

by the other absent edges. Another obvious advantage of the

proposed model is that it is much faster than the optimization

model. Finally, we notice that graphical lasso gives biased

estimation to the graphical models of all segments, because of

the wrong assumption that the data is stationary. It is therefore

necessary to develop specific methods for non-stationary time

series.

V. CONCLUSION AND FUTURE WORK

In this paper, we focus on change point detection and

graphical model inference for piecewise-stationary time series.

We formulate the problem as inferring the hidden states and

the emission distributions of a HMM. We further develop a

low-complexity stochastic variational inference algorithm to

learn the model. Numerical results show that the proposed

model can automatically estimate the number and position of

change points as well as the sparse graphical models without

tuning any parameters.

One of our future work is to apply the proposed model to

real data, such as multi-electrode brain recordings and financial

time series. It is also interesting to investigate an online

version of the proposed algorithm, since it is straightforward

to incorporate new information in the stochastic optimization

framework.
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