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Abstract�Mean-squared-error (MSE) lower bounds are
widely used for performance analysis in stochastic �ltering
problems. In many problems of this type, the nature of part
of the unknown state parameters is circular or periodic.
In this case, we are interested in the modulo-T estimation
errors and not in the plain error values. Thus, the MSE risk
and conventional MSE bounds are inappropriate for periodic
stochastic �ltering problems. A commonly used risk for periodic
parameter estimation is the mean-cyclic-error (MCE). In this
paper, we derive a cyclic version of the Bayesian Cramér-
Rao bound (BCRB) on the MCE of any recursive �lter. The
performance of the cyclic BCRB is evaluated for phase tracking
and compared to the MCEs of existing �lters.

Index Terms�Mean-squared-error (MSE) lower bounds, pe-
riodic stochastic �ltering, mean-cyclic-error (MCE), Bayesian
Cramér-Rao bound (BCRB), phase tracking

I. INTRODUCTION

Stochastic  ltering problems are frequently encountered in

many  elds such as signal processing, communications, and

control. The mean-squared-error (MSE) risk is widely used

for performance analysis of stochastic  ltering algorithms

and various algorithms attempt to achieve minimum MSE

(MMSE) performance. The well known Kalman  lter [1]

is commonly-used for stochastic  ltering in linear dynamic

systems due to its tractability and the fact that for linear

models it results in the linear MMSE estimator, that coin-

cides with the MMSE estimator for Gaussian noise. For the

general case of nonlinear/non-Gaussian estimation problem,

suboptimal stochastic  ltering methods, such as the extended

Kalman  lter (e.g. [2]�[5]), the unscented Kalman  lter (e.g.

[6], [7]), and the particle  lter (e.g. [8]�[10]), are adopted.

The MMSE estimator may be intractable in the general

nonlinear/non-Gaussian case and assessing the optimal per-

formance may be dif cult. In this case, computationally man-

ageable MSE lower bounds that can be calculated recursively

are very useful for stochastic  ltering performance analysis

and feasibility study. In [11], a recursive computation of the

Bayesian Cramér-Rao bound (BCRB) for stochastic  ltering

problems is derived. Recursive computations of tighter MSE

bounds, including the Bayesian Bhattacharyya, Bobrovsky-

Zakai, and Weiss-Weinstein bounds, are derived in [12].

In [13], a combined Bayesian Cramér-Rao/Weiss-Weinstein

bound is derived for tracking target bearing. Recursive com-

putations of the Weiss-Weinstein lower bound for a class

of Markovian dynamic systems and for hybrid continuous

and discrete random states are derived in [14] and [15],

respectively.

In many stochastic  ltering problems, the unknown pa-

rameters have a circular or periodic nature, for example,

phase and frequency [11], [16], [17] as well as direction-of-

arrival (DOA) [18]�[20]. In a T -periodic stochastic  ltering

problem, the modulo-T estimation error is of interest. Thus,

in such problems the appropriate risk is based on a T -periodic

cost function [21]�[28] and traditional Bayes risks, such as

the MSE, are inappropriate.

The mean-cyclic-error (MCE) [23]�[26], [29], [30] and

the mean-squared-periodic-error (MSPE) [26]�[28] are the

most commonly used risks for periodic stochastic  ltering

problems. The squared-periodic-error (SPE) cost function is

the square of the modulo-T estimation error, which is not a

differentiable function. Thus, minimization of the MSPE risk

and implementation of corresponding performance bounds,

as developed in [28], may become intractable. In contrast

to the SPE, the cyclic-error (CE) cost function is a smooth

periodic function of the estimation error and is suitable for the

derivation of tractable optimal estimators and performance

bounds. Thus, in this paper we adopt the MCE risk.

Improved recursive algorithms for periodic stochastic  l-

tering that utilize the MCE and MSPE risks for performance

analysis, are suggested in [16], [19], [25], [31]�[37] based

on angular distributions and circular statistics [29], [38].

Lower bounds can be very useful for performance evaluation

of these periodic stochastic  lters. However, as mentioned

above, MSE lower bounds are inappropriate for periodic

stochastic  ltering problems. Therefore, in such problems,

lower bounds on periodic risks can be useful. For off-line

periodic estimation problems, few Bayesian lower bounds

have been suggested. Scalar Bayesian lower bounds on

general periodic risks are derived in [23] via a modi cation

of the Ziv-Zakai lower bound. A new class of Bayesian lower

bounds on the MCE is derived in [24].

In this paper, we extend the cyclic BCRB from [24], de-

rived for off-line parameter estimation, to periodic stochastic

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 734



 ltering. In particular, we derive a recursive implementation

of the cyclic BCRB, which is the cyclic version of the

recursive implementation of the BCRB from [11]. It is shown

that the cyclic BCRB for periodic stochastic  ltering has

less restrictive assumptions than the conventional BCRB.

For example, for uniform distribution of the initial state

parameter, the cyclic BCRB may exist, while the BCRB does

not (e.g. [39]). Finally, the performance of the cyclic BCRB

is evaluated for phase tracking problem and compared to

the MCE performance of the Kurz-Gilitschenski-Hanebeck

(KGH)  lter from [37], the Willsky-Lo (WL)  lter from [25],

[31], and the particle  lter from [8].

The remainder of the paper is organized as follows. In

Section II, we formulate the periodic stochastic  ltering

setup. The properties of the MCE and recursive estimation

methods that attempt to approximate the MMCE estimator,

are reviewed in Section III. The cyclic BCRB for periodic

stochastic  ltering is derived in Section IV, based on exten-

sion of the class of MCE bounds from [24] for stochastic

 ltering problems. Evaluation of the proposed cyclic BCRB

is performed for phase tracking problem in Section V. Our

conclusions appear in Section VI.

II. PERIODIC STOCHASTIC FILTERING SETUP

A. Notations

In the sequel, we denote vectors by boldface lowercase

letters and matrices by boldface uppercase letters. The mth

element of the vector b and the (m, q)th element of the

matrix B are denoted by bm and [B]m,q, respectively. Given

a scalar function g dependent on a vector θ, its gradient

w.r.t. θ, denoted as
dg(θ)
dθ , is a row vector, in which the

qth element equals to
∂g(θ)
∂θq

. The (m, q)th element of the

Hessian matrix of g w.r.t. θ is its second-order derivative

w.r.t. θm and θq denoted as
∂2g(θ)
∂θm∂θq

. An M × 1 vector and

an M ×Q matrix with zero entries are denoted by 0M and

0M×Q, respectively. The notationsA � B andA ≻ B imply

that A −B is a positive-semide nite matrix and a positive-

de nite matrix, respectively, where A and B are Hermitian

matrices of the same size. The notations log(·), | · |, and
∠· stand for the natural logarithm, the absolute value, and

the phase of a complex scalar, respectively. We assume that

the phase of a complex scalar is restricted to the interval

[−π, π). The operators (·)T and (·)H denote transpose and

conjugate transpose, respectively and j
△
=

√
−1. The modulo-

2π operator, which maps ρ ∈ R to [−π, π), is denoted by

[ρ]2π = ρ−2π
⌊

1
2 + ρ

2π

⌋

, where ⌊·⌋ is the !oor operator. The
operators of expectation and conditional expectation given an

event Z , are denoted as E [·] and E [·|Z], respectively.

B. State and observation models

Consider the nonlinear discrete-time stochastic  ltering

problem in which, at each time step n = 1, 2, . . ., we
are interested in estimating the periodic state parameter θn,

supported on Ωθ = [−T
2 ,

T
2 ). For simplicity, it is assumed

that T = 2π. Extension of the results obtained in this paper

for an arbitrary period is straightforward. The periodic state

parameter θn is evolving according to the state model

θi+1 = a(θi,wi), i = 0, 1, 2, . . . , (1)

where a : Ωθ ×RP → Ωθ is the state transition function and

{wi} is a sequence of mutually independent noise vectors

that are independent of past and present states. It is assumed

that wi has a known probability density function (pdf), ∀i ≥
0. The measurement vector xi ∈ C

N is obtained at each time

step based on the current state, according to the observation

equation

xi = h(θi,νi), i = 1, 2, . . . , (2)

where h : Ωθ ×CQ → CN is the measurement function and

{νi} is a sequence of mutually independent noise vectors

with known pdfs that are independent of past and present

states and the state noise. The initial state parameter θ0
is assumed to have a known a-priori pdf fθ0 . We denote

by Ω
x
(n) and Ω

θ(n) , the nth step measurement and state

spaces, where x(n) △
=

[

x
T
1 , . . . ,x

T
n

]T
and the unknown state

parameter vector θ(n) △
= [θ0, . . . , θn]

T . The Hilbert space of

absolutely square integrable scalar functions w.r.t. the joint

distribution of x(n) and θ(n) is denoted by L2(Ωx
(n)×Ω

θ(n)).
By using Bayes rule, it can be veri ed (see e.g. [11]) that up

to time step n, the joint pdf of x(n) and θ(n), is given by

f
x
(n),θ(n)

(

β(n),α(n)
)

=

fθ0(α0)

n
∏

i=1

fθi|θi−1
(αi|αi−1)

n
∏

i=1

f
xi|θi (βi|αi),

(3)

where fθi|θi−1
and f

xi|θi are the conditional pdfs obtained

from (1) and (2), respectively. In addition, we de ne

f
(p)
θ0

(α0)
△
=

∞
∑

l=−∞

fθ0(α0 + 2πl), (4)

f
(p)
θi|θi−1

(αi|αi−1)
△
=

∞
∑

l=−∞

∞
∑

m=−∞

fθi|θi−1
(αi + 2πl|αi−1 + 2πm),

(5)

∀i = 1, . . . , n, and

f
(p)
xi|θi

(βi|αi)
△
=

∞
∑

m=−∞

f
xi|θi (βi|αi + 2πm) , (6)

∀i = 1, . . . , n, which are 2π-periodic extensions, w.r.t.

{θi}ni=0, of fθ0 , fθi|θi−1
, and f

xi|θi , respectively. By using

(4)-(6), we obtain the 2π-periodic extension of f
x
(n),θ(n)

w.r.t. θ(n):

f
(p)

x
(n),θ(n)

(

β
(n),α(n)

)

△
=

f
(p)
θ0

(α0)

n
∏

i=1

f
(p)
θi|θi−1

(αi|αi−1)

n
∏

i=1

f
(p)
xi|θi

(βi|αi).
(7)
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The estimation error of the nth state parameter, θn, is denoted

as

ε = θ̂n

(

x
(n)

)

− θn, (8)

where θ̂n : Ω
x
(n) → Ωθ is an estimator of θn based on x

(n).

For simplicity of notations, in the following f
x
(n),θ(n) and

f
(p)

x
(n),θ(n) will be replaced by fn and f

(p)
n , respectively.

III. MCE RISK

A. Background

The MCE risk, which is commonly used in circular statis-

tics, is given by (see e.g. [25], [29]):

MCE
(

θ̂
)

= 2− 2E
[

cos
(

θ̂ − θ
)]

, (9)

for an estimator θ̂ of an unknown random parameter θ. It

can be veri ed that the MCE of θ̂ is equal to the MSE of the

estimator ejθ̂ of the complex parameter ejθ , i.e.

MCE
(

θ̂
)

= E

[

∣

∣

∣
ejθ̂ − ejθ

∣

∣

∣

2
]

. (10)

In addition, by substituting δ = θ̂ − θ in the following

inequality

2− 2 cos(δ) ≤ δ2, ∀δ ∈ R, (11)

it can be veri ed that the MCE of an estimator of θ is always

smaller than or equal to its MSE. By substituting δ = θ̂ − θ

in the equality

lim
δ→0

{

2− 2 cos(δ)

δ2

}

= 1, (12)

it can be veri ed that for θ̂− θ → 0 the MCE risk coincides

with the MSE risk.

In the Bayesian framework, optimal estimation is based

on minimization of a given Bayes risk. In this case, it can

be veri ed that the MMCE estimator, given a measurement

vector x, is (see e.g. [25], [29, pp. 21-22], [31]):

θ̂MMCE(x)
△
=

{

∠E
[

ejθ|x
]

, E
[

ejθ|x
]

6= 0

0, otherwise
. (13)

It can be shown that the minimum MCE, which is obtained

by the MMCE estimator, is equal to [24], [25]

MCE
(

θ̂MMCE

)

= 2− 2E
[ ∣

∣E
[

ejθ
∣

∣x
]∣

∣

]

. (14)

B. Recursive estimation methods

In this subsection, we review the recursive  lters that will

be assessed in this paper: the KGH  lter, the WL  lter, and

the particle  lter.

1) KGH  lter: The KGH  lter, derived in [37], provides

a general framework for the estimation of a circular state

based on the wrapped normal and the von Mises distributions,

which are approximated with wrapped Dirac mixture distri-

butions. It can be used for state estimation of circular systems

with nonlinear system and measurement functions. This  lter

relies on deterministic sampling techniques as described in

[35], [40]�[42]. For this  lter, the nth step estimator with D

deterministic samples, denoted as θ̂
(D)
KGH,n, is calculated based

on a wrapped Dirac mixture distribution that approximates

the nth step a-posteriori pdf fθn|x(n) , from which the MMCE

term in (13) can be calculated.

2) WL  lter: The recursive WL  lter [25], [31] attempts

to compute the MMCE estimator from (13) at each time step.

It is restricted to the following state model:

θi+1 = [θi + wi]2π, i = 0, 1, 2, . . . , (15)

where the state noise {wi} is supported on Ωθ with pdf

fwi
and its periodic extension f

(p)
wi . In this method, it is

also assumed that the pdf periodic extensions f
(p)
θ0

, f
(p)
wi ,

and f
(p)
xi|θi

(xi|·), can be represented via Fourier series with

Fourier coef cients
{

c
(0)
l

}

,
{

r
(i)
l

}

, and
{

d
(i)
l (xi)

}

, respec-

tively.

Under this model, it can be shown that the MMCE

estimator of the state at the nth step, denoted as θ̂MMCE,n,

is given by

θ̂MMCE,n

(

x
(n)

)

△
=

{

∠c
(n|n)
−1

(

x
(n)

)

, c
(n|n)
−1

(

x
(n)

)

6= 0

0, otherwise
,

n = 1, 2, . . . ,
(16)

where c
(i|k)
l

(

x
(k)

)

is the lth Fourier coef cient of the pe-

riodic extension of the a-posteriori pdf, f
(p)

θi|x(k)

(

·|x(k)
)

. In

fact, at each time step n the recursive WL  lter computes the

Fourier coef cients of the a-posteriori pdf f
(p)

θn|x(n)

(

·|x(n)
)

,

as presented in the following.

Initial prediction:

c
(1|0)
l = 2πc

(0)
l r

(0)
l , ∀l ∈ Z. (17)

Initial estimation:

c
(1|1)
l

(

x
(1)

)

=
γ
(1)
l

(

x
(1)

)

2πγ
(1)
0

(

x(1)
)

, ∀l ∈ Z, (18)

where

γ
(i)
l

(

x
(i)

)

△
=

∞
∑

m=−∞

c(i|i−1)
m

(

x
(i−1)

)

d
(i)
l−m(xi).

The ith step prediction:

c
(i|i−1)
l

(

x
(i−1)

)

= 2πc
(i−1|i−1)
l

(

x
(i−1)

)

r
(i−1)
l ,

∀l ∈ Z, i = 2, 3, . . . .
(19)
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The ith step estimation:

c
(i|i)
l

(

x
(i)

)

=
γ
(i)
l

(

x
(i)

)

2πγ
(i)
0

(

x(i)
)

, ∀l ∈ Z, i = 2, 3, . . . . (20)

In practice, the MMCE estimator is approximated by a  nite

number of Fourier coef cients that are usually computed

numerically. We denote the approximated MMCE estimator

with L Fourier coef cients as θ̂
(L)
WL,n.

3) Particle  lter: The sequential importance resampling

particle  lter is derived in [8]. For this  lter, The nth step

estimator with S particles, denoted as θ̂
(S)
PAR,n, is calculated

based on the particle  lter probability mass function, which

approximates the nth step a-posteriori pdf fθn|x(n) , to calcu-

late the MMCE estimate in (13).

IV. CRAMÉR-RAO-TYPE MCE LOWER BOUND FOR

PERIODIC STOCHASTIC FILTERING

A. General class of MCE lower bounds for periodic stochas-

tic  ltering

In this subsection, the class of MCE bounds from [24]

is extended for periodic stochastic  ltering problems. The

following theorem presents a general class of lower bounds

on the MCE of any estimator of the state parameter θn.

Theorem 1: Let vn : Ω
x
(n) × Ω

θ(n) → CM be an

arbitrary auxiliary vector function whose elements belong to

L2(Ωx
(n) × Ω

θ(n)) and its second-order moment matrix is

de ned as

Bn
△
= E

[

vn

(

x
(n), θ(n)

)

v
H

n

(

x
(n), θ(n)

)]

. (21)

It is assumed that vn satis es

C.1) Bn ≻ 0M×M .

C.2) There exists a constant vector (independent of x(n) and

θ(n)), kn ∈ CM , 0 <
∣

∣

∣

∣kn

∣

∣

∣

∣ < ∞, s.t.

E
[

e−jθnvn

(

x
(n), θ(n)

)∣

∣

∣
x
(n)

]

= knE
[

e−jθn

∣

∣

∣
x
(n)

]

.

(22)

Then,

MCE
(

θ̂n

)

≥ 2− 2
(

k
H

n B
−1
n kn

)− 1
2 (23)

for any estimator θ̂n of θn.

Proof 1: The proof follows the lines of the proof in [24]

with extension to vector parameter estimation. �

The proof is based on the covariance inequality (e.g. [4,

p. 33]), where Condition C.2 ensures that the resulting

bound is independent of any speci�c estimator of the state

parameter θn. It can be seen that the lower bound in (23)

is based on the expression k
H

n B
−1
n kn, that results from the

covariance inequality. This expression is transformed in a

nonlinear fashion in order to bound the nonlinear MCE risk.

Under the assumption that the subset of Ω
x
(n) in which

E
[

e−jθn

∣

∣

∣
x
(n)

]

6= 0 is not empty, the vector kn can be ob-

tained from (22) in which x
(n) is substituted by any arbitrary

observation vector x
(n)
0 ∈ Ω

x
(n) with E

[

e−jθn

∣

∣

∣
x
(n)
0

]

6= 0.

In the following subsection, the cyclic BCRB for periodic

stochastic �ltering is derived from the general bound in (23),

based on a certain choice of the auxiliary function vn. In

addition, an ef�cient recursive method for the cyclic BCRB

computation is proposed, based on the recursive algorithm in

[11].

B. The cyclic BCRB for periodic stochastic �ltering

Let

J
(p)
n

△
= E





∂T log f
(p)
n

(

x
(n), θ(n)

)

∂θ(n)

∂ log f
(p)
n

(

x
(n), θ(n)

)

∂θ(n)





(24)

denote the nth step periodic Bayesian Fisher informa-

tion matrix (PBFIM). Under mild assumptions, it can be

veri�ed that the (m, q)th element of J
(p)
n is equal to

−E

[

∂2 log f(p)
n (x(n),θ(n))
∂θm∂θq

]

. We assume that the following

regularity conditions are satis�ed:

C.3) f
(p)
n is absolutely continuous w.r.t. θ(n) ∈
Ω

θ(n) , ∀x(n) ∈ Ω
x
(n) .

C.4) The nth step PBFIM, J
(p)
n , is a nonsingular matrix.

By substituting the auxiliary function

vBCRB,n

(

x
(n), θ(n)

)

△
=











[

1,
∂ log f(p)

n (x(n),θ(n))
∂θ(n)

]T

, f
(p)
n

(

x
(n), θ(n)

)

> 0
[

1,0T
n+1

]T
, otherwise

,
(25)

in (21) and (22), we obtain

Bn =

[

1 0
T
n+1

0n+1 J
(p)
n

]

(26)

and

kn =
[

1,0T
n , j

]T
, (27)

respectively. The off-diagonal blocks in the block diagonal

matrix Bn are zero, since from Condition C.3,

E





∂ log f
(p)
n

(

x
(n), θ(n)

)

∂θ(n)



 = 0
T
n+1.

It can also be shown that

E



e−jθn
∂ log f

(p)
n

(

x
(n), θ(n)

)

∂θi

∣

∣

∣

∣

∣

∣

x
(n)



 =

{

0, i = 0, . . . , n− 1

jE
[

e−jθn

∣

∣

∣
x
(n)

]

, i = n
,
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which elucidates the result in (27). By inserting (26) and (27)

in (23), one obtains the following nth step cyclic BCRB on

the MCE of θ̂n:

MCE
(

θ̂n

)

≥ CBCRB,n

△
= 2− 2

(

1 +

[

(

J
(p)
n

)−1
]

n+1,n+1

)− 1
2

.

(28)

The MCE bound in (28) utilizes information regarding

the current and previous states, since it is based on the

complete PBFIM, J
(p)
n . It can be seen that the nth step

PBFIM in (24) is obtained from the conventional nth step

Bayesian Fisher information matrix (BFIM) (see e.g. [11]),

Jn
△
= E

[

∂T log fn(x(n),θ(n))
∂θ(n)

∂ log fn(x(n),θ(n))
∂θ(n)

]

, by replacing

the joint pdf fn with its periodic extension, f
(p)
n . As a result,

Condition C.3 requires absolute continuity of the function

f
(p)
n , while the nth step BCRB requires absolute continuity

of fn w.r.t. θ
(n), ∀x(n) ∈ Ω

x
(n) . Since f

(p)
n is smoother than

fn, the regularity conditions of the nth step cyclic BCRB

are less restrictive than those of the conventional nth step

BCRB. For example, for uniform prior distribution of θ0 the

conventional regularity conditions are not satis�ed and the

nth step BCRB does not exist (see e.g. [39]), while the nth

step cyclic BCRB may exist, as presented in the example in

Section V.

It can be seen that at each time step n, the lower bound

in (28) requires the inversion of J
(p)
n . This task can be very

dif�cult for large n since the size of J
(p)
n grows linearly with

n. Therefore, we are interested to �nd a recursive solution

that does not involve the inversion of J
(p)
n .

In the following, we propose an algorithm for computing
[

(

J
(p)
n

)−1
]

n+1,n+1

without manipulating a linearly growing

matrix. This algorithm follows the lines of [11] for the

conventional nth step BCRB. We de�ne

ξ(p)n

△
=

1
[

(

J
(p)
n

)−1
]

n+1,n+1

, (29)

the equivalent periodic Bayesian Fisher information for the

estimation of θn, which re ects the effect of other unknown

parameters. By substituting (29) in (28) the nth step cyclic

BCRB for the estimation of θn can be written as

MCE
(

θ̂n

)

≥ CBCRB,n = 2− 2

(

1 +
1

ξ
(p)
n

)− 1
2

. (30)

We wish to obtain a recursive computation of ξ
(p)
n that does

not involve the inversion of the matrix J
(p)
n . By using (7),

the following recursive relation between f
(p)
i+1 and f

(p)
i can

be derived:

f
(p)
1

(

β(1),α(1)
)

=

f
(p)
θ0

(α0) f
(p)
θ1|θ0

(α1|α0) f
(p)
x1|θ1

(β1|α1)
(31)

and

f
(p)
i+1

(

β(i+1),α(i+1)
)

=

f
(p)
i

(

β(i),α(i)
)

f
(p)
θi+1|θi

(αi+1|αi)

f
(p)
xi+1|θi+1

(

βi+1|αi+1

)

, i = 1, 2, . . . .

(32)

Proposition 2: The sequence
{

ξ
(p)
i

}∞

i=0
obeys the follow-

ing recursion

ξ
(p)
i+1 = D

(p)
i,(2,2) −

(

D
(p)
i,(1,2)

)2

ξ
(p)
i +D

(p)
i,(1,1)

, (33)

where

D
(p)
i,(1,1)

△
= −E





∂2 log f
(p)
θi+1|θi

(θi+1|θi)
∂θ2i



 , (34)

D
(p)
i,(1,2)

△
= −E





∂2 log f
(p)
θi+1|θi

(θi+1|θi)
∂θi∂θi+1



 , (35)

and

D
(p)
i,(2,2)

△
=− E





∂2 log f
(p)
θi+1|θi

(θi+1|θi)
∂θ2i+1





− E





∂2 log f
(p)
xi+1|θi+1

(xi+1|θi+1)

∂θ2i+1



 ,

(36)

∀i = 0, 1, 2, . . ., where the algorithm is initialized with

ξ
(p)
0 = −E

[

d2 log f
(p)
θ0

(θ0)

dθ20

]

(37)

Proof 2: The proof is similar to the proof in [11], for the

nth step BCRB computation, with the pdf periodic extensions

taking the role of the conventional pdfs. �

V. EXAMPLE - PHASE TRACKING

In this section, the proposed cyclic BCRB is applied for

phase tracking of a sinusoid embedded in noise:

xi = Aejθi + νi, i = 1, 2, . . . , (38)

where {νi} is an independent identically distributed (i.i.d.)

complex circularly symmetric zero mean Gaussian noise with

known variance σ2 and A > 0 is a known amplitude. The

state model is given by

θi+1 = [θi + wi]2π , i = 0, 1, 2, . . . , (39)
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where {wi} is an i.i.d. von Mises noise with known circular

mean µ and concentration κ, i.e.

fwi
(ζ) =

{

eκ cos(ζ−µ)

2πI0(κ)
, ζ ∈ [−π, π)

0, otherwise
, i = 0, 1, 2, . . . ,

where Im is the modi�ed Bessel function of order m. It is

assumed that the sequences {wi} and {νi} are statistically

independent as well as independent of past and present

states. In the following, it is assumed that µ = 0. The von
Mises distribution is one of the most popular distributions

for modeling random parameters with periodic nature and

is analogous to the Gaussian distribution on the real axis

(see e.g. [29], [35], [38], [43]), where the parameters µ and
1
κ
are analogous to the corresponding mean and variance,

respectively [38, p. 41]. In addition, it is assumed that the

prior distribution of θ0 is uniform, i.e. θ0 ∼ U(−π, π). For
this case, the pdf periodic extensions from (4), (5), and (6)

are given by

f
(p)
θ0

(α0) =
1

2π
, ∀α0 ∈ R, (40)

f
(p)
θi|θi−1

(αi|αi−1) =
eκ cos(αi−αi−1)

2πI0(κ)
, (41)

∀αi, αi−1 ∈ R, i = 1, 2, . . ., and

f
(p)
xi|θi

(βi|αi) =
e−

|βi−Aejαi |2
σ2

πσ2
, (42)

∀αi ∈ R, βi ∈ C, i = 1, 2, . . ., respectively. It can be shown
that by substituting (40)-(42) in (34)-(37), one obtains

D
(p)
i,(1,1) =

κI1(κ)

I0(κ)
, (43)

D
(p)
i,(1,2) = −κI1(κ)

I0(κ)
, (44)

D
(p)
i,(2,2) =

κI1(κ)

I0(κ)
+ 2SNR, (45)

and

ξ
(p)
0 = 0, (46)

respectively, ∀i = 0, 1, 2, . . ., where the signal-to-noise ratio

(SNR) is de�ned as SNR
△
= A2

σ2 . By substituting (43)-(45)

in the recursive formula from (33) and initializing it with

(46), one obtains the equivalent periodic Bayesian Fisher

information and consequently the cyclic BCRB from (30) for

the state estimation at each time step n = 1, 2, . . .. It should
be noted that the conventional BCRB for stochastic �ltering,

from [11], does not exist for this case due to regularity

assumptions.

In the following, the proposed cyclic BCRB is evaluated

and compared with the MCEs of the KGH �lter [37], denoted

as θ̂
(D)
KGH,n, with D = 3 deterministic samples, the WL �lter

[25], [31], denoted as θ̂
(L)
WL,n, with L = 5 Fourier coef�cients,

and the particle �lter [8], denoted as θ̂
(S)
PAR,n, with S = 20

particles, where n is the time step. The MCEs of these �lters

are evaluated using 10,000 Monte-Carlo trials and presented

in Fig. 1 versus the time step n for κ = 100 and σ2 = 1.
It can be seen that the cyclic BCRB closely predicts the

performance of the KGH �lter that outperforms the WL and

particle �lters. In Fig. 2, the MCEs of the �lters are presented

versus the state noise concentration, κ, for σ2 = 1 at n = 12
time step. It can be seen that for κ > 100, the cyclic BCRB
closely predicts the performance of the KGH �lter. In Fig. 3,

the MCEs of the �lters are presented versus SNR for κ = 100
after n = 12 time steps. It can be seen that for SNR greater

than 8 dB, the cyclic BCRB is achieved by all the �lters.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

M
C
E

MCE
(

θ̂
(D)
KGH,n

)

MCE
(

θ̂
(L)
WL,n

)

MCE
(

θ̂
(S)
PAR,n

)

CBCRB,n

Fig. 1. The MCEs of KGH �lter with D = 3 deterministic samples, WL
�lter with L = 5 Fourier coef�cients, and particle �lter with S = 20

particles and CBCRB,n versus the time step n.

VI. CONCLUSION

In this paper, we propose a Cramér-Rao-type MCE lower

bound, denoted as the cyclic BCRB, which is appropriate

for periodic stochastic �ltering problems. It is shown that

the cyclic BCRB requires less restrictive regularity condi-

tions than the conventional BCRB. The performance of the

proposed bound is compared to the MCEs of the KGH, WL,

and particle �lters for phase tracking problem with additive

Gaussian measurement noise and von Mises distributed state

noise. It is shown that the cyclic BCRB is valid for any

periodic stochastic �lter and that it can be achieved by

existing �lters.
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