
Heart Phase Estimation Using Directional Statistics

for Robotic Beating Heart Surgery

Gerhard Kurz and Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology (KIT), Germany

gerhard.kurz@kit.edu, uwe.hanebeck@ieee.org

Abstract—Robotic beating heart surgery requires accurate
information about the current state of the heart. For this purpose,
it is of great importance to have a good estimate of the heart’s
current phase, which in essence corresponds to the percentage
of the current heart cycle that has already passed. Estimation
of the heart phase is a highly nontrivial problem as the heart
motion is not exactly periodic. On the contrary, it varies slightly
from beat to beat and changes in frequency over time. In order to
derive a robust phase estimation algorithm, we rely on directional
statistics, a subfield of statistics that deals with quantities that are
inherently periodic, such as the phase of the beating heart. The
proposed methods are evaluated on a real data set and shown to
be superior to the state of the art.

Keywords—wrapped normal, periodicity, heart rate, blood pres-
sure, expectation maximization

I. INTRODUCTION

Every year, several million people die as a result of coronary
artery disease. One of the treatments for this disease is the
coronary artery bypass graft (CABG), a procedure where blood
flow to the myocardium (the heart muscle) is restored by
surgically creating a bypass of the affected blood vessels. As
performing surgery on the beating heart is very demanding even
for skilled surgeons, this procedure is commonly performed
on a stopped heart. However, there are significant advantages
for the patient if stopping the heart can be avoided, and thus,
there has been a lot of work on robotics-based solutions for
the problem of beating heart surgery in the past decade [1].

To address this problem, Nakamura et al. suggested the
following concept for robotic beating heart surgery in 2001
[2]. The operation is carried out by a remote-controlled robot
that automatically cancels out the motion of the beating heart.
The surgeon who remotely controls the robot is, in turn, shown
a stabilized image of the heart. This creates the illusion of
operating on a still heart, even though the heart is, as a matter
of fact, beating.

Automatic motion cancellation is, of course, founded on a
highly accurate, reliable, and fast tracking of the movements of
the beating heart. One of the most relevant quantities to describe
the current state of the heart is its phase. In this context, the
term phase can be explained as follows. Imagine that the heart
performs a nearly (but not exactly) periodic movement with
every heart beat. Now, based on measurements obtained from
the heart using certain sensors, we seek to answer the question
how much of the heart cycle has already passed and how much
is yet to come. How far in the current heart beat are we at the
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Fig. 1: Illustration of the phase of an ECG signal.

moment? What percentage of the current heart beat has already
passed? To answer these questions, we propose to employ a
phase estimation algorithm.

There is some work on phase estimation in literature, but it
is usually applied to very different types of problems [3]. A very
common application is the phase-locked loop (PLL), a control
system that tries to track the phase of an input signal [4]. In the
field of information theory and communication, the use of phase
shift keying (PSK) modulation has been considered, which
requires estimation of phase shifts in the received signal [5].

Phase estimation for the beating heart is a related but some-
what different problem. For many traditional phase estimation
problems, the signal is assumed to be (almost) exactly periodic
and it is sufficient to estimate the phase at the beginning of the
signal to know the phase everywhere. By observing the signal
for a certain amount of time, sufficient data for accurate phase
estimation can be gathered. In the case of the beating heart,
however, the movement is not exactly periodic and we need to
estimate the phase at every point in time. Depending on the
situation, the heart frequency and amplitude might change fairly
quickly, especially during heart surgery. As even a single heart
beat may be different from other heartbeats, for example as a
result of arrhythmia (e.g., a premature ventricular contraction),
an algorithm for heart phase estimation needs to be able to
quickly adjust to changes in the heart movement (see Fig. 1).

The problem of phase estimation for the beating heart
has only been considered by few authors. For example,
Nascimento et al. have proposed a method for estimation
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based on echographic images [6]. However, their method is
based on a multiple model filter and can only distinguish
a finite number of phase values (two in their paper, systole
and diastole). A method based on artificial neural networks
that is also limited to distinguishing systole and diastole was
proposed by Bibicu et al. [7]. Moreover, an approach based on
computing local extrema in the image intensity was proposed
by Hernàndez-Sabaté et al. [8].

In this paper, we consider a phase estimation approach
based on directional statistics [9], [10], a subfield of statistics
dealing with quantities on periodic manifolds. Unlike traditional
approaches based on linear approximations, directional statistics
is able to properly consider the inherent periodicity of the phase
estimation problem. The application of directional statistics to
the estimation of phase or phase difference has previously been
considered by Stienne et al. for the case of GPS signals [11]
and by Traa et al. in the context of microphone arrays [12].
However, the approaches by Stienne and Traa do not allow
sensor fusion based on arbitrary likelihoods.

The approach proposed in this paper is based on the
nonlinear circular filter that we proposed in [13] and extended
in [14], [15]. This filter is based on the so-called wrapped
normal distribution and can deal with nonlinear system and
measurement equations. A more detailed discussion of this
filter as well as some preliminary work on applying it to heart
phase estimation can be found in [16].

The contributions of this paper can be summarized as
follows. We propose a novel phase estimation algorithm, which
is based on the application of the circular filter published
in [17] to the problem of phase estimation. Furthermore,
we present an expectation maximization algorithm for the
partially wrapped normal distribution, which is, unlike previous
approaches, based on moment matching rather than maximum
likelihood estimation. Finally, we show how to apply the
discussed algorithms to the problem of heart phase estimation
and provide a thorough evaluation based on simulated as well
as real data.

This paper is structured as follows. First, we introduce the
concepts of periodicity and phase more rigorously in Sec. II.
Then, we present the proposed phase estimation algorithm
based on directional statistics in Sec. III and explain how to
apply it to the problem of the beating heart in Sec. IV. Then,
the proposed method is thoroughly evaluated in Sec. V. This
paper is concluded in Sec. VI.

II. PERIODICITY AND PHASE

In this section, we introduce the concepts of periodicity and
phase. Particularly, we consider the periodicity of functions that
are not exactly periodic, but only approximately periodic in
some sense. Then, we explain how the concept of phase can be
applied in cases where the property of periodicity does not hold
exactly. There is some literature on the topic of functions with
non-exact periodicity (such as [18]) and the terms quasiperiodic
and approximately periodic have been coined. In the following,
we will introduce our own nomenclature, however, as the terms
found in literature do not precisely specify the type of functions
considered in this paper.

Let us first consider exactly periodic functions. A function
f : R → R is called exactly periodic with period ∆t > 0 if
and only if

f(t) = f(t+∆t), ∀t ∈ R .

Examples of exactly periodic functions are f(t) = cos(t) with
period ∆t = 2π and f(t) = mod (t, 2) with period ∆t = 2.
The concept of exact periodicity is illustrated in Fig. 2a.

One way to relax the definition of exactly periodic functions
is to consider functions that are approximately periodic in terms
of value. In this case, we do not require the function values in
every period to be equal, but only similar. A function f : R→ R

is called approximately periodic in terms of value with period
∆t > 0 if and only if

f(t) ≈ f(t+∆t), ∀t ∈ R .

Functions of this type appear, for example, when an exactly
periodic signal is superimposed by zero-mean additive noise.
This concept is shown in Fig. 2b.

It is, however, also possible to relax the definition of
exact periodicity in a different way by considering functions
that are approximately periodic in terms of time. Here, we
drop the requirement that the function values have to repeat
with a constant period ∆t. A function f : R → R is called
approximately periodic in terms of time if and only if

f(t) = f(g(t+∆t)), ∀t ∈ R ,

where g : R→ R is a continous and strictly increasing function.
If we consider t as the time1, this intuitively means that the
time does not pass evenly, but can speed up or slow down
depending on the function g. An illustration of this concept is
given in Fig. 2c.

Furthermore, it is possible to consider a combination of
both relaxations of exact periodicity. In this case, we have a
function that is only approximately periodic with respect to
both value and time. Functions of this type occur in a variety
of real-world problems, particularly in the problem of heart
phase estimation, which is considered in this paper. A function
f : R→ R is called approximately periodic in terms of both
value and time if and only if

f(t) ≈ f(g(t+∆t)), ∀t ∈ R ,

where g : R → R is a continous, bijective, and strictly
increasing function.

Now we consider the definition of phase for these types of
functions. Particularly, we consider the phase as a time-variant
quantity φ(t) ∈ [0, 2π), which is sometimes also referred to as
instantaneous phase or local phase. As the choice which point
in time has phase φ(t) = 0 is arbitrary, we define φ(0) = 0.
Then, the phase of an exactly periodic function f(·) with period
∆t at time t is given by

φ(t) =
2π

∆t
· (t mod ∆t) ∈ [0, 2π) .

Because this equation does not involve the value of f(·), it
also applies to functions that are approximately periodic in

1It should be noted that these concepts can also be applied to cases where
t is not time, for example if spatial periodicity is to be considered.
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Fig. 2: Examples for the different concepts of periodicity.

terms of value. For a function f(·) with period ∆t that is only
approximately periodic in terms of time, we have to transform
the time using the inverse of g(·), before obtaining the phase.
This yields

φ(t) =
2π

∆t
· (g−1(t) mod ∆t) ∈ [0, 2π) ,

which is obviously also applicable to functions that are only
approximately periodic in terms of both value and time.

III. PHASE ESTIMATION ALGORITHM

Let us now consider a system whose state xk at time step
k is the phase at this point in time. In the following we will
discuss an algorithm suitable for estimating the state xk based
on noisy measurements. As phase is a periodic quantity, we
propose the use of an estimation algorithm based on directional
statistics.

A. Directional Statistics

Before we discuss the filtering algorithm, we give a
brief introduction into the underlying concepts of directional
statistics.

Consider a real-valued random variable x ∼ N (x;µ, σ)
distributed according to a normal distribution with mean µ
and standard deviation σ. If we take x mod 2π, we obtain a
circular random variable on [0, 2π) and its distribution is given
according to the following definition.

Definition 1 (Wrapped Normal Distribution). A wrapped
normal (WN) distribution with parameters µ ∈ [0, 2π) and
σ > 0 is given by the probability density function

WN (x;µ, σ) =

∞
∑

j=−∞

N (x+ 2πj;µ, σ)

for x ∈ [0, 2π).

The WN distribution arises as a limit distribution on the
circle [13] and can be seen as a natural counterpart of the
normal distribution for circular random variables.

An important concept in directional statistics are circular
(or trigonometric) moments. For a circular random variable,

the n-th trigonometric moment is given by E
(

einx
)

∈ C,
where i is the imaginary unit. For a WN-distributed random
variable x ∼ WN (x;µ, σ), the n-th trigonometric moment can
be calculated according to mn = exp(inµ− n2σ2/2).

In order to derive a filter with a nonlinear measurement
update, it is helpful to approximate a continous WN density
with a set of (weighted) samples. While it is possible to use
stochastic samples for this purpose (similar to the Gaussian
Particle Filter [19]), it has been shown that an intelligent
deterministic algorithm for choosing samples representative
of the original distribution produces more reliable results with
a much smaller number of samples [15].

A deterministic sampling scheme for circular densities,
particularly the WN density, has been presented in [20]. It
is based on matching the first two trigonometric moments
m1 and m2 to obtain a set of L = 5 weighted samples at
positions β1, . . . , βL ∈ [0, 2π) with weights γ1, . . . , γL > 0
and

∑L

l=1
γl = 1. In the following, we will use this sampling

technique. Conversely, we can easily estimate the parameters
of a WN distribution from weighted samples by matching
the first trigonometric moment. For L weighted samples at
positions β1, . . . , βL ∈ [0, 2π) with weights γ1, . . . , γL > 0
and

∑L

l=1
γl = 1, we obtain WN (x;µ, σ) with

µ = atan2

(

L
∑

l=1

γl sin(βl),
L
∑

l=1

γl cos(βl)

)

,

σ =

√

√

√

√−2 log

(

L
∑

l=1

γl cos(βl − µ)

)

.

B. Circular Filtering

Based on these fundamentals, it is possible to develop
a recursive filtering algorithm. This algorithm consists of a
prediction and an update step. The occurring distributions are
assumed to be WN.

1) Prediction: In this paper, we assume that the system
model is given by the equation

xk+1 = xk + ck + wk mod 2π ,
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where wk ∼ WN (w;µw = 0, σw) is WN-distributed noise
and ck ∈ [0, 2π) is a known offset. A nonlinear generalization
was presented in [13], see also [15].

According to the Chapman–Kolmogorov equation, we
obtain the predicted density fp(xk+1) according to

fp(xk+1)

=

∫ 2π

0

f(xk+1|xk)f
e(xk) dxk

=

∫ 2π

0

∫ 2π

0

f(xk+1|wk, xk)f
e(xk)f

w(wk) dwk dxk

=

∫ 2π

0

∫ 2π

0

δ(xk+1 − (xk + ck + wk) mod 2π)

fe(xk)f
w(wk) dwk dxk

=

∫ 2π

0

fe(xk+1 − ck − wk mod 2π)fw(wk) dwk

= (fe
ck
∗ fw)(xk+1) ,

where fe
ck
(x) = fe(x− ck mod 2π) is the shifted prior and ∗

indicates the convolution on the circle.

As we have shown in [15], the convolution of two WN
densities with parameters WN (x;µ1, σ1) and WN (x;µ2, σ2)
is given by WN (x;µ1 + µ2,

√

σ2
1 + σ2

2).

2) Update: For the measurement update, we assume that a
probabilistic measurement model in the form of the likelihood
f(ẑk|xk) is given. According to Bayes’ theorem, we have

fe
xk

= f(xk|ẑk) ∝ f(ẑk|xk)f
p(xk) ,

i.e., the estimated density is given by the renormalized product
of the likelihood and the prior. As this product is difficult to
evaluate in closed-form, we use the sample-based approximation
discussed above. For a known likelihood, it is easy to multiply
the weight of each sample with the likelihood at that location
and to estimate the parameters of the posterior WN from the
reweighted samples by moment matching.

In practice, this approach suffers from the problem of sample
degeneration, i.e., the weights of some (or all) samples are very
close to zero after reweighting. To address this problem, we
use a progressive technique initially proposed for the Gaussian
case in [21]. A version of this method that was adapted to the
circle is discussed in detail in [14], [15].

IV. APPLICATION TO HEART PHASE ESTIMATION

In order to apply the phase estimation algorithm introduced
above to a practical problem such as heart phase estimation,
some additional steps are necessary. Particularly, we need to
define the system model as well as the likelihood function in
a suitable fashion.

First of all, we assume a discrete-time system model whose
time step duration is equal to the sampling frequency ξs of the
involved sensors2. Furthermore, as frequency estimation is out
of the scope of this paper, we assume that the heart frequency
ξhk at time step k is (approximately) known.

2It is easy to generalize the methods discussed here to multiple sensor with
different sampling frequencies.

Then, the system model is given by

xk+1 = xk + 2π ·
ξhk
ξs

+ wk mod 2π ,

with noise wk ∼ WN (w;µw, σw).

In order to obtain the likelihood f(zk|xk) defining the mea-
surement model, we propose a data-driven approach. For this
purpose, we consider f(zk|xk) as a function of two variables3,
zk and xk. As discussed before, the state xk is a directional
quantity defined on the circle [0, 2π). The measurement zk,
however, is typically not a directional quantity. In the following,
we assume that the measurement is a real number, which is a
realistic assumption for the measurements provided by most
sensors such as electrocardiogram sensors, pressure sensors, and
photoplethysmogram sensors. As a result, the likelihood can
be described by a partially wrapped (unnormalized) density.
For this reason, we consider the partially wrapped normal
distribution.

Definition 2 (Partially Wrapped Normal Distribution). The
partially wrapped normal (PWN) distribution for one circular
and one linear dimension is given by the probability density
function

PWN (x, µ,C) =

∞
∑

j=−∞

N
(

x+ [2πj, 0]T ;µ,C
)

,

where x, µ ∈ [0, 2π)×R and C ∈ R
2×2 is a symmetric positive

definite matrix.

Some discussion on the case with one circular and two
linear dimensions can be found in [22], [23], and the general
case with an arbitrary number of circular and linear dimensions
is treated in [16]. Similar to the way Gaussian distributions can
be generalized to Gaussian mixtures, we now consider mixtures
of PWN distributions. Roy et al. have also published some
work on PWN mixtures, which they refer to as semi-wrapped
Gaussian mixture model (SWGMM) [23]. A PWN mixture with
L components is given by

L
∑

l=1

ωl · PWN (x, µ
l
,Cl) ,

where ω1, . . . , ωL > 0 with
∑L

l=1
ωl = 1 are weighting co-

efficients, and PWN (x, µ
1
,C1), . . . ,PWN (x, µ

L
,CL) are

PWN distributions.

When applying the proposed phase estimation algorithm to
a real-world problem, one is faced with the question of how to
obtain the likelihood function. In some cases a mathematical
model of the system may be used to derive the likelihood. In
the case of the beating heart, it might be possible to employ
a complex physiological model of the heart such as [24] to
derive the probability of a measurement ẑk given a certain phase
xk. To avoid this complexity, we use a different approach in
this paper, where we estimate the parameters of the PWN
distribution based on samples obtained from labeled training
data.

Estimation of mixture parameters is commonly done using
the expectation maximization (EM) algorithm. We propose a

3The likelihood is commonly thought of as a function of xk for fixed ẑk .
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version of this algorithm adapted to the estimation of PWN mix-
ture parameters. The proposed EM-like algorithm is somewhat
unusual because it does not use maximum likelihood estimation
(MLE) to obtain the parameters of the PWN distributions, but
rather attempts to match hybrid moments, a generalized concept
of moments for partially wrapped distributions introduced
in [22]. The reason for this choice lies in the fact that MLE is
not possible in closed-form (even for scalar WN distributions).
As a result, approaches in literature such as [23], [25] use an
approximate version of MLE instead, which leads to suboptimal
results, while still being quite costly to compute.

Pseudo code of the resulting algorithm is given in Al-
gorithm 1, which is based on the moment-based parameter
estimation scheme given in Algorithm 2 (see also [16]).

Algorithm 1: Step of the EM-like algorithm for PWN
mixtures.

Input: samples x1, . . . , xN ∈ S1 × R, PWN mixture
parameters
(µ

1
, . . . , µ

L
,C1, . . . ,CL, ω1, . . . , ωL)

Output: new PWN mixture parameters
(µ

1
, . . . , µ

L
,C1, . . . ,CL, ω1, . . . , ωL)

// E-Step

for n← 1 to N do
// assign sample n to component l

with weight γn,l
for l← 1 to L do

γn,l ← ωl · PWN
(

xn;µl
,Cl, 1

)

;

end
// normalize weights for sample n

Γn ←
∑L

l=1
γn,l;

for l← 1 to L do
γn,l ← γn,l/Γn;

end
end
// M-Step

for l← 1 to L do
// estimate parameters of component

l from samples x1, . . . xN with

weights γ1,l, . . . γN,l

Γl =
∑N

n=1
γn,l ;

(µ
l
,Cl)←paramEstim

(

x1, . . . xN ,
γ1,l

Γl
, . . . ,

γN,l

Γl

)

;

end
for l← 1 to L do

ωl ←
Γl∑
L
l=1

Γl
;

end
return (µ

1
, . . . , µ

L
,C1, . . . ,CL, ω1, . . . , ωL);

The proposed method can be generalized to use multiple
sensors by considering a likelihood f(z|x) with a vectorial
measurement z. Consequently, a PWN distribution of higher
dimension has to be used (see [16]). In many cases, different
sensors can be assumed to be independent, which allows
factoring the likelihood as f(z|x) = f(z1|x) · . . . · f(zs).
Then, the estimate can be obtained by performing s successive
measurement updates with scalar measurements, i.e., one
measurement update per sensor.

Algorithm 2: Parameter estimation for PWN.

Input: samples x1, . . . xN ∈ S1 × R, normalized
weights γ1, . . . , γN > 0

Output: PWN parameters µ, C

// augment angular dimension

for n← 1 to N do

x̃n ← [cos(xn,1), sin(xn,1), xn,2]
T ;

end
// calculate hyrid moments

µ̃ =
∑N

n=1
γnx̃n;

C̃ =
∑N

n=1
γn(x̃n − µ̃)(x̃n − µ̃)T ;

// obtain PWN parameters

µ← [atan2(µ̃2, µ̃1), µ̃3]
T ;

c11 ← −2 log(
√

µ̃2
1 + µ̃2

2) ;
c12 ← exp(c11/2)(−c̃13 sin(µ1) + c̃23 cos(µ1)) ;
c22 ← c̃33;

C←

[

c11 c12
c12 c22

]

;

return µ,C;

V. EVALUATION

In this section, we evaluate the proposed methods on both
simulated and real data. For the simulated data, we generated
two signals, one for training and one for evaluation. The signal
for training is given by

h(t) = sin(φ(t)) + vt

with additive Gaussian noise vt ∼ N (v; 0, 0.2) and phase

φ(t) = 2π
ξh

ξs
t ,

i.e., we have a fixed frequency of ξh = 1.5Hz. The signal
for the evaluation is a sine function with the same amount of
additive Gaussian noise, but it has the phase

φ(t) = 2π

∫ t

0

ξh(τ)

ξs
dτ ,

where ξh(t) = (1.5 + cos(0.25t))Hz is the time-varying heart
frequency (see Fig. 3). The sampling frequency is ξs = 1000Hz
in both cases.

The real data set consists in a blood pressure signal recorded
intraoperatively during coronary artery bypass graft surgery on
a pig. The surgery was performed at the UniversitätsKlinikum
Heidelberg (Heidelberg University Hospital). Once again, the
sampling frequency is ξs = 1000Hz. In this paper, we consider
four separate recordings (named 70, 77, 78, and 79), three of
which (77,78,79) will be used for training and one of which
(70, see Fig. 3) will be used for evaluation.

When applying the proposed methods to the real data, we
use a preprocessing step to avoid certain issues. In reality,
both the mean value and the amplitude (i.e., the difference
between the minimum and maximum pressure in a single heart
beat) change over time. In order to capture this effect, the
measurement likelihood would need to be time-varying and
depend on the current mean as well as amplitude. This can,
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Fig. 3: Original pressure signal and heart rate obtained using STFT (top: simulated data, bottom: real data).

(a) Original data. (b) Preprocessed data.

Fig. 4: Phase and pressure for real data.

however, be avoided by considering the preprocessed signal
given by

ẑpreprocessed

k =
ẑk −Q0,1

k

Q0.9
k −Q0.1

k

where Qp is the p-quantile of zk−2000, . . . , zk. The effect of
this step is depicted in Fig. 4. It can be seen as a normalization
procedure that shifts and scales the raw measurements such
that 80% of the measurements are between 0 and 1.

We applied the EM-like algorithm introduced before to the
simulated as well as the real data to obtain a PWN mixture
model for the likelihood function. The model was initialized

randomly and the number of components was chosen to be
L = 25. The resulting likelihood functions are depicted in
Fig. 5. The system noise was set to WN (x; 0, 0.03) for the
simulated data and to WN (x; 0, 0.001) for the real data. A
prediction is performed at every time step, i.e., every 1ms, and
a measurement update is performed every ten time steps, i.e.,
every 10ms.

For comparison, we implemented an approach based on
calculating the cross-correlation of the past measurements with
a cosine function with the same frequency as the beating heart.
The highest cross-correlation was obtained form a circular
convolution within a window of (ξh)−1 seconds, i.e., the length
of one heartbeat.
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(a) 2D (simulated). (b) 3D (simulated).

(c) 2D (real). (d) 3D (real).

Fig. 5: Likelihood functions obtained from simulated and real data visualized in 2D and 3D.
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(a) Simulated data.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

p
h

a
s
e

 e
rr

o
r 

(r
a

d
ia

n
s
)

 

 

proposed method

cross−correlation method

(b) Real data.

Fig. 6: Phase error over time.

Because both approaches require a (rough) estimate of the
current heart frequency, we implemented a short-time Fourier
transform (STFT) with a window size of 4096ms. A new STFT
was performed every 256ms to obtain a current estimate of
the heart frequency.

As an error measure, we use an angular version of the
root-mean-square error (RMSE) given by

√

√

√

√

1

kmax

kmax
∑

k=1

min (|xk − xtrue
k |, 2π − |xk − xtrue

k |)
2

to compare the estimated state with the ground truth for each
time step. Intuitively, this error measure can be understood as
an RMSE based on the geodetic distance on the circle, i.e,

the shorter of the two connections between two points on the
circle.

A constant offset in terms of phase does not really matter
as the definition which phase corresponds to zero is arbitrary,
we center the estimated phase values around the ground truth
before calculating the error measure, i.e., we enforce that the
estimate is unbiased.

The error of both approaches for the simulated and the
real data set is shown in Fig. 6. For the simulated data, the
total angular RMSE for the proposed approach is 0.1737,
whereas the approach based on cross-correlation has angular
RMSE of 1.0340. These results suggest that the proposed filter
is far superior to the approach based on cross-correlation in
challenging scenarios where the frequency changes rapidly.
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On the real data set, the angular RMSE is given by 0.1311
and 0.1455, respectively, i.e., the error of the approach based
on cross-correlation is approximately 11% higher than the
error of the proposed approach. The reason why the difference
between the two methods is much smaller on the real data set
is the fact that there are no rapid changes in frequency and no
premature ventricular contractions in the considered signal. In
other words, the real data set is not particularly challenging,
and, as a result, even the approach based on cross-correlation
has little trouble determining the correct phase. In future work,
it would be interesting to consider more challenging signals.

VI. CONCLUSION

A novel phase estimation algorithm based on directional
statistics has been presented in this paper. The proposed
algorithm has been applied to the problem of heart phase
estimation and can be employed in the context of robotic
beating heart surgery.

In a challenging simulated setting, the evaluation shows
far superior results compared to a standard approach. An
application to real data indicated that the proposed algorithm
works in real-life scenarios and performs better than the
considered standard approach.

The proposed method can be extended in several ways.
First, it would be interesting to consider the problem of jointly
estimating the phase and the frequency of the signal. As phase
is periodic but frequency is linear, this would necessitate a filter
based on circular-linear distributions, e.g., the PWN distribution
discussed in this paper. Phase and frequency are, obviously, not
independent quantities, so it would be of particular importance
to properly consider the involved circular-linear correlation.
Second, the proposed method could be applied to a larger
variety of sensors, possibly fusing measurements from different
sources to obtain a better estimate. Third, the heart phase
estimation algorithm could be included in a system for robotic
beating heart surgery.
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