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Abstract - In this work, we present an informational 

framework able to guarantee high integrity of data fusion 

method. The proposed framework is designed using a 

bank of Information Filters (IF) and information theory 

metrics in order to develop a monitoring method which 

able to detect and exclude faulty data. The decision of 

faults detection and exclusion are examined through a 

coherence test elaborated using the Conditional 

Informational Entropy (CIE) metric. The proposed test is 

directly connected to the convergence of the information 

filters. Since the Chi-square test is one of the classical 

used tests in the Faults Detection and Exclusion (FDE) 

procedure using Kalman Filter (KF), a relationship 

between the proposed test and the Chi-square one is 

established. Through real GPS measurements, the 

performance of the proposed framework is shown. 

 

Keywords: Information theory, Information filter, GPS 

system, FDE, filter convergence. 

1 Introduction 

An autonomous navigation system depends on the high 

integrity of the state estimation using data fusion method. 

The characterization of the latter can be reached with an 

integrity monitoring algorithm which permits to detect and 

exclude faulty measurements. The addition of this 

functionality allows making the data fusion method a fault 

tolerant one. 

The various existing integrity monitoring methods differs 

mainly on the statistic test; example of test applied includes 

Chi-square distribution, T-distribution, F-distribution [1]. But 

these approaches suffer from various weakness points. In 

fact, the choice of threshold is linked to a false alarm 

probability which is chosen in a heuristic manner inducing a 

lower integrity level. Moreover, these residual test schemes 

succeed easily on picking out the sporadic errors, but hardly 

detect the gradually increasing errors. Another limitation of 

these kinds of methods appears in case of multiple 

simultaneous faulty observations. 

An informational framework for integrity monitoring is 

designed in order to integrate a diagnosis level which able to 

detect and exclude faulty measures before state estimation.  

The KF is one of the traditional algorithms used in stochastic 

state estimation. Information filter, which is the 

informational form of the KF, has proved to be more 

efficient for multi-sources state estimation. Instead of using a 

moment representation with a state vector and a covariance 

matrix, an IF works with a canonical representation using 

information form of the co-variance matrix and of the state 

vector, called respectively the information matrix (fisher 

matrix) and the information vector. The difference in 

representation between the KF and the IF make the last 

more efficient in term of multi sources data fusion and 

especially for diagnosis [2][3]. Indeed, the IF correction step 

is a simple addition of predicted Fisher information 

(respectively information vector) and information 

contribution of each new observation. This property offers 

the possibility to develop powerful architectures based on 

filters synthesis for data fusion and diagnosis. 

The proposed diagnosis method is a multi-levels hierarchical 

method consisting of a bank of IF. The decision of faults 

detection and exclusion are examined through a test 

elaborated using the CIE. Integrity monitoring is performed 

by applying a Non-linear IF (NIF) and coherence tests based 

on CIE. The IF makes possible to quantify the information 

innovation of each measurement. Then, a first coherence test 

is used to detect the appearance of faults and a second one is 

used to exclude the erroneous measurements. Particularly, 

the proposed FDE performance is notable in the case of 

multi-faults situation.  

The elaborated tests are directly linked to the global 

convergence of the IF, hence their importance. These tests 

will converge exponentially [4][5][6] to a constant value and 

they will be largely sensitive to the appearance of faults. A 

theoretical study is elaborated to demonstrate the 

exponential convergence of these tests, and convergence 

boundaries are constructed. A comparison of the proposed 

tests and the Chi-square one is presented and advantages are 

dressed. 

The proposed framework is applied to Global Navigation 

Satellite System (GNSS) localization in order to guarantee 

high integrity information. This system uses redundant 

GNSS measurements to detect faulty satellites. The 

measurements based on code C/A of L1 signal, enable to 

calculate the range between the receiver and satellites. The 

GNSS waves could be affected by various errors having 

origin from ionospheric delay, tropospheric delay and from 

multi-path trajectories [7]. 
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This paper is organized as follow: section 2 presents the IF 

and a study about its convergence. Then, the exponential 

convergence needed in the detection and the exclusion test is 

presented in the same section, in addition to the relation 

between Chi-square and these tests. In section 3, we present 

the developed informational framework. Section 4 presents 

an application of this one to GPS system. Finally, 

conclusion is proposed in section 5. 

 

2 Theoretical study of the information 

filter 

2.1 Introduction to the information filter 

Consider a system evolving according to the linear equation: ݔ௞ାଵ ൌ Ǥܨ ௞ݔ ൅ ሺ݇ሻݓ (1) 

 ሺ݇ሻ: The process noise modeled as uncorrelated whiteݓ The state transition matrix :ܨ ݇ ௞: The state vector at timeݔ

noise with  E{ݓ (i)ݓ T
(j)}=įijQ(i). 

The observation is supposed to be non-linear (we deal with 

the Extended form of KF (EKF) and its informational form 

the Extended IF (EIF)): ݖ௞ ൌ ݄ሺݔ௞ሻ ൅  ሺ݇ሻ: The observation noise modeled as uncorrelated whiteݒ ,௞:The observation vector, ݄(.)  : The observation model function and H its Jacobienݖ ሺ݇ሻ (2)ݒ

noise with  E{ݒ (i)ݒ T
(j)}=įijR(i) 

The observation is linearized around the predicted state:  ݖ௞ ൌ ݄ሺݔ௞כሻ ൅ ݔ߲݄߲ ȁ௫כοݔ ൅  ሺ݇ሻݒ
(3) 

Where כݔ is the nominal reference trajectory and οݔ is the 
error between the real and the nominal trajectory. 

Instead of working with the state vector ݔ௜Ȁ௝ and covariance 

matrix ௜ܲȀ௝ as in KF, the IF deals with the information 

vector ݕ௜Ȁ௝ and the information matrix (Fisher matrix)  ௜ܻȀ௝ 

where: ݕ௜Ȁ௝ ൌ ௜ܲȀ௝ିଵ ݔ௜Ȁ௝ (4) 

 ௜ܻȀ௝ ൌ ௜ܲȀ௝ିଵ (5) 

The IF is described in two steps (Prediction/Correction): 

Prediction: ෠ܻ௞Ȁ௞ିଵ ൌ ሾܨ ௞ܻିଵȀ௞ିଵିଵ ்ܨ  ൅ ܳሺ݇ሻሿିଵ (6) ݕො௞Ȁ௞ିଵ ൌ  ෠ܻ௞Ȁ௞ିଵ ݔ௞Ȁ௞ିଵ (7) 

Correction: 

௞ܻȀ௞ ൌ  ෠ܻ௞Ȁ௞ିଵ ൅ ෍ ୧ሺ݇ሻ௡ܫ
୧ୀଵ  

(8) 

௞Ȁ௞ݕ ൌ ො௞Ȁ௞ିଵݕ  ൅ ෍ ݅୧ሺ݇ሻ௡
୧ୀଵ  (9) 

Where ሺܫ୧ሺ݇ሻǡ ݅୧ሺ݇ሻሻ  are the information contributions of 

observation i: 

ሺ݇ሻܫ ൌ ෍ ୧ሺ݇ሻ௡ܫ
୧ୀଵ ൌ  ሺ݇ሻ (10)ܪሺ݇ሻܴିଵሺ݇ሻ்ܪ

݅ሺ݇ሻ ൌ ෍ ݅୧ሺ݇ሻ௡
୧ୀଵ ൌ  ௞ (11)ݖ ሺ݇ሻܴିଵሺ݇ሻ்ܪ

And n is the number of measurements. 

As one can remark in equation (8) and (9), the correction 

step is a simple summation between all observations; hence 

the importance of the IF compared to the KF [2] which 

requires the inversion of a high dimensional matrix. This 

advantage will appear obviously in the FDE step mainly in 

the case of multiple faulty measurements.  

2.2 The exponential convergence of the 

information filter 

At first some Lemmas should be remembered [5]: 

Lemma1: Let A be a positive definite matrix and ߣ௠ሺܣሻ, ߣெሺܣሻ denote respectively its minimum and its maximum 

eigen value then: ߣ௠ሺܣሻ I ൑ A ൑ ߣெሺܣሻ I (12) 

Lemma 2: let A and B be n × n real symmetric matrix; if 

A≥B then for any n×m real matrix C, we can write [8]: 

C
T
AC≥ CT

BC (13) 

Lemma 3: let A and B be positive definite matrix with: a1I ≤ 
A ≤ a2I and b1I ≤ B ≤ b2I, then: 

ଵଵା௕మȀ௔భ ଵ ≤ (A+B)ିܣ
-1

 ≤ ଵ ଵା௕భȀ௔మ  ଵ (14)ିܣ

In our application and without the loose of generality we 

may take the following assumptions in order to prove the 

exponential convergence of the IF: 

- The Information matrix is bounded: ߙI ൑  ௞ܻȀ௞ ൑  I (15)ߚ 

- The process covariance matrix Q is bounded and the 

process error is additive: 
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q1I ≤ ܳሺ݇ሻ≤ q2I (16) 

௞ܲȀ௞= തܲ௞Ȁ௞+ ܳሺ݇ሻ (17) 

- The model is ideal and the system is observable: ݖ௞ ൌ  ଴ (18)ݔሺ݇ሻܪ 

In the state domain we define: ݔ෤௞Ȁ௞ ො௞Ȁ௞ݔ  =  െ  ݔ଴ (19) ݔ෤௞Ȁ௞ represents the state estimation error and ݔ଴ is the 

reference value. Then, we obtain [5]: ݔ෤௞Ȁ௞= തܲ௞Ȁ௞  ௞ܲିଵȀ௞ିଵିଵ  ෤௞ିଵȀ௞ିଵ (20)ݔ 

Making the transformation to the information space and 

using equations (4) and (5), we obtain the informational 

form of the state estimation error (ݕ෤ሺ݇Ȁ݇ሻ): ݕ෤௞Ȁ௞= ௞ܻȀ௞ തܻ௞Ȁ௞ିଵ  ෤௞ିଵȀ௞ିଵ (21)ݕ  

Where തܻ௞Ȁ௞ିଵ = തܲ௞Ȁ௞ 

Now, we define a Lyapunov function in its informational 

form: 

௞ܸ ൌ ෤௞Ȁ௞்ݕ ௞ܻȀ௞ିଵ  ෤௞Ȁ௞ (22)ݕ 

Replacing (21) in (22): 

௞ܸ ൌ ෤௞ିଵȀ௞ିଵ்ݕ  ሾ തܻ௞Ȁ௞ ൅ തܻ௞Ȁ௞  ܳሺ݇ሻ തܻ௞Ȁ௞ሿିଵ ݕ෤௞ିଵȀ௞ିଵ 

௞ܸ ൌ ෤௞ିଵȀ௞ିଵ்ݕ  ሾ ௞ܻିଵȀ௞ିଵ ൅ ܱ௞ሿିଵ ݕ෤௞ିଵȀ௞ିଵ 
(23) 

With ܱ௞  : ܱ௞ ൌ ሺ݇ሻܪሺ݇ሻܴିଵሺ݇ሻ்ܪ  ൅ തܻ௞Ȁ௞  ܳሺ݇ሻ തܻ௞Ȁ௞  (24) 

Given R and Q are symmetric and positive matrices using 

lemma 2 and equation (24), one can see that ܱ௞>0, so we 

obtain this inequality: 

௞ܻିଵȀ௞ିଵ ൅ ܱ௞> ௞ܻିଵȀ௞ିଵ (25) 

Using equations (23) and (25) ௞ܸ is expressed in function of ௞ܸିଵ as: 

௞ܸ ൏ ෤௞ିଵȀ௞ିଵ்ݕ  ሾ ௞ܻିଵȀ௞ିଵሿିଵݕ෤௞ିଵȀ௞ିଵ ൌ ௞ܸିଵ (26) 

This relation proves that ௞ܸ decreases; in other term it 
proves that the IF is stable (the filter will converge). 

In order to prove the exponential convergence of the IF, we 
use Lemma 1 and 3: 

Given ܱ௞ and ௞ܻିଵȀ௞ିଵ  are symmetric and positive matrices 

and using lemma 1, we obtain: 

൑  ܫ ௠ሺܱ௞ሻߣ   ܱ௞  ൑ ௠ሺߣ (27) ܫ ெሺܱ௞ሻߣ   ௞ܻିଵȀ௞ିଵሻ I ൑ ௞ܻିଵȀ௞ିଵ ൑ ߣெሺ ௞ܻିଵȀ௞ିଵሻ I (28) 

Based on lemma 3, we get: ሾ ௞ܻିଵȀ௞ିଵ ൅ ܱ௞ሿିଵч ଵଵାఒ೘ሺைೖሻȀఒಾሺ௒ೖషభȀೖషభሻ  ௞ܻିଵȀ௞ିଵିଵ  
(29) 

This means: 

௞ܸ ൑ ͳͳ ൅ ெሺߣ௠ሺܱ௞ሻȀߣ ௞ܻିଵȀ௞ିଵሻ ௞ܸିଵ 
(30) 

By repeating this iterative procedure and by applying it to 
the lower bound we can find the upper and lower bound of ௞ܸ that appear having an exponential form: ͳሺͳ ൅ Ɋଶሻ௞ ଴ܸ ൑ ௞ܸ ൑ ͳሺͳ ൅ Ɋଵሻ௞ ଴ܸ 

With: Ɋଵ ൌ ெሺߣ௠ሺܱ௞ሻȀߣ ௞ܻିଵȀ௞ିଵሻ             Ɋଶ ൌ ɉெሺܱ௞ሻȀɉ௠ሺ ௞ܻିଵȀ௞ିଵ)              ଴ܸ ൌ ෤଴்ݕ  ଴ܻି ଵ ݕ෤଴  (from the initialisation step) 

(31) 

Using  ௞ܻȀ௞≤  ȕI we can write ௞ܸ ൐  ෤௞Ȁ௞ȁ2ݕଵȁିߚ
, 

Finally equation (32) is reached: 

ఈ ሺଵାஜమሻೖ ଴ܸ ч ȁݕ෤௞Ȁ௞ȁ2
 ч ఉ ሺଵାஜభሻೖ ଴ܸ 

(32) 

This equation shows that the error is bounded and it has an 

exponential form. 

2.3 The relation between the Chi-square and 

the Information theory 

In FDE algorithm, traditionally, we use KF with Chi-

square test requiring fixing a false alarm probability [1]. 

Since we aim to propose a new test based on information 

theory, a relation and a comparison between the Chi-square 

and informational quantities are established.  

The Generalized form of the Chi-Square (GCS) test could be 

written given two probability mass functions p and q [9]: 

ǡ݌ఞమሺܦ ሻݍ ൌ ෍ ሺ݌ሺxሻ െ ሺxሻݍሺxሻሻଶݍ  
(33) 

The Mutual Information (MI) ܫሺݔǡ  ሻ is known to be writtenݖ

in the form [10]: ܫሺݔǡ ሻݖ ൌ ෍ ෍ ǡݔሺ݌ ݃݋ሻ݈ݖ ǡݔሺ݌ ሻ௭௫ݖሺ݌ሻݔሺ݌ሻݖ  (34) 
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In the literature, the relationship between GCS test and 

information quantities like Shannon entropy, MI, Kullback-

Leibler… are addressed in finding an inequality between 
two statistical quantities like in [9] or by constructing an 

asymptotical limit as in [11]. In our proposed framework, 

we aimed to elaborate a statistical test based on information 

quantities. Note that we use the MI which is a variant form 

of the CIE. For this reason, an approximated equality 

between the GCS and the MI test is proposed. This 

comparison tries to show the equivalence between these two 

tests.  

To see in more details the relation between GCS and MI, we 

can write [12]:  ݌ሺݔǡ ሻݖ ൌ ሻݖሺ݌ሻݔሺ݌ ൅ with σ ߜ ߜ ൌ Ͳ (35) 

Using (35) the MI is expressed as in (36): 

ǡݔሺܫ ሻݖ ൌ ෍ ෍ሺ݌ሺݔሻ݌ሺݖሻ ൅௭௫ ሻ logሺͳߜ ൅  ሻሻݖሺ݌ሻݔሺ݌ߜ
(36) 

Using Taylor decomposition around 
ఋ௣ሺ௫ሻ௣ሺ௭ሻ ൌ Ͳ (meaning 

independence between x and z), and using  logሺͳ ൅ ሻݔ ൎݔ െ ௫మଶ ൅ ܱሺݔଷሻ, we obtain: 

ǡݔሺܫ ሻݖ ൌ ෍ ෍ሺ݌ሺݔሻ݌ሺݖሻ ൅௭௫  ሻݖሺ݌ሻݔሺ݌ߜ ሻ ሾߜ

െ ͳʹ ሻݖଶሺ݌ሻݔଶሺ݌ଶߜ ൅ ܱሺߜଷሻሿ (37) 

Performing the calculation and replacing ߜ by its value ݌ሺݔǡ ሻݖ െ  :ሻ, the result become as in (38)ݖሺ݌ሻݔሺ݌

ǡݔሺܫ ሻݖ ൎ ෍ ෍ ͳʹ
௭

ሺ݌ሺݔǡ ሻݖ െ ሻ௫ݖሺ݌ሻݔሺ݌ሻሻଶݖሺ݌ሻݔሺ݌  
(38) 

In other term: 

ǡݔሺܫ ሻݖ ؆ ͳʹ ǡݔሺ݌ఞమሺܦ ሻǡݖ  ሻሻݖሺ݌ሻݔሺ݌
(39) 

One can conclude that the GCS is an approximation of the 

MI (under a restricted hypothesis: low correlation between 

variables ݔ  (the state vector) and ݖ (the observation 

vector)). This proves the most generalized aspect of 

informational quantities. 

3 Fault detection and exclusion using 

information theory 

The MI of a multivariate Gaussian distribution is defined 

as [13][14];  

ǡݔሺܫ ሻݖ ൌ ͳʹ ln ȁܲሺݔሻȁȁܲሺݔȀݖሻȁ (40) 

Where ܲሺݔሻ is the covariance matrix. 

Given the demonstration of the exponential convergence of 

IF in section 2, we define a first coherence test namely the 

Global Observation Mutual Information (GOMI) in its 

information form [14] by considering ܲሺݔሻ as the predicted 

covariance matrix and ܲሺݔȀݖሻ as the corrected covariance 

matrix: ܫሺݔǡ ሻݖ ൌ ͳʹ ln ห ෠ܻ௞Ȁ௞ିଵ ൅ σ ୧ሺ݇ሻ௡୧ୀଵܫ หห ෠ܻ௞Ȁ௞ିଵห  (41) 

The GOMI is used to detect faulty measurements. It could 

be also expressed in the form of (42): ܫሺݔǡ ሻݖ ൌ ͳʹ ln ห ෠ܻ௞Ȁ௞ିଵ ൅ σ ୧ሺ݇ሻ௡୧ୀଵܫ หห ௞ܻିଵȀ௞ିଵȁห  
(42) 

A second test is elaborated in order to exclude the faulty 

measurements from the fusion procedure using a bank of 

EIF. The Partial Observation Mutual Information (POMI) is 

defined as: 

ǡݔ୨ሺܫ ሻݖ ൌ ͳʹ ln ቤ ෠ܻ௞Ȁ௞ିଵ ൅ σ ୧ሺ݇ሻ௡୧ୀଵ୧ஷ୨ܫ ቤห ௞ܻିଵȀ௞ିଵห  
(43) 

So the proposed FDE algorithm detects the faulty 

measurement using the GOMI test and then excludes the 

erroneous measurements using the POMI test. This 

procedure can be repeated for the detection of multiple 

simultaneous faulty measurements. 

At instant ݇, ௞ܻିଵȀ௞ିଵ is supposed to be out of fault or all 

detected faulty measurements are excluded. 

In the proposed framework, the GOMI and the POMI tests 

are elaborated using the MI quantity. In section 2, we have 

shown the equivalence between the MI and GCS. The 

quantity ȁݕ෤௞Ȁ௞ȁଶ (equation (32)), which is the test of the 

convergence of the IF, has a form of the Chi-square test 

(simple form of GCS). So the relation between filters 

convergence and the elaborated tests (GOMI, POMI) is 

highlighted. 

However, we can remark that some differences exist 

between the GOMI test and the GCS one. The main one is 

that the GOMI test deals with covariance matrices (i.e. 

uncertainties of measurements). In other terms, the GCS test 

use the mean value of the probability distribution of the state 

estimation, when the GOMI and POMI tests can benefit 

from all the information contained in the probability 

distribution. This difference improves the integrity of the 

FDE method. 

Figure 1 resume the proposed FDE approach explained in 

this section.  
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Figure 1.  Fault detection and exclusion structure based on 

the IF approach 

4 Application to GPS positioning system 

In order to test the performance of the proposed approach, a 

real experiment is conducted on a GPS constellation. Data 

acquisition has been carried out with CyCab vehicle. In this 

work, we use corrected measurements of GPS RTK Thales 

Sagitta 02 and an open GPS Septentrio polaRx2e@. 

In order to test developed algorithms with real data, the 

“goGPS” software package (http://www.gogps-project.org) 

is used.  

The data acquisition has been carried around CRIStAL Lab 

of the university Lille 1. The trajectory is about 250m and 

530 epochs.  

The process model is supposed evolving according to the 

equation (1) [15]. 

The state vector is composed of the eight following 

variables: ݔ௞ ൌ ሾx௞ǡ xሶ ௞ ǡ y௞ǡ yሶ ௞ǡ z௞ ǡ zሶ௞ǡ ǡݐߜܿ  ሿ (44)ݐሶߜܿ

[x,y,z], [xǡሶ yǡሶ zሶ]: represent respectively the 3D position and 

the 3D velocity of the vehicle in the Earth Centered Earth 

Fixed (ECEF) frame. ݐߜǡ  represent respectively the clock range and the clock :ݐሶߜ

drift of the receiver. 

The measurement (observartion) represents the pseudo-

range between the satellite and receiver. 

To test the performance of the proposed architecture, the 

residual tests are calculated, and the trajectory before and 

after FDE are shown. The reference trajectory is given  in 

figure 2. 

Figure 3 shows the GOMI before FDE. As one can remark, 

it converges exponentially to the 0 value when no faults. 

The different surges of information contribution observed in 

this figure reflect the divergence of the IF due to the 

occurrence of faulty measurements. By observing figure 4, 

we notice the appearance of simultaneous faulty satellites in 

the highlited epochs 136 to 144,153 to 190, 303 to 323, 351 

to 375 and 399 to 416 which is coherent with results 

obtained is figure 3.  

 

Figure2.  Our experimental test area 

 

Figure 3.  Global Observation Mutual Information Before 
detection 

Figure 4 shows the POMI of different satellites in order to 

exclude the erroneous measurements. The two faulty 

satellites 14 and 31 appears obviously in epochs 136 to 144, 

moreover the simultaneous faulty satellites 4 and 14 are 

remarkable in the epochs 153 to 190. Same to the epochs 

303 to 323, 351 to 375 and 399 to 416 the two faulty 

satellites are 2 and 4.  

 
Figure 4.  Partial Observation Mutual Information Before 

detection  
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Figure 5 shows the GOMI after FDE. Without faulty 

satellites, the GOMI converge exponentially to zero value. 

Note for the epochs 263 to 275, the persistence of errors is 

due to the insufficient in number of the observed satellites 

caused by trees. Indeed, a minimum of 5 visible satellites is 

expected to achieve an accurate positioning. 

These results are coherent with the theoretical study 

presented in sections 2 and 3. 

 

Figure 5.  Global Observation Mutual Information After 
detection 

 

Figure 6 shows the performance of the proposed approach 

after exclusion of the faulty satellites from the fusion 

procedure.  As one can remark, improvement in the 

trajectory is noticed especially according to the z axis, 

representing the ellipsoidal height (h).  

 

 

Figure 6 .  3D trajectory before FDE in red vs after FDE in 

blue 

5 Conclusion 

In this paper, we propose a fault tolerant data fusion method 

for GNSS localization based on fault detection and 

exclusion using Information theory, in order to guarantee 

high integrity positioning.  

After a study of the IF convergence, a coherence test, 

directly linked to the convergence of the filter is generated. 

The importance of this method lies by its efficiency in 

detecting multiple faulty measurements with less 

computation complexity. 

The relation between the GCS and the proposed test shows 

that GCS is a simplified approximation of the GOMI. 

Moreover, the proposed approach uses covariance matrix 

presenting the uncertainty of measurements, instead of 

working with the mean values as in the GCS test. 

The performance of the proposed framework applied to 

GNSS localization is tested using real data of GPS 

measurements. This method is able to exclude multiple 

simultaneous faulty satellites from the fusion procedure with 

low computational costs.  

Future work aims to find a generalized test applied in 

generalized conditions with application on the supervision 

of Multi-Robot system. 
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