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Abstract—The Maximum Likelihood Probabilistic Multi-
Hypothesis Tracker (ML-PMHT), which is a Deep Target
Extractor (DTE), is formulated for and applied to Over-
The-Horizon radar (OTHR) scenarios: a constant altitude
target and a constant vertical acceleration target. In an
OTHR scenario there are two ionosphere layers assumed
here to be acting as reflectors of the EM waves and each
scan can contain multiple measurements (up to four) orig-
inating from each target; each of these target-originated
measurements takes one of four possible round-trip paths.
The multipath ML-PMHT likelihood ratio models this
uncertainty in the measurement path which then allows
the fusion of multipath data in the presence of false
measurements. This tracker is shown to have high track
accuracy in these very low SNR OTHR scenarios.

I. INTRODUCTION

Over-the-horizon radar (OTHR) has the ability to

detect targets beyond the horizon using signals refracted

through the ionosphere. The signal from the radar may

propagate through multiple paths due to the nature of the

ionosphere. This can result in several target originated

detections in a single frame. The path that corresponds

to each target detection is unknown, which creates an

ambiguity between detections and paths. Many measure-

ments due to false detections can also occur in OTHR

scenarios, further adding to the difficulty of the problem.

Many different approaches have been applied to

OTHR tracking. These include the multipath proba-

bilistic data association (MPDA) algorithm [11] and

the multiple detection multiple hypothesis tracker (MD-

MHT) [14]. The MD-MHT approach uses an extended

multi-frame assignment method to solve the data as-

sociation problem between measurements and measure-

ment paths. Other approaches that can be used are the

Probabilistic Data Association Filter (PDAF) [6–8] and

the Probabilistic Multiple Hypothesis Tracker (PMHT)

[8]. The Multiple Model Unified PDAF (MM-UPDAF)

[6] is an extension of the PDAF which is designed

to process numerous, non-uniform clutter regions. The

lowest SNR considered in [11] and [14] is around 10 dB,
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with an ionosphere model similar to what we use in

our simulations. With a very low observable (VLO)

target SNR of 4dB, we demonstrate that our algorithm

produces a high track detection probability and accuracy

for the considered scenarios, i.e., the ML-PMHT is a

Deep Target Extractor (DTE) — it can extract targets

buried deeply in noise.

The Maximum Likelihood Probabilistic Multi-

Hypothesis Tracker (ML-PMHT) has previously been

formulated for single and multitarget [17, 18] scenarios.

It has been shown to perform well even with very low

target SNR. In [12] we presented an extension to its

formulation that allows for multiple possible propagation

paths and applied it to a scenario with a surface target.

Here we apply the multipath formulation of the ML-

PMHT to two OTHR scenarios where the altitude

of the target is unknown. Unlike the MD-MHT, no

data association is required. The ML-PMHT considers

simultaneously all the measurements without knowing

their origins or propagation paths and, remarkably, has

linear complexity in the number of measurements. The

ML-PMHT performs fusion of the multipath data in the

presence of false measurements.

Section II briefly describes the ML-PMHT for a single

target case and the extension to allow for multiple

paths. Section III presents the OTHR model used for

simulations. Section IV discusses the performance of the

ML-PMHT from Monte Carlo testing.

II. ML-PMHT

A. Single Target ML-PMHT

The ML-PMHT log-likelihood ratio (LLR) for the

motion parameter of a single target was developed in

[17] and is given by

Λ(x;Z) , ln

{

p(Z|x)

p(Z|all false)

}

(1)

=

Nw
∑

i=1

mi
∑

j=1

ln {π0 + π1V p[zj(i)|x(i)]ρj(i)}

(2)
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Fig. 1: An illustration of the geometry used to derive the equations for the measurements.

with

Z , {{zj(i)}
mi

j=1
}Nw

i=1
(3)

Here Nw is the number of scans in the batch (the

window length), and mi is the number of measurements

in the ith scan (frame). The parameter x determines

the target state x(i) in a deterministic way (we use a

constant velocity model1). The prior probabilities that a

measurement occurred due to clutter or due to a target are

given by π0 and π1, respectively. These values are related

to the probability of detection, PD, and the probability

of false alarm in a resolution cell, PFA. The volume of

the search region is V and a measurement, if false, has

pdf V −1. The jth measurement in the ith scan is zj(i)
and its associated amplitude likelihood ratio is ρj(i).
Finally, p[zj(i)|x(i)] is Gaussian with mean determined

by the target state parametrization x(i). The amplitude

likelihood ratio serves as a feature discriminant between

the target-originated measurements and the false ones

due to spurious detections.

The pdfs p[Z(i)|x(i)] (target present hypothesis) and

p[Z(i)|all false] (target absent hypothesis) are derived

using the ML-PMHT DTE assumptions [17]:

• There is a single target with known probability of

detection.

• Any number of measurements in a scan can be

assigned to the target.

• The motion of the target is deterministic.

• False detections are uniformly distributed.

• The number of false detections is Poisson dis-

tributed with known density.

• Amplitudes of target and false detections are

Rayleigh distributed with known distribution.

• Target measurements are corrupted with zero-mean

Gaussian noise.

1Alternatively a deterministic motion model in a known gravitational
field can be used [4].

• Measurements at different times, conditioned on the

parameterized state, are independent.

These pdfs are then given by

p[Z(i)|x(i)] =
mi
∏

j=1

{π0

V
pτ
0
[αj(i)] + π1p[zj(i)|x(i)]p

τ
1
[αj(i)]

}

(4)

p[Z(i)|all false] =

mi
∏

j=1

1

V
pτ
0
[αj(i)]

(5)

where pτ
0
[αj(i)] and pτ

1
[αj(i)] are the pdfs of a false

alarm and target measurement amplitude conditioned on

exceeding the threshold τ , respectively.

B. The Multipath ML-PMHT Log-Likelihood Ratio for

OTHR

The generalized ML-PMHT that allows multiple prop-

agation paths is given by

Λ(x;Z) =
Nw
∑

i=1

mi
∑

j=1

ln

{

π0 + π1V ρj(i)

np
∑

ℓ=1

p[zj(i)|x(i), ℓ]P [ℓ]

}

(6)

where ℓ is used to denote which path the signal took,

P [ℓ] is the probability of path ℓ being taken, and np is the

total number of possible paths. The mean of the Gaussian

p[zj(i)|x(i), ℓ] is fℓ(x(i)), where fℓ is the function that

transforms the target state x(i) into the measurement

space via path ℓ. Note that we have assumed that ρj(i)
is the same for each path ℓ.
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r1 , −(h1(a
2 − 4ah1 + 4h2

1
+ s2r − 2srst + s2t )

1/2)/(a− 2h1)+

((a− h1)(a
2 − 4ah1 + 4h2

1
+ s2r − 2srst + s2t )

1/2)/(a− 2h1) (14)

ṙ1 ,
∂r1
∂st

∂st
∂t

= ṡt(h1(2sr − 2st))/(2(a− 2h1)(a
2 − 4ah1 + 4h2

1
+ s2r − 2srst + s2t )

1/2)−

ṡt((2sr − 2st)(a− h1))/(2(a− 2h2)(a
2 − 4ah1 + 4h2

1
+ s2r − 2srst + s2t )

1/2) (15)

Constant Altitude Scenario Constant Acceleration Scenario

Resolution cell size 15 km x 30 m/s 15 km x 30 m/s

Search region size 300 km x 600 m/s x 10 km 300 km x 100 m/s2

Number of cells 400 400

Amplitude detection threshold τ 2.5 2

PD for each path 0.41 0.56

PFA in a cell 0.044 0.14

Expected number of false alarms per scan 18 54

π0 0.9147 0.9599

TABLE II: Scenario parameters used in the constant altitude and constant acceleration simulations.

Nw 10

Time between scans 1 s

σr 300 m

σṙ 5 m/s

SNR in a cell 2.5 = 4 dB

Ionosphere lower layer height 100 km

Ionosphere upper layer height 200 km

P [ℓ] for all ℓ 0.25

TABLE I: Scenario parameters used in the both the

constant altitude and constant acceleration simulations.

III. OTHR MODEL

We investigate two two-dimensional OTHR scenarios

which assume the target to be in a plane. We use a two-

layer reflection model for the ionosphere.2 In this model

the signal may reflect from either layer of the ionosphere

resulting in multiple (up to four) round-trip propagation

paths. The radar measures slant range, slant range rate,

and amplitude.

A. Measurement Amplitudes

We model the amplitudes of the measurements accord-

ing to a Swerling I model [4]. The amplitude is Rayleigh

distributed with pdfs

p0(α) = ae−
α2

2 α ≥ 0 (7)

p1(α) =
α

1 + d
e−

α2

2(1+d) α ≥ 0 (8)

for the noise only and target, respectively. Here d is the

expected SNR of the target in a resolution cell. For a

2The actual paths are subject to refraction, which requires numerical
algorithms for ray tracing. The reflection model used here is a
simplified one, which, however, captures the essence of the OTHR.

chosen threshold τ we have

PD =

∫

∞

τ

p1(α)dα (9)

PFA =

∫

∞

τ

p0(α)dα (10)

The pdfs of the amplitude of a measurement given that

it has exceeded the threshold τ are

pτ
0
(α) =

1

PFA
p0(α) α ≥ τ (11)

pτ
1
(α) =

1

PD
p1(α) α ≥ τ (12)

and the amplitude likelihood ratio is then

ρj(i) =
pτ
1
[αj(i)]

pτ
0
[αj(i)]

(13)

B. Measurements

The OTHR measures both position and velocity of

the target via slant range and slant range rate measure-

ments. For the constant altitude scenario (the constant

acceleration scenario has a different slant range rate

equation, but can be derived similarly) the equations

of the measurements, given the signal reflected off the

lower layer in both directions, are given below. Using

the definitions in equations (14) and (15), one has

zr1 = 2r1 + wr1 (16)

zṙ1 = 2ṙ1 + wṙ1 (17)

Here h1 is the height of the lower ionosphere layer.

The locations of the radar and target are given by sr
and st, respectively. The altitude of the target is a. An

illustration of the geometry of this problem is shown in

Fig. 1. The velocity of the target is ṡt. The noise terms,

wr1 and wṙ1 , are zero-mean, Gaussian, independent of
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each other, and with variances σr and σṙ, respectively.

We assume, for simplicity, the same noise variances on

all paths.

Given that the signal reflected off the upper layer only

(with height h2), we can find similar equations for r2,

ṙ2, zr2 , and zṙ2 , with noises wr2 and wṙ2 . The equations

for the measurements resulting from the remaining two

paths, where the signal reflects off of alternate layers,

can then be expressed as

zr3 = r1 + r2 + wr3 (18)

zṙ3 = ṙ1 + ṙ2 + wṙ3 (19)

zr4 = r1 + r2 + wr4 (20)

zṙ4 = ṙ1 + ṙ2 + wṙ4 (21)

C. Constant Altitude Simulation Parameters

We simulated a target with an initial position of

2150 km away from the radar, an altitude of 6 km, and

moving with a constant speed of 200 m/s towards the

radar. The other values used in the constant altitude sim-

ulations are given in Tables I and II. False measurements

are generated uniformly in the measurement space. Note

that, due to the very low SNR in a cell, PD is 0.41 and

the low threshold leads to 18 false measurements per

scan.

D. Constant Acceleration Simulation Parameters

We also simulated a target 2150 km away from the

radar that is initially stationary on the surface. It is has

a constant vertical acceleration of 40 m/s2. The other

values used in the constant acceleration simulation are

given in Tables I and II. The very low SNR in a cell now

leads to 54 false measurements per scan. Figures 2 shows

the measurements used (after amplitude thresholding) in

one run of the tracker from this scenario. Note that there

are usually zero to three target originated measurements

in each scan (rarely all four) and the large number of

false measurements, which, however, can be successfully

handled by the multipath ML-PMHT track detector.

Figure 3 shows the amplitude of the measurement in

each radar cell before applying the detection threshold.

Note the large number of measurements exceeding the

threshold, and that it is not readily apparent which are

target-originated.

IV. PERFORMANCE OF THE TRACK DETECTOR

A. Constant Altitude Results

The log-likelihood ratio of the ML-PMHT for a single

run is shown in Figures 4 and 5 for the constant

altitude scenario. There are five peaks resulting from path

ambiguity. The central peak (the correct one), however,

is easily distinguishable from the side peaks and from

any peak occurring due to clutter.

We use a simple grid search with 1 km spacing in

range, 100 m/s spacing in velocity, and 0.5 km spacing

in altitude to get into the neighborhood of the global

maximum of (6). For simplicity, no target feature was

used. We then run a local optimization routine from

MATLAB using an interior-point algorithm on the high-

est valued point from the grid search to produce the final

state estimate. From 1000 Monte Carlo runs the RMS

errors for position, velocity, and altitude at the end of

the batch were 172 m, 0.65 m/s, and 1.2 km, respectively.

There were no false tracks or missed tracks.

B. Constant Acceleration Results

Figure 6 shows the LLR for the constant acceleration

scenario. We use the same search method as in the

constant altitude scenario. From 1000 Monte Carlo runs

the RMSE values were 33 m in position and 0.03 m/s2

in acceleration. As in the other scenario, there were no

false tracks or missed tracks.

V. CONCLUSIONS

We have developed an extension to the single target

ML-PMHT DTE (Deep Target Extractor) to allow for the

fusion of data from multiple signal propagation paths.

We applied this algorithm to two OTHR scenarios: a

constant altitude target and a constant acceleration verti-

cal launch target. We showed that, with low target SNR

even down to 4 dB post-signal processing, the fusion

ML-PMHT has excellent track detection and accuracy

in such a scenario. Consequently, the ML-PMHT holds

great promise as a DTE in increasing the sensitivity

and robustness of the next generation OTHR. Future

work would include using a spherical Earth and a more

accurate ionosphere model.
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