
A Fault-tolerance Detection Formulation for

Distributed Multisensor Systems

Shengli Zhao Jie Zhou†

College of Mathematics

Sichuan University

Chengdu, Sichuan 610064, China

28158021@qq.com, jzhou@scu.edu.cn

Abstract—The distributed detection fusion formulation (DDFF)
in ideal multisensor systems has been obtained. If some local
sensors can not work, the detection performance of system may
reduce significantly. It is meaningful to design a fault-tolerant
detection fusion rule which can guarantee the performance of
system whether the system is good or not. A new distributed
detection fusion strategy is thus proposed by minimizing the sum
of risk at the fusion center and risks at the local sensors. Under
this strategy, a new fault-tolerant distributed detection fusion
formulation (FT-DDFF) is derived. Some numerical examples
show the performance of the proposed formulation. If the system
is perfect, the risks of local sensors would decrease compared to
the DDFF, and the risk of fusion center would also decrease a
little when an appropriate parameter is selected. If the system is
partly destroyed, the FT-DDFF would performance better than
the DDFF for both of fusion center and available local sensors.

Keywords: Bayesian criterion, fusion strategy, fault-tolerant,

multisensor systems, parallel network.

I. INTRODUCTION

In the past two decades, multisensor information fusion

techniques have attracted significant attentions in practice (see

[1], [3], [4], [6], [7], [8], [10], [12], [13]), where observations

are processed in a distributed manner and decisions or esti-

mates are made at the individual processors, and processed

data are then transmitted to a fusion center where the final

global decision or estimate is made. A system with multiple

distributed sensors has many advantages over one with a single

sensor. These include an increase in the capability, reliability,

robustness and survivability of the system.

For a parallel distributed multisensor system, the optimal

detection fusion formulation was addressed (see, e.g., [2],

[10], [11], [12], [13]). In [10], a distributed detection fusion

formulation (DDFF) was provided in ideal conditions. It

seeks a detection fusion rule for whole system and local

information compression rules for all sensors. Some necessary

conditions of an optimal fusion rule and optimal decision

rules and are derived using a person-by-person optimization

(PBPO) methodology. The PBPO methodology is a method

to solve team decision problems. While optimizing one team
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member, it is assumed that the other team members have

already been designed and remain fixed. The desired PBPO

solution consists of fusion rule and decision rules. An iterative

algorithm for distributed detection systems with correlated

noises was proposed in [12], [13]. It can provide approximate

solutions to the necessary conditions for optimum distributed

sensor decision rules under a fixed fusion rule. An algorithm

to search for an optimal fusion rule and the corresponding

optimal local sensor compression rules simultaneously was

derived in [5]. In [9], a computationally efficient iterative

algorithm to simultaneously/alternately search for a fusion

rule and sensor compression rules was proposed. All of the

above work are to minimize the risk at the fusion center

under Bayesian criterion. And their solutions which coupled

with each other were derived when the system is perfect. As

the local sensors are just to serve for the fusion center, there

would be redundancy in some case. If the fusion center is

destroyed, each local sensor would use their own detection rule

to make the final decision for the system. The performance of

the local sensors with redundancy would be reduced. If some

local sensors are destroyed, or the communications between

fusion center and some local sensors are cut off, the fusion

center has to make a final global decision with the available

local decisions. However, the fusion center and available local

sensors would not be coupled anymore, and the performance of

fusion center would not be guaranteed. Thus, it is meaningful

to design fault-tolerant fusion rule and decision rules.

In this paper, for a general parallel distributed multisensor

system, we extend the the idea of existing DDFF by employing

a new detection fusion strategy. The goal of this paper is to

find a fault-tolerant formulation which could guarantee the

performance of fusion center and local sensors whenever the

system is perfect or partly destroyed. Under Bayesian criterion,

the risks at local sensors (local risks) are defined similar to

the risk at fusion center (system risk). We propose a new

detection fusion strategy to minimize the total risk, i.e., the

sum of system risk and local risks rather than to derive a new

algorithm. A new fault-tolerant distributed detection fusion

formulation (FT-DDFF) is obtained by the PBPO methodology

as the DDFF.

The rest of this paper is organized as follows. A statement

of the problem and a briefly review of the DDFF are given

in Section II. In Section III, we propose a model under a
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new detection fusion strategy and derive the FT-DDFF by

PBPO methodology. Some numerical examples are provided

in Section IV, and a conclusion is given in Section V.

II. PROBLEM STATEMENT

Consider the detection fusion problem for a distributed

detection system with a fusion center and N local sensors,

which is shown in Figure 1.

Phenomenon

Fusion Center

Sensor 1 Sensor 2 Sensor 3 Sensor N

y1 y2 y3 y
N

u1 u2 u3 u
N

u0

· · ·

Fig. 1. Distributed detection system.

Let H0 and H1 be the two hypotheses with P0 and P1

denoting the associated prior probabilities. All the local sen-

sors observe the same phenomenon. The observations of the

local sensors are denoted by yi, i = 1, . . . , N , and their joint

conditional densities p(y1, . . . , yN |Hj), j = 0, 1, are assumed

to be known. And there are no communication among local

sensors. Based on its own observation yi, the ith local sensor

makes a local decision ui, i = 1, . . . , N , i.e.,

ui =

{

0, H0 is declared present,

1, H1 is declared present.

The local decisions are transmitted over bandlimited chan-

nels to the fusion center and are combined to yield a global

inference. Each local decision ui may take value 0 or 1,

depending on which hypothesis is decided at the ith sensor.

The fusion center yields the global decision u0 based on

the received decision vector consisting of local decisions, i.e.,

uT = (u1, . . . , uN ). The global decision u0 is dependent only

on the local decision vector u. The objective of this distributed

detection problem is to obtain the optimal set of decision rules

Γ = {γ0, γ1, . . . , γN}, where the fusion rule is denoted by γ0
and the decision rule at the ith sensor is denoted by γi for

i = 1, . . . , N . These rules are mapping from the observation

space to the decision space, i.e.,

u0 = γ0(u1, . . . , uN ), ui = γi(yi), i = 1, . . . , N.

For i = 1, . . . , N , denote the probabilities of false alarm,

miss and detection at the ith sensor by PFi = P (ui =
1|H0), PMi = P (ui = 0|H1) and PDi = 1−PMi respectively,

and the probabilities of false alarm, miss and detection the

fusion center by P 0
F , P

0
M and P 0

D respectively.

In [10], the DDFF is given by minimizing the system risk.

It can be written as

R0 =
1

∑

i=0

1
∑

j=0

C0
ijPjP (u0 = i|Hj), (1)

where, C0
ij is the cost of global decision being Hi when Hj

is present, and Pj is the prior probability of hypothesis Hj ,

i, j = 0, 1. Using the PBPO methodology, the decision rules

and fusion rule can be obtained from the following DDFF:

p(yk|H1)

p(yk|H0)

uk = 1

≷

uk = 0
∑

uk

∫

Yk A(uk)CFP (uk|Yk)p(Yk|yk, H0)dYk

∑

uk

∫

Yk A(uk)CDP (uk|Yk)p(Yk|yk, H1)dYk
, (2)

P (u∗|H1)

P (u∗|H0)

u0 = 1

≷

u0 = 0

CF

CD

, (3)

where u∗ denotes one out of 2N possible values of u and

C0
F = P0(C

0
10 − C0

00),

C0
D = (1− P0)(C

0
01 − C0

11),

C0 = C0
01(1− P0) + C0

00P0,

uk = (u1, . . . , uk−1, uk+1, . . . uN )T ,

Yk = (y1, . . . , yk−1, yk+1, . . . yN )T ,

ukj = (u1, . . . , uk−1, uk = j, uk+1, . . . uN )T , j = 0, 1,

A(uk) = P (u0 = 1|uk1)− P (u0 = 1|uk0).

Thus, the DDFF consists of N equations of the form (2)

and 2N equations of the form (3). It provides us a way to find

a stable solution to the detection fusion problem. However, it

also has some shortcomings:

1) The formulation relies on the cost C0
ij of final decision.

It is nearly impossible to get the exact C0
ij . Even to get

some approximation of C0
ij is also a hard work;

2) The DDFF which derived by the PBPO methodology

can not ensure to provide an optimal solution;

3) The decision rules and fusion rule are coupled with each

other. If the system was partly destroyed, for example,

some local sensors were destroyed, the decision rules

of available sensors and fusion rule would not couple

with each other anymore. In this case, the performance

of fusion center would become very poor;

4) The purpose of Bayesian criterion in [10] is to optimize

the performance of fusion center. As the optimal per-

formance of fusion center is received, the performance

of some local sensors may be ignored. There must be

some redundancy for such local sensors. In fact, it is also

important to guarantee the performance of local sensors

in many practical applications.
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III. THE FAULT-TOLERANT DETECTION FUSION

FORMULATION

The local risk of the kth local sensor is expressed as

Rk =
1

∑

i=0

1
∑

j=0

Ck
ijPjP (u0 = i|Hj),

where Ck
ij denotes the cost of the kth local sensor decision

being Hi when Hj is present. It is easy to see that the local

risk Rk can be expressed as

Rk = Ck
FP

k
F − Ck

DP k
D + Ck,

where

Ck
F = P0(C

k
10 − Ck

00),

Ck
D = (1− P0)(C

k
01 − Ck

11),

Ck = Ck
01(1− P0) + Ck

00P0.

In order to design a fault-tolerant formulation which could

guarantee the performance of both fusion center and local

sensors, we will consider the sum of system risk and local

risks (the total risk)

R = R0 +
N
∑

k=1

Rk. (4)

In next, we seek an optimal fusion rule and local decision

rules Γ to minimize the total risk R by adopting the PBPO

methodology.

Theorem 1: The solution of the problem to minimize the

total risk R by the PBPO methodology can be obtained from

the following FT-DDFF:

(a) The formulation for fusion rule at the fusion center as

the DDFF:

P (u∗|H1)

P (u∗|H0)

u0 = 1

≷

u0 = 0

CF

CD

. (5)

(b) The formulation for decision rule at the kth sensor for

all k = 1, . . . , N alternatively:

p(yk|H1)

p(yk|H0)

uk = 1

≷

uk = 0

Ck
F +

∑

uk

∫

Yk A(uk)C0
FP (uk|Yk)p(Yk|yk, H0)dYk

Ck
D +

∑

uk

∫

Yk A(uk)C0
DP (uk|Yk)p(Yk|yk, H1)dYk

.

(6)

Proof: First, we consider the fusion rule. By the PBPO

methodology, we assume that all the local sensors have been

designed and fixed. Thus, the local risks Rk, k = 1, . . . , N are

also fixed. It means that we just need to minimize the system

risk function R0. Therefore, one can obtain the fusion rule of

DDFF using the same method in [10].

Next, we deal with the decision rule at the kth sensor by

the PBPO methodology for k = 1, . . . , N . As the fusion rule

and all other local sensors have been designed and fixed, we

may express R as

R = R0 +
N
∑

i=1

Ri

= C0 + Ck + C0
F

∑

u

P (u0 = 1|u)P (u|H0)

− C0
D

∑

u

P (u0 = 1|u)P (u|H1)

+ Ck
FP (uk = 1|H0)− Ck

DP (u0 = 1|H1) +
N
∑

i6=k

Ri.

Since C0, Ck and
∑N

i6=k R
i are constants, we only need to

minimize the remaining items:

R := C0
F

∑

u

P (u0 = 1|u)P (u|H0) + Ck
FP (uk = 1|H0)

− C0
D

∑

u

P (u0 = 1|u)P (u|H1)− Ck
DP (u0 = 1|H1).

We expand R in terms of the kth local decision uk as follows:

R = C +
∑

uk

{

A(uk)[C0
FP (uk1|H0)− C0

DP (uk1|H1)]
}

+ Ck
FP (uk = 1|H0)− Ck

DP (u0 = 1|H1),

where,

C =
∑

uk

{

P (u0 = 1|uk0)[C0
FP (uk|H0)− C0

DP (uk|H1)]
}

,

and the conditional density of u is given by

P (u|Hj) =

∫

Y

P (u|Y)P (Y|Hj)dY,

where Y = (y1, . . . , yN )T and
∫

Y
· represents a multifold

integral over all components of Y. Since the decision of each

local sensor depends only on its own observations, then

P (u|Y) =
N
∏

i=1

P (ui|yi),

and

P (uki|Y) = P (uk = i|yk)P (uk|Yk), i = 0, 1.

From

P (uki|Hj) =

∫

Y

P (uki|Y)P (Y|Hj)dY

=

∫

Y

P (uk = i|yk)P (uk|Yk)p(Y|Hj)dY,

for j = 1, 2, we have

R = C +

∫

yk

P (uk = 1|yk)dyk

·

{

∑

uk

∫

Yk

A(uk)P (uk|Yk)[C0
F p(Y|H0)− C0

Dp(Y|H1)]dYk

+ [Ck
F p(yk|H0)− Ck

Dp(yk|H1)]

}

.
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As all of other decision rules and fusion rule are fixed and C

is a constant, we obtain the following decision rule

P (uk = 1|yk) =

{

0, if D(k) ≤ 0,

1, otherwise,

where

D(k) = Ck
F p(yk|H0)− Ck

Dp(yk|H1)

+
∑

uk

∫

Yk

A(uk)P (uk|Yk)[C0
F p(Y|H0)− C0

Dp(Y|H1)]dYk.

Noting that

P (Y|Hj) = P (Yk|yk, Hj)p(yk|Hj),

the decision rule at the kth detector can be expressed in an

alternate form as (6).

Remark 3.1: The FT-DDFF also has the shortcoming

brought by Bayesian criterion. In the next section, when

simulating the performance of FT-DDFF, we introduce an

weight vector to measure the differences between the system

risk and the local risks rather than to find the appropriate cost

coefficients Ck
ij .

Remark 3.2: The PBPO methodology is adopted to derive

the FT-DDFF just as the DDFF. This method could get the

system optimization just under some special conditions. In

most case, it may just get the suboptimal solution to the

problem. And the fusion rule and decision rules of the new

detection formulation are also coupled with each other.

Remark 3.3: Though there are defaults just listed as above

remarks, the FT-DDFF may have some superiorities of fault-

tolerance. As the FT-DDFF partly optimize the local risks, the

performance of the local sensors may be better than DDFF.

Especially if system is partly destroyed, the FT-DDFF would

work efficiently. These will be show in Section IV.

IV. NUMERICAL EXAMPLES

In this section, some numerical simulations are provided for

the binary detection fusion problem in a distributed system

with three local sensors (N = 3). The performance of

the FT-DDFF is evaluated and compared to the DDFF. The

observations at local sensors are assumed to be conditionally

independent. Then, the local decision rules (6) reduce to the

following threshold tests

p(yk|H1)

p(yk|H0)

uk = 1

≷

uk = 0

Ck
F +

∑

uk A(uk)C0
F

∏N

i=1,i6=k P (ui|H0)

Ck
D +

∑

uk A(uk)C0
D

∏N

i=1,i6=k P (ui|H1)
. (7)

As mentioned in Remark 3.1, we will not devote to choosing

some appropriate cost Ck
ij . Instead, we introduce a weight

vector to treat the difference between the system risk and

local risks. Just like [10], the special case occurs when we

set Ck
00 = Ck

11 = 0, Ck
10 = Ck

01 = 1, k = 0, 1, . . . , N , i.e.,

the costs of the correct decision and mistake decision are set

to zero and unity respectively. In this case, the system risk

R0 and the local risk Rk are just the probabilities of error.

Furthermore, we assume that each local detector has equal

importance, then the weight vector is (l, 1, 1, 1) where the

value of l > 0 reflects the different importance of the system

risk and local risks.

Assume that the observation noises at the three sensors

follow the Gaussian distribution. Under H0, the conditional

probability densities at the three detectors are assumed to be

identical with mean zero and variance one. Under H1, the

mean and variance of observation at jth sensor are mj and

unity respectively for j = 1, 2, 3.

A. The system is perfect

We will compare the performances of both formulations

when the system is perfect. As mentioned before, besides the

system risk, we also focus on the local risks. The performance

of local sensors and fusion center will be evaluated for both

formulations. Table I reports the ratios of risks by the FT-

DDFF to those by the DDFF:

ri =
Ri by the FT-DDFF

Ri by the DDFF
, i = 0, 1, 2, 3.

In Table I, for different l, we computed all the risk ratios

of the fusion center and local sensors when m1 = 1.1,m2 =
1.5,m3 = 1.8; and m1 = 1.0,m2 = 1.25,m3 = 1.5. For

example, the values 0.9998, 0.9736, 0.8266, 0.8998 in the sixth

row mean that both of the system risk and local risks of the

FT-DDFF are reduced in average compared to the DDFF. It is

seems that not all the values of l can guarantee this advantages.

We just set l = 0.5 simply in this paper. There must be an

appropriate selection for l. While how to search an optimal

value of l in theory will be considered in future.

As l = 0.5 and m1 = 1.1,m2 = 1.5,m3 = 1.8, the

comparisons of probabilities of error detections for fusion

center and the local sensors under different formulations are

shown in Figures 2 and 3. Figure 2 shows the system risks for

both formulations. Although the system risk of the FT-DDFF

is not less than that of the DDFF uniformly, the average system

risk is less indeed. Figure 3 shows that the local risks for the

FT-DDFF are less than those of the DDFF uniformly.

Figures 4 and 5 show the evaluations of the performance in

terms of the receiver operating characteristic (ROC). Figures 4

and 5 show the comparisons of the ROCs of fusion center and

local sensors respectively. It is clear that, by the FT-DDFF,

the local sensors have the obviously good performance and

system has a little improvement.

When l becomes greater, the improvement of performance

both for fusion center and local sensors is less. When l is big

enough, the performance of the FT-DDFF is almost same as to

the DDFF. Figure 6 shows the system risk and local risks for

both formulations for l = 15 and m1 = 1.1,m2 = 1.5,m3 =
1.8. It is obviously that the performances of the FT-DDFF

and DDFF are equal. This is because l reflects to the different

importance of fusion center to local detectors. The bigger l is,

the more important the system is. When l is big enough, we
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TABLE I
AVERAGE RISK RATIOS OF FUSION CENTER AND LOCAL SENSORS

m1 = 1.1,m2 = 1.5,m3 = 1.8 m1 = 1.0,m2 = 1.25,m3 = 1.5

l r0 r1 r2 r3 r0 r1 r2 r3

0.1 1.0050 0.9722 0.8244 0.8985 0.9901 0.9477 0.8728 0.9129

0.2 1.0031 0.9725 0.8251 0.8686 0.9885 0.9479 0.8732 0.8811

0.3 1.0017 0.9727 0.8256 0.8689 0.9875 0.9482 0.8737 0.8813

0.4 1.0004 0.9732 0.8263 0.8693 0.9869 0.9491 0.8742 0.8817

0.5 0.9998 0.9736 0.8266 0.8998 0.9859 0.9498 0.8747 0.9142

0.6 0.9982 0.9742 0.8276 0.9005 0.9851 0.9504 0.8756 0.9148

0.7 0.9983 0.9749 0.8285 0.9012 0.9849 0.9512 0.8763 0.9154

0.8 0.9990 0.9757 0.8294 0.9020 0.9851 0.9518 0.8771 0.9160

0.9 0.9993 0.9765 0.8303 0.9029 0.9862 0.9522 0.8779 0.9169

1.0 1.0002 0.9774 0.8313 0.9038 0.9866 0.9531 0.8788 0.9177
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S
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m
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k
s

 

 
system risks for DDFF

system risks for FT−DDFF

Fig. 2. Comparison of the system risks for l = 0.5 and m1 = 1.1,m2 =

1.5,m3 = 1.8.

could just neglect the risks of local detectors. At this time, the

two formulations are just equal.

From the simulating examples for perfect system, we would

find that no matter what value l takes, the performance of local

sensors of the FT-DDFF do have some advantages compare

to the DDFF. We could also take some appropriate values

of l to make sure the performance of fusion center is not

inferior to the DDFF. When the value of l becomes large,

the improvement becomes less. When the value of l is large

enough, the performance of the FT-DDFF is just the same as

the DDFF.

B. The system is partly destroyed

There are many kinds of “partly destruction” for a dis-

tributed system. Next, we consider two kinds of destruction:

the fusion center is destroyed or some local sensors are

destroyed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.3
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risks of sensor 1 for DDFF

risks of sensor 2 for DDFF

risks of sensor 3 for DDFF

risks of sensor 1 for FT−DDFF

risks of sensor 2 for FT−DDFF

risks of sensor 3 for FT−DDFF

Fig. 3. Comparison of the local risks for l = 0.5 and m1 = 1.1,m2 =

1.5,m3 = 1.8.

If the fusion center is destroyed, each local sensor would

use their own detection rule to make the final decision for the

system. As there is no fusion center, we would just to compare

the performance of the local sensors, which has been shown in

Subsection IV-A. If some of local sensors are destroyed or the

communications between fusion center and some local sensors

are cut off, which means that some local sensors are missing,

the fusion center has to make a decision with the available

local decisions.

Table II shows the average system risk ratios for l = 0.5 and

different settings of mj , j = 1, 2, 3 when sensor 2 or sensor

3 is missing. All the six kinds of situations listed in the table

show that the average risks of the FT-DDFF are less than those

of DDFF. Especially, when m1 = 1.1,m2 = 1.8,m3 = 1.8,

the risk ratio is 0.8704 which means the average system risk

is reduced by 12.96% compared to the DDFF. This is because,

as m2 = m3 = 1.8, the system redundance is bigger and the
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Fig. 4. Comparison of detection probabilities at the fusion center for l = 0.5

and m1 = 1.1,m2 = 1.5,m3 = 1.8.
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Fig. 5. Comparison of detection probabilities at the local detectors for l = 0.5

and m1 = 1.1,m2 = 1.5,m3 = 1.8.

space of ascension for the DDFF is greater.

It is worth pointing out that we do not consider the situation

which sensor 1 is missing. Because under the assumption,

sensor 1 plays a role as main sensor which is most important

to the system performance. If sensor 1 is missing, the system

performance would not be guaranteed. What we consider

in this paper is to reduce system redundant and improve

performance by adjusting the “secondary sensors”.

The improvement of performance for the FT-DDFF shown

in Table II could also be revealed in Figures 7 and 8 where

l = 0.5 and m1 = 1.1,m2 = 1.8,m3 = 1.8.

Figure 7 shows the risks for the fusion center and sensors

1 and 2 when sensor 3 is missing. Figure 8 compares the

ROCs of fusion center for both formulations when sensor 3

is missing. From Figure 8 we can hardly distinguish the two

ROCs with each other, but in Figure 7, it is clearly show that
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Fig. 6. Comparison of the system risks and local risks for l = 15 and
m1 = 1.1,m2 = 1.5,m3 = 1.8.

TABLE II
AVERAGE RATES OF SYSTEM RISKS TO DDFF FOR l = 0.5

m1 m2 m3 Sensor 2 is missing Sensor 3 is missing

1.0 1.5 1.5 0.9612 0.9612

1.0 1.7 1.8 0.8796 0.8867

1.0 1.6 2.2 0.8584 0.9364

1.1 1.5 1.8 0.9625 0.9390

1.1 1.6 1.9 0.9179 0.9169

1.1 1.8 1.8 0.8704 0.8704

the performance of new detection formulation is better. We

do not give out the same situation when sensor 2 is missing.

Because sensors 2 and 3 are in the same status as m2 = m3 =
1.8. The similar results can be obtained for different m2 and

m3. When l = 0.5 and m1 = 1.1,m2 = 1.5,m3 = 1.8,

the performance evaluations in terms of the risk and ROC are

shown in Figures 9, 10, 11 and 12.

Figure 9 shows the comparison of risks for the fusion center

and sensors 1 and 2. Figure 10 shows the comparison of ROCs

for fusion center when sensor 3 is missing. Figures 11 and 12

show the corresponding results when sensor 2 is missing. Just

as shown in Figure 8, the ROCs in Figures 10 and 12 could

hardly be distinguished. From Figures 9 and 11, it is also

obviously that the performance of the FT-DDFF is better.

From the simulations, where l = 0.5, if the “secondary

sensor” is destroyed, the performance of fusion center and

local sensors would be both improved. How much improve-

ment will be taken exactly by the new detection formulation

relies on the redundant of the missing “secondary sensor”.

Therefore, some extension of the FT-DDFF has much more

fault-tolerance compared to the DDFF.
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Fig. 7. Comparison of system risks and local risks for sensors 1 and 2 when
sensor 3 is missing for l = 0.5 and m1 = 1.1,m2 = 1.8,m3 = 1.8.
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Fig. 8. Comparison of detection probabilities of the fusion center when sensor
3 is missing for l = 0.5 and m1 = 1.1,m2 = 1.8,m3 = 1.8.
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Fig. 9. Comparison of system risks and local risks for sensors 1 and 2 when
sensor 3 is missing for l = 0.5 and m1 = 1.1,m2 = 1.5,m3 = 1.8.
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Fig. 10. Comparison of detection probabilities of the fusion center when
sensor 3 is missing for l = 0.5 and m1 = 1.1,m2 = 1.5,m3 = 1.8.
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Fig. 11. Comparison of system risks and local risks for sensors 1 and 3 when
sensor 2 is missing for l = 0.5 and m1 = 1.1,m2 = 1.5,m3 = 1.8.
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Fig. 12. Comparison of detection probabilities of the fusion center when
sensor 2 is missing for l = 0.5 and m1 = 1.1,m2 = 1.5,m3 = 1.8.
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V. CONCLUSION

In this paper, we consider the distributed detection fusion

formulation having a fault-tolerance capacity with the destroy

of the fusion center or some local sensors. A new detection fu-

sion strategy is provided by minimizing the sum of system risk

and local risks in terms of Bayesian criterion. We solve this

team decision problem by the PBPO methodology. Although

the FT-DDFF could not ensure an optimal solution to the

original detection fusion problem, it do have some superiorities

compared to the DDFF especially for the case of the local

sensors having redundance. The numerical examples confirm

the above claims and show that the new detection formulation

has more fault-tolerance in some certain situations.
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