

Abstract— We describe here an agent-based Distributed

Analytical Search (DAS) tool to search and query distributed
“big data” sources regardless of data’s location, content or
format. DAS semantically analyzes natural language queries
from a web-based user interface. It automatically translates the
query to a set of sub-queries by deploying a combination of
planning and traditional database query optimization techniques.
It then generates a query plan represented in XML and guide the
execution by spawning intelligent agents with various types of
wrappers as needed for distributed sites. The answers returned
by the agents are merged appropriately and return them to the
user. We have demonstrated DAS using a variety of data sources
that are distributed and heterogeneous. DAS is the prime target
for analysts searching relevant data sources to answer priority
intelligence requirements without having them to know the
details of available data sources. DAS enables fusion systems to
search relevant data sources and extract evidence to propagate
into the models of the systems.

Index Terms—High-level fusion; analytics; distributed search;

intelligent agents; natural language query; query translation;
query optimization; query planning.

I. INTRODUCTION
Big data is generally stored in relational databases, such as

Oracle, DB2, SQL Server, and MySQL, and in data
warehouses such as Terradata. This data is generally
heterogeneous and distributed, making it difficult to query
accurately and quickly for analytics [3]. Although big data
environments are in the process of migrating to the scalable,
fault-tolerant cloud environment, the cloud remains
experimental in nature, due to its lack of adequate data
security and the unrealized need for a query tools utilizing the
Map Reduce paradigm [5]. As a result, data remains
distributed in many formats, both structured and unstructured,
and only non-essential data is currently stored in the cloud.
What is needed is an approach to query distributed sources
maintaining autonomy of individual data sources [8]. We have
developed an agent-based Distributed Analytical Search
(DAS) tool to fulfill this gap.

“This work was supported in part by the U.S. Department of Defense under

the Army Grant W15P7T-13-C-A752”.
Subrata Das, Ria Ascano, and Matthew Macarty are with Machine

Analytics, Cambridge, MA 02138, USA (e-mails: {sdas,rascano,mmacarty}@
machineanalytics.com).

DAS will allow end users to query distributed data sources
in natural language without having to know the source formats
and locations. In the government space, most distributed
archives and databases, such as NASA’s DAAC and the
DoD’s DCGS, are autonomously maintained. Additionally,
our personal communications with personnel from big retailers
such as Sears and Walmart reveal that their databases are also
highly distributed and heterogeneous with less than 10%
residing in cloud environments, and that it takes almost a day
for an analyst to extract data from relevant sources after the
request is placed. Our approach will allow analysts to query
data sources directly in natural language and will reduce this
one-day turnaround time to within seconds.

DAS searches distributed structured and unstructured “big
data” sources by semantically analyzing natural language
queries regardless of data’s location, content or format. DAS
accepts natural language queries from a web-based user
interface, deploying “intelligent agents” to scan unrelated data
sources and return answers to support the decision-making
process. DAS is format-agnostic. DAS allows users to perform
distributed search within the cloud without users needing to
already know the format or locations of individual data
sources. In addition, it is not necessary for these data stores to
be traditional relational, nor do they need to be on the same
network. Agent-assembled data is analyzed for underlying
trends. This is a non-trivial exercise, with agents building and
executing queries based on natural language user input.
Secured Agents will build temporary tables from multiple
unrelated data sources by taking computations to data sources,
thus avoiding large downloads. We are uniquely positioned in
this market place.

In summary, DAS answers queries through the following
stages:

 Accepts a search query from a user in natural language
via a web interface. Automatically translates the query to a set of sub-
queries by deploying a combination of planning and
traditional database query optimization techniques. Generates a query plan represented in XML and guide
the execution by spawning intelligent agents with
wrappers as needed for distributed sites. Merges the answers returned by the agents and return
them to the user.

Our approach is innovative because no other currently
available technology can query distributed data sources, and
its extreme need is justified above. Our natural language query

Distributed Big Data Search for Analyst
Queries and Data Fusion

Subrata Das, Ria Ascano, Matthew Macarty

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 666

translation, using hybrid deep linguistics processing and
machine learning, and the plan generation along with XML
representation and distributed execution, is unique and is
Machine Analytics’ trade secrets.

The rest of the paper is organized as follows: Section 1
describes briefly the web-based querying interface and our
approach to natural language query translation to SQL.
Section 2 describes the query planning and optimization
techniques. Section 3 describes in detail the agent-based query
execution strategy. We conclude the paper with our future
plan with DAS. For the purpose of illustrating DAS
functionalities, throughout the paper we will be using a small
example database consisting of two tables. Figure 1 shows the
tables SALUTE (size-activity-location-unit-time-equipment)
and Mobility, with some sample rows as examples. These
example tables are stored at multiple sites. The distributed
query execution as described above therefore avoids
downloading large volumes of Mobility and SALUTE data
records from these remote tables to the host site. An example
query in this context that we will using throughout the paper is
“Show Salute platforms from NAIs with mobility no go.”
(NAI meaning “named area of interest”)

Figure 1: SALUTE and Mobility tables with some example rows

II. USER INTERFACE AND NATURAL LANGUAGE QUERYING
Currently the user will find the web-based interface by

visiting a URL. For example in a typical installation on one of
our servers, the user can access interface and current
functionality of DAS via the following URL:
192.168.0.101:8080/Agent7. The user will be
presented with the single page application a screenshot of
which can be seen in Figure 2. The screenshot demonstrates
the current iteration of the UI with control panel on the left.

Figure 2: DAS web-based use interface

The user will select first a domain from a dynamic list of
possible domains. This list is populated at load time based on
output from the DAS application that the interface accesses

via an AJAX call. Once a domain is selected, the user will
begin typing a natural language query in the textbox below the
domain selection. After a query has been completed the user
will click the translate button displayed below the query
textbox as shown in Figure 2. This initiates an AJAX call to
the DAS translation class, which in turn makes calls to internal
dependencies that will translate natural language query into
SQL.

DAS automatically translates a natural language query to its
equivalent SQL representation to be executed against
structured data (e.g. [6]). We are making use of the publicly
available Stanford parser and the dependency relations [4] that
it generates from a given sentence representing a user query in
the context of a given database. The algorithm also makes use
of the underlying database scheme and its content. The
algorithm exploits the structure of the database to generate a
set of candidate SQL queries, which we rerank with a
heuristics based ranking algorithm developed in-house. In
particular we use linguistic dependencies in the natural
language question and the metadata to build a set of plausible
SELECT, WHERE and FROM clauses enriched with
meaningful joins.

Once the translation is complete, possible SQL queries are
returned to the user via another AJAX callback. DAS returns
all of the possible translations of the original natural-language-
like query, using a proprietary algorithm to rank the
translations. The list of translated queries that the user is
presented with is displayed in rank order as shown in Figure 2.
However, the “correct” translation in terms of relevancy is not
always ranked highest due to the ambiguity of natural
language.

The user can select any translation (first one is by default)
by clicking on it and then click the execute button below the
list of SQL translations. This action initiates AJAX calls to
DAS classes responsible for planning and executing the query
using direct cloud based queries to nodes on the network and
agent based queries to nodes on the network where this is
appropriate. At this point DAS starts by preparing an
execution plan whereby subqueries are created and optimized
prior to execution. In the UI presentation layer, the user is
presented with the XML-based plan that DAS will execute.
Figure 2 illustrates a portion of this plan, hiding a significant
portion, which the user is able to scroll through both
horizontally and vertically if desired to examine the order of
execution.

Once the plan has been created by DAS, we will know how
many queries will be executed at a maximum, and this number
will be presented to the user. In some instances the number of
queries planned will not be the same as the number of queries
executed. This is primarily due to the fact that some nodes
may be unavailable when contacted by an agent. Since it is a
basic assumption that nodes will be or become unavailable for
querying, DAS can and does continue the execution on
available nodes. When this occurs we believe it is relevant to
the user to know that not all nodes can be queried at the
moment. The user is presented with a new statistic so s/he are
alerted to the fact that not all queries will be executed and by

NAI FROM ACTIVITY EQUIPMENT TIME SIZE

47 JSTARS Milling Vehicles 14:20 40-60

65 UAV Emplaced BMP 18:12 ?

91 LRS Meeting AK 47 10:30 100-200

20 IMINT Digging Truck 05:10 1

… … … … … …

NAI Mobility

47 Slow Go

23 No Go

49 Go

43 Go

… …

SALUTE NAI-Mobility

667

extension that some nodes on the network are not available.
However should unavailable nodes become available during
the course of execution, they will be included in the execution.
It should be possible to provide the user with a list of
unavailable nodes in future iterations. In Figure 2, in the status
summary panel, we can see that 20 queries were planned in
this run, but only 8 actually executed, with partial results
displayed in the Query Results panel.

Continuous communication between the UI and DAS is
maintained via AJAX call throughout the execution process,
and as soon as 200 results are available, they are displayed to
the user. DAS continues to run and the user is presented with
updates on the status of the query. When the user clicks the
Next or Prev button a graphic is displayed to indicate that new
results are being fetched.

Based on the number of queries that will execute, the user is
also presented with a near-real-time “percent complete”
statistic and graphic. This graphic and number are replaced
with the word “Completed” once all results are available. It
should be possible to provide the user with an estimate of time
to completion as well. The user is currently given the ability to
toggle through results by means of “Next” and “Prev” buttons.
Additionally a link is provided to the directory where result
files are stored, should the user with to view or download raw
result files.

III. QUERY PLANNING AND OPTIMIZATION
Query planning [1][2] involves generating a set of sub-

queries from a given user query based on the data source
locations that have parts of the required information to answer
the query. The optimization process then generates an efficient
ordering of execution among these sub-queries. We first create
an example to illustrate the concept of query planning and
optimization.

Once a natural language query is translated into its
equivalent SQL query, we automatically decompose the
output SQL query into a query plan composed of subqueries to
be executed at distributed sites where data reside. Our
implementation makes use of the two tables, Sites and
Columns. The table Sites stores the physical location of tables
and the table Columns stores the descriptions of columns and
the user privileges.

We have focused on planning and optimizing “select-
before-join” type of queries as shown below. Below is an
example of this type of planning and optimization. The query
here (a translation of the original query posed in natural
language via the web interface) finds the equipment/vehicles
that are operating in a ‘no go’ NAI:

select s.equipment, t.mobility

from s in salute, t in nai-mobility

where s.location = t.location and

t.mobility = ‘no go’
The optimization technique helps to identify the selection

sub-query as follows to generate a temporary intermediate
relation:

select t.mobility

from t in nai-mobility

where t.mobility = ‘no go’

The executive agent sends an agent to execute the query at
the site where terrain mobility information by NAIs is located.
The results are then carried by two other agents in a temporary
relation to the two sites of the SALUTE databases. The same
query that is executed at the two SALUTE data sites are as
follows:

select s.equipment, temp.mobility

from s in salute

where s.location = temp.location

The results are brought back by the agents and merged and
presented to the user via the user interface. This kind of
optimization avoids downloading the join relations to the
user’s local environment.

Our target is general query planning and optimization
beyond just the limited optimization described above.
Consider a family of surveillance platforms (e.g., JSTARS,
UAV, and AWACS) and assume that an extraordinary tactical
event is reported (e.g., enemy tank T-80 is identified at the
named area of interest NAI-68) in the SALUTE format
prepared from the UAV mission during the interval (t1, t2).
For an analysis through comparison, the analyst needs to
access the intelligence data of that location for the interval (t1,
t2) from other surveillance platforms as well as the
information about terrain and weather during that period. The
query involves access from various repositories containing
intelligence and environmental data. A high-level user query
to retrieve only the intelligence data in this regard will look
like the following:

select s.*

from s in salute

where s.location = ‘NAI-68’ and
s.time =< t1 and t2 =< s.time

Note that neither the repository nor the wrapper is
mentioned in the query. If salute0 and salute1 are the only two
tables respectively at repositories r0 and r1 containing
SALUTE reports from the surveillance platforms, the above
query will be translated as follows:

select s.*

from s in union {salute0, salute1}

where s.location = ‘NAI-68’ and
s.time =< t1 and t2 =< s.time

Given the fact that repositories r0 and r1 are at different
locations, the following two sub-queries will be generated
corresponding to the above query:

select s.*

from s in salute0

where s.location = ‘NAI-68’ and
s.time =< t1 and t2 =< s.time

select s.*

from s in salute1

where s.location = ‘NAI-68’ and
s.time =< t1 and t2 =< s.time

The above two sub-queries will be executed in parallel
through wrappers w0 and w1 respectively. Not every sub-
query will return a result, because the SALUTE report within
a repository might not contain a reading of the surveillance
platform s at that particular time interval (t1, t2). We generate
an efficient query execution order based on several traditional

668

query optimization strategies including a typical “select before
join” type

IV. AGENT-BASED QUERY EXECUTION
The final step in carrying out a user’s request for data is

performed by the Query Execution module. The Query
Execution module controls all aspects of agent creation,
migration, data retrieval, and collaboration. These topics will
be discussed in the following subsections. The module
receives a list of sub-queries from the Planning and
Optimization systems and generates a series of mobile agents
to carry out these sub-queries. For each agent, the module
creates an itinerary of the various sites to be visited and the
data retrieval and processing tasks to be executed at each site.
Each mobile agent is then spawned and the system waits for
the return of each agent with its associated data. Upon return,
the system performs any required data joining, processing, and
formatting before displaying the results to the user.

Figure 3: Plan Agent spawning Query Agents processing

information from several databases

Our mobile agent approach as shown in Figure 3 created
multiple Plan Agents and Query Agents as part of the Query
Execution module. These mobile agents were built on top of
the Aglets 2.02 API along with Tahiti server running on the
Java 1.7. But we now have replaced Aglets with our in-house
mobile agent platform. Aglets is a Java mobile agent platform
and library. An aglet is a Java agent that is able to
autonomously and spontaneously move from one host to
another. The Plan Agents and Query Agents inherit the
properties of an Aglet.

Different types of execution mobilities exist [7]
corresponding to the possible variations of relocating code and
state information, including the values of instance variables,
the program counter, execution stack, etc. For example, a
simple agent written as a Java applet has mobility of code
through the movement of class files from a web server to a
web browser. However, no associated state information is
conveyed. In contrast, Aglets, developed at IBM Japan, builds
upon Java to allow the values of instance variables, but not the
program counter or execution stack, to be conveyed along
with the code as the agent relocates. A stronger form of
mobility allows Java threads to be conveyed along with the

agent's code during relocation. DAS design allows relocation
of code information and state information.

Detailed architectural diagrams of the Query Execution
module will be shown and discussed in the next subsection.

A. Query Execution Architecture
Figure 4 shows the diagrams of the Query Execution

Module. The two main parts are JSP Server and the Aglets
Agent Servers. The Query Execution Module integrates with
the Web-based Analyst Interface component and the Planning
and Optimization System Module. A user-submitted natural
language query will be processed by the JSP Server and
passed on to the Planning and Optimization systems.

Planning and Optimization systems are customized Java
Objects that can process the transformation from a Natural
Language Query and produce a plan of action in XML format.
The user may then choose a desired transformation SQL and
pass it back to the JSP Server to create a plan of action in
XML format. The XML file that was created will be processed
by the Plan Agent as shown in Figure 4 (right). The figure also
shows the roles of the Agents that were customized from the
Aglets API. The Plan XML file was read and processed. The
Plan Agent creates Query Agents based on the number of
queries obtained from the plan XML file. This XML file
contains a plan of action created from a catalogue of available
databases. Changing the availability of databases in the
catalogue will reflect on the plan created in XML format.

The Query Agents are then dispatched to the remote
computers containing the desired databases. The Query
Agents perform all computations locally where the databases
reside. Query Agents can be sent to remote machines and
process SQL commands to different databases on those
machines. The databases that we used for testing were
MySQL and Derby. One of the advantages of using agents is
that the database needs not be open to outside connection.
Since the agent had been sent to the remote machine, the agent
has the ability to query the database locally. Query Agent also
has the ability to create temporary database tables and carry
out any standard SQL command.

Figure 4: Query Execution architecture part 1 (JSP Server)

669

Figure 5: Query Execution architecture part 2 (Aglets Agent

Servers)

We designed custom codes with the assumption that we
have sufficient privileges to modify one or more databases
involved in the query as well as permissions to read the
corresponding tables across the network. These written codes
have automated access to user defined queries obtained from
the Planning and Optimization systems. The combined
processed results, according to the query plan, from
heterogeneous data from multiple sources are sent back to the
Plan Agent, who will then save them into an XML format. The
resulting XML files are visualized as single or multiple
merged results.

B. Agent Creation
Plan Agent was created by inheriting the properties of an

Aglet. The Aglet class is provided by the Aglets API. Aglets
need to be hosted by an agent host such as a Tahiti server.
Plan Agent was instantiated within an Aglet Context that
performs the role of sending messages to other Agents. The
Aglet Context was created by the Tahiti Server which has a
network daemon whose job is to listen to the network for other
agents. Incoming agents are received and inserted into the
context by the daemon. The Context provides all agents with a
uniform initialization and execution environment.

One of the challenges faced by mobile agents is that a Tahiti
server with the ability to host a query agent needs to be
present in the destination database machine. To respond to this
challenge we have developed the option for the plan agent to
create query agents that will have the ability to query multiple
databases without dispatching them to the different machines.
Having this additional feature will enable the Plan Agent to
combine results from machines that can host Agents as well as
machines that cannot host Agents. One of the test scenarios
involved multiple databases residing on different servers with
different database software. For example we have four servers
on machines a, b, c, and d, with MySQL, Derby, CloudBase,
and Accumulo, and with different operating systems such as
Ubuntu and Windows. Different servers refer to distinct
physical machines or multiple virtual machines using different
physical hardware. The key point is that there are multiple
installations of the database software.

Another challenge that the query agents face includes what
to do if the destination machine is temporarily unavailable.
Should the program crash, or should it proceed and produce
partial results from other available machines? The Query
Agents had been designed to detect if the destination machine

specified on the plan XML file has become unavailable. The
program will complete, produce fewer results, and report to
the user that some database sites are unavailable. Destination
machines may become unavailable due to loss of network
connections, availability of the Tahiti Servers, power outage,
or incorrect or change of user access at a particular site,
among other reasons. The Query Agent will send a message to
the Plan Agent regarding the unavailability of the destination
host. The final result will consist of a single result XML file
containing the merged results obtained from the available
databases. The user interface will display the results on the
web browser as a result table. Status reports including
availability or unavailability of databases have been made
available to the user. Sources of information are also displayed
as part of the results.

C. Agent Migration
The Plan Agent can create, monitor, coordinate, retract,

dispatch, and dispose Query Agents as needed. A Query Agent
can be dispatched to a specific host (which itself hosts a
database on the network) to visit and perform a specific
function, computation, or query. Once an agent completes its
tasks, it can send messages to other agents to perform other
tasks such as creating temporary database tables or merging
query results from different database tables. Agents also send
messages to other agents to verify that they have reached their
destinations and have completed their tasks. The Plan Agents
have the ability to decide what path to take and what actions to
perform as they gather data from the nodes that the Query
Agent visits.

The Plan Processor reads XML files and stores the
information in the form of Serialized objects (Java classes that
can be converted into bytes and be sent over the wire). The
instance of this class is saved and can be restored upon arrival
to a destination. Serialization allows the persistence of an
object from memory to a sequence of bits, and deserialization
enables the reading of the data to recreate the object.

Plan Agent will create multiple Query Agents that can
calculate and carry vital information while “hopping” to and
from different machines. The number of Query Agents created
depends upon the number of queries in the XML document.
Multiple queries can be processed in parallel or sequentially in
a distributed manner. Query Agents are deployed to different
machines based on the plan XML file to process information
from the remote databases. MySQL and Derby Test Databases
were configured and used for testing.

D. Agent Retrieval
Using agents, it is possible to leave data where it resides

and to only extract the required data on demand. The user
writes a query in his own words and submits it using the web
based user interface. From the user’s perspective, one query
produces one combined answer and the complexities of the
process have been hidden. The original data has not been
moved nor modified. Only relevant data had been extracted
and passed through the network.

Several databases were loaded with gigabytes of data. A
Plan Processor Java Object was designed and implemented to

670

enable carrying huge data streams across the wires. A new
scenario was developed and a series of tests were carried out
to query new tables containing large amounts of data with a
huge number of results that were carried across the wires. The
testing was successful and gigabytes of data were obtained
from a remote computer.

The Plan Agent has the ability to create Query Agents that
can travel autonomously through the network, providing an
increased fault tolerance. The agents’ ability to travel through
the network and carry data along with them enables these
agents to individually process queries in parallel and/or in
sequence. The query execution module will not crash with a
single point of failure and the query process may continue
even if individual machines fail or become unavailable.

New computers or new database source may be added to the
network. This feature offers better scalability of the module.
We have created a data site table stored where users may add
or delete existing data sources. The Plan Agent has the ability
to automatically increase the creation of Query Agents that
can be dispatched to different computers. The ability to have
the Query Agents travel through the system and execute their
code using the host’s resources allows for dynamic load
sharing and automatic data processing.

V. EXPERIMENTAL RESULTS
Figure 6 shows the DAS demo implementation environment

that we have created. We have set up three database servers to
emulate storing and serving big data from a variety of
environments, including Hadoop-based cloud and a traditional
database server. These servers are connected via a router
providing fixed IP addresses to these servers, thus creating
local area network. The servers are connected by a common
maintenance terminal for configurations.

Figure 6: Agent collaboration

We have also developed the option to directly query the
databases specified on the plan XML document without
sending the Agents to the remote locations. A comparison
between direct querying and the sending the Agents was
developed. Sources of Query Agent delay were found and the
code has been restructured to eliminate or minimize runtime
inefficiency.

The table below shows a comparison between distributed
and centralized database as well as direct parallel querying and
sending the Agents to remote locations. It took less than half
the time to retrieve 2.1 million records from three distributed
databases than the same amount of records from one
centralized database. There is not much difference between
the direct parallel approaches as opposed to sending the
mobile agents remotely.

 Direct Mobile Agent

Centralized DB

(2.1M records returned)
7 min 43 sec 7 min 32 sec

Distributed in 3 DB

(0.7M each)

(2.1M records returned)

3 min 22 sec 3 min 12 sec

Plan Agents and Query Agents have been configured to run
on both Windows and Ubuntu Operating systems. MySQL
containing huge amounts of data has also been installed on
both platforms. The Ubuntu machine had been expanded from
its current capacity of 30 gigabytes storage to 450 gigabytes of
space to accommodate big data for traditional SQL databases
and Hadoop, CloudBase, and Accumulo. Precautions were
taken to ensure that the original data were protected, and the
expansion was been carried out without loss of data.
Precautionary measures included backing up relevant files and
information. Testing is being done on different machines to
ensure that the DAS system can operate in a heterogeneous
environment.

The ability to have multiple clients querying from different
browsers or different machines has been designed and
implemented. A unique session directory is created when a
user chooses a particular translated query to execute. The plan
XML document and all the other relevant documents that are
related to this particular query will be contained in this unique
session directory. Relevant files include the status XML file
and the partial and merged results.

The limits of our system have been continuously subjected
to stress testing by sending huge data results across the wires.
Gigabytes of data have been loaded across several data
sources. Up to 3 million result objects per remote data source
have been sent through the wires. There were no issues with
using the mobile Agents and we run into heap space issues
with the direct approach. Major refactoring was implemented
to accommodate the migration of huge data results into
different machines. We continued to encounter heap space
issues as we continue to increase the data and several steps
were taken to improve performance. Memory management is
continuously monitored and managed.

The DAS Agents are constructed as lightweight processes,
so that each process tests a single vulnerability. As new
vulnerabilities are detected and tests for these vulnerabilities
are developed, new agents can be added to the test suite. As
the system configuration changes, some agents can be
retracted or disposed of if they are no longer needed. Test
suites can be fine-tuned for each individual node depending on
its configuration. This increases the efficiency of the testing as
tests are performed only when and where they are needed. A

671

lightweight agent architecture makes the test suite
configurable for heterogeneous environments.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
Our agent-based approach to distributed analytical search

offers several advantages: 1) Databases need not be open to
outside connections. Since the agent has been sent to the
remote machine, it has the ability to query the database
locally; 2) Network bandwidth usage is reduced because the
Mobile agent moves computation code to where the data
resides; 3) The agents do not require a continuous connection
between machines and the clients can dispatch an agent into
the network when the network connection is healthy, and then
it can go off-line. The network connection can be
reestablished later when the result from the remote host is
ready; and 4) Agents operate asynchronously and
autonomously and the user doesn’t need to monitor the agent
as it roams the internet. This saves time for the user, reduces
communication costs, and decentralizes network structure.

Future developments include researching possible security
issues. We will investigate the possibility of creating
cooperating agents that can help reconfigure the network to
deny network services to certain nodes until they have been
confirmed to be in a safe state. Query Agents can monitor
network events and cooperate with the Plan Agents. For
example, if one of the Agents detects suspicious activity on
one computer and notifies the rest of the network, the other
agents may decide to challenge the nodes by modifying the
rights given to those agents.

Real time status reports will be continuously improved. We
are researching means to show the user a more detailed report
on why data may or may not be available as well as how long
it will take to get data. The percentage of completion will be
calculated as well as information on particular queries that will
be abandoned because of the unavailability of the database or
its dependent database. The detailed status report will also
show whether an agent was available in the remote machine or
a direct query had been implemented.

More testing will be developed to ensure the robustness of
the application. New scenarios will be created for testing and
more data sources will be explored, including finding data that
are publicly available through the internet. Different testing
mechanisms will be studied in more detail to enable the
system to have flexible capabilities. New scenarios will be
considered to test the limits of performance. Simultaneous
querying using multiple client machines will be tested and
smarter Agents will be designed and developed to operate on
both Windows and Ubuntu Systems.

VII. SELECTED REFERENCES
[1] Das, S., Shuster, K., and Wu, C. (2002), “ACQUIRE: Agent-

based Complex QUery and Information Retrieval Engine,” Proc.
of the 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems, Bologna, Italy, July.

[2] Das, S., Shuster, K., Wu, C., and Levit, I. (2005). “Mobile
Agents for Distributed and Heterogeneous Information Retrieval,”
Journal of In Retrieval, Vol. 8, 383-416, Springer Science.

[3] Das, S. (2014). Computational Business Analytics, Chapman
and Hall/CRC Press.

[4] de Marneffe M-C, et al. (2010). “Stanford typed dependencies
manual: Revised for Stanford Parser v. 1.6.5.”

[5] Dean, J. and Ghemawat, S. (2008). “Mapreduce: simplified data
processing on large clusters,” Communication of the ACM, Vol.
51(1), pp. 107–113.

[6] Giordani, A. and Moschitti, A. (2012). Generating SQL queries
using natural language syntactic dependencies and metadata. In
NLDB, pages 164–170.

[7] Jansen, W. and Karygiannis, T. (1999). Mobile Agent Security,
NIST Special Publication 800-19.

[8] Widom, J. (1996). Integrating Heterogeneous Databases: Lazy
or Eager?, ACM Computing Surveys, Vol. 28.

672

Dr. Subrata Das is the founder of
Machine Analytics, a company in the
Boston area providing business analytics
and data fusion consultancy services and
developing customized solutions for
clients in government and industry.
Subrata is also providing consulting
services to several companies. Subrata’s
technical expertise includes
mathematical logics, probabilistic
reasoning including Bayesian belief
networks, symbolic argumentation, particle filtering, and a
broad range of computational artificial intelligence techniques.

Subrata recently spent two years in Grenoble, France, as the
manager of over forty researchers in the document content
laboratory at the Xerox European Research Centre. Subrata
guided applied analytics research and development in the
areas of unstructured data analyses, machine translation,
image processing, and decision-making under uncertainty.
Subrata was one of the five-members in the high-profile Xerox
task force Knowledge Work 2020, alongside colleagues from
the Palo Alto Research Center (PARC), to explore a strategic
vision of the future of work.

Before joining Xerox, Subrata held the Chief Scientist
position at Charles River Analytics in Cambridge, MA,
working on projects funded by DARAP, NASA, US Air
Force, Army and Navy, ONR and AFRL. In the past, Subrata
held research positions at Imperial College and Queen Mary
and Westfield College, both part of the University of London.
He received his PhD in Computer Science from Heriot-Watt
University in Scotland, a Master’s in Mathematics from the
University of Kolkata, and an M.Tech from the Indian
Statistical Institute.

Subrata has published many journal and conference articles.
He is the author of the books Computational Business
Analytics, published by CRC Press/Chapman and Hall, High-
Level Data Fusion, published by the Artech House,
Foundations of Decision Making Agents: Logic, Modality,
and Probability, published by the World Scientific/Imperial
College Press, and Deductive Databases and Logic
Programming, published by Addison-Wesley. Subrata has also
co-authored the book entitled Safe and Sound: Artificial
Intelligence in Hazardous Applications, published by the MIT
Press.

Subrata served as a member of the editorial board of the
Information Fusion journal, published by Elsevier Science. He
has been a regular contributor, a technical committee member,
a panel member, and a tutorial lecturer at the International
Conference on Information Fusion. Subrata has published
many conference and journal articles, and conceived and
developed the in-house tools aText, iDAS and RiskAid.

Ms. Ria Ascano specializes in design and development of
software based on customer needs. Ria’s extensive software
skills include object-oriented programming, Java, J2EE,
Hibernate, relational databases, JDBC, SQL, Web Services,
Servlets, XML, JSP, JSF, Spring, HTML, C++, C, TCP/IP,
Tomcat, JUnit, UNIX, Linux, Windows ArcGIS, WorldWind,
and open-source APIs.

Ria designed and developed
software to communicate situational
awareness of the space environment,
including a visualization tool for the
Air Force Satellite Control Network
Link Protection System. This project
concluded with software
demonstrating live feed from US
satellites. A chemist by training, and a
onetime criminalist for the Los Angeles Police Department
Crime Lab, Ria developed software for the quantitative and
qualitative analyses of drugs. She was a court-qualified expert
and represented the LAPD in professional seminars in the
United States, Canada, and the UK.

Ria has a master’s degree in software engineering from
Harvard University, where she was a Teaching Fellow and a
distance education producer.

Mr.Matthew Macarty is a member of the Machine
Analytics training team. Matthew is currently an adjunct
faculty of Whittemore School of Business and Economics,
University of New Hampshire and Bentley University.

Matthew is teaching business
statistics and quantitative methods to
both graduate and undergraduate
students. He is teaching Quantitative
Methods using the Crystal Ball risk
analysis suite covering topics such as
deterministic and probabilistic
modeling, forecasting, Monte Carlo
simulation, decision analysis,
optimization and analytical tools.
Matthew is also teaching Business
Statistics using SPSS covering descriptive statistics,
probability, sampling and sample distributions, hypothesis
testing, and regression analysis.

Matthew was principal of an early stage venture capital
consulting and research organization. Matthew’s previous
positions include Research Associate in the Center for Venture
Research, University of New Hampshire, and Marketing
Director and Technical Consultant for Emerson Ecologics,
Bedford, NH. Matthew completed a Master in Business
Administration from Whittemore School of Business and
Economics, and a Bachelor of Science in Biology and
Nutritional Sciences from the University of New Hampshir

673

