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Abstract—A common problem in network analysis is detecting
small subgraphs of interest within a large background graph.
This includes multi-source fusion scenarios where data from
several modalities must be integrated to form the network. This
paper presents an application of novel techniques leveraging
the signal processing for graphs algorithmic framework, to
well-studied collaboration networks in the field of evolutionary
biology. Our multi-disciplinary approach allows us to leverage
case studies of transformative periods in this scientific field as
truth. We build on previous work by optimizing the temporal
integration filters with respect to truth data using a tensor
decomposition method that maximizes the spectral norm of the
integrated subgraph’s adjacency matrix. We also demonstrate
that we can mitigate data corruption via fusion of different data
sources, demonstrating the power of this analysis framework for
incomplete and corrupted data.

I. INTRODUCTION

In numerous applications, the data of interest are entities and

the relationships, connections, and interactions between them.

We may be interested in interactions between individuals,

communication between computers, or interaction between

proteins. Across these diverse application areas, the data of

interest are naturally represented as a graph.

One of the application domains where casting the data as a

graph is widely used is the analysis of social networks. Ana-

lyzing the interactions between people allows for identification

of community structure and influential figures. A network

of scientific collaborators is a particularly interesting type of

social network. Understanding the way innovation manifests

itself within the public record via collaborative publications

may lead to new insights into the evolution of scientific

research.

In this paper, we analyze such a network in the context of

a novel anomaly detection framework called signal processing

for graphs (SPG) [1]. This framework enables the detection of

small, anomalous clusters within large, dynamic background

graphs. Within this framework, a filtering technique can be

used to emphasize certain patterns of behavior and increase

the power of these “signal” components of the graph within

the “noise” of the background. This paper considers an opti-

mization technique with respect to a known, rigorously-studied

innovation period, and demonstrates that the optimal filter

does in fact bring a significant subset of data to a prominent

position within the analytical space. This framework can be

applied when the graph is derived from many fused sources,

which can also improve detection performance by considering

multiple “looks” at the data. Since network data are often

noisy or incomplete, we also consider observation of corrupted

data within this context. While data corruption significantly

hinders performance, we can leverage the diversity of multiple

measurements and recover the signal by fusing the corrupted

observations.

The remainder of this paper is organized as follows. Sec-

tion II reviews the subgraph detection problem and defines

notation. Section III discusses the filtering technique for ana-

lyzing dynamic graphs. Our dataset of interest—co-authorship

networks of authors who all cite a seminal paper within a large,

dynamic collaboration network—is described in Section IV.

Section V presents the results of a set of experiments on this

dataset, including filter optimization to best emphasize the

innovation subnetwork and methods to fuse multiple corrupted

observations and still maintain signal power. In Section VI, we

summarize and provide possible avenues for further investiga-

tion.

II. SUBGRAPH DETECTION PROBLEM

A graph G = (V,E) consists of a vertex set V , a set of

entities, and an edge set E, a set of edges which represent re-

lationships between vertices. The subgraph detection problem
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is a classical detection problem studied in [2] [3] with a graph

as its observation. We cast the problem of subgraph detection

as detecting a signal embedded in noise, where our objective

is to resolve the binary hypothesis test

H0 : The observed graph is “noise” GB

H1 : The observed graph is “signal+noise” GB ∪GS .

Let H0 denote the null hypothesis, an undirected, un-

weighted graph GB = (VB , EB) generated by some random

model. The alternative hypothesis, H1, has an additional graph

GS = (VS , ES) embedded into GB . The problem is to decide

whether or not the null hypothesis is true based on whether the

observed graph deviates significantly from normal background

behavior.

While optimal detection is possible in some scenarios [4],

we focus on cases where this would be computationally

intractable. We take a spectral approach, which has the benefit

of analyzing the data in a space where there are known

metrics for power and detectability [5]. Our subgraph detection

procedure is based on the spectral analysis of modularity. Mod-

ularity is commonly used to detect communities in graphs [6],

but in the context of this paper—and in the SPG framework

more broadly—we analyze modularity to detect the presence

of an anomaly. The modularity matrix B of an unweighted,

undirected graph G is given by

B = A− kkT

2|E| ,

where A is the adjacency matrix of G (i.e., Aij is 1 if vertices

vi and vj share an edge and is 0 otherwise) and k is the

observed degree vector of G, where ki is the number of

edges connected to vi. The matrix B can be considered the

residuals matrix, a matrix consisting of the difference between

the observed edges A and the expected edges kkT /(2 |E|) (the

expectation under the Chung–Lu model [7], which assumes no

community structure).

The algorithms described in [2] [3] analyze the residuals

under H0 and H1 by studying the eigendecomposition of B
(i.e. B = UΛUT ) and compute a test statistic to discriminate

between the two hypotheses. In [2], we determine the presence

of an anomaly by analyzing only the first two eigenvectors of

B. To compute the test statistic, matrix B is projected into

the space of its 2 principal eigenvectors u1 and u2. This is

the linear subspace in which the residuals are largest, and,

intuitively, a subgraph with particularly large residuals will

separate from the rest of the vertices in this space.

III. DETECTION IN DYNAMIC NETWORKS

Extending the SPG framework to dynamic graphs, our

observation is a sequence of time-varying graphs G(n) =
(V,E(n)) where the vertex sets remain constant and the edge

sets vary over time [8], [9]. Dealing with time-series graphs,

we consider the residuals integrated over a time window.

At each discrete time step n we have a graph G(n) and a

modularity matrix B(n). We apply a finite impulse response

filter h over the length of a time window ℓ and aggregate the

residuals, obtaining

B̃(n) =
ℓ−1
∑

i=0

B(n− i)h(i).

Let B̃(n) be the aggregated residuals matrix for the graph at

time n filtered by h. Thus B̃(n) is a matrix where in each

vertex entry is the result of a vertex pair having its modularity

filtered by h. The sequence of filter coefficients h is designed

to effectively emphasize the subgraph and de-emphasize the

background. The problem of choosing the appropriate filter

coefficients is discussed in further detail later, where h will

be computed to maximize the integrated signal power over

time for a particular subgraph of interest. We perform the

same analysis on B̃(n) as performed on B for static graphs

to discriminate between H0 and H1.

IV. DATASET

One of the significant challenges in developing and evalu-

ating subgraph detection techniques is lack of truth for many

of the applications of interest. In this work, as in [10], we

leverage rigorously studied period of scientific innovation

in evolutionary and developmental biology. This multidisci-

plinary approach allows us to refine our algorithmic techniques

while also potentially providing insight into emergence of

innovation in scientific literature. In this section, we describe

the dataset that is used for our analysis throughout the rest of

the paper.

The case study we consider is the emergence of the concept

of gene regulatory networks in developmental biology. As

discussed in [11], [12], [13], gene regulatory networks are one

of the main explanatory concepts in today’s evolutionary and

developmental biology. The history and emergence of this idea

are also well-studied [13]. This includes early conceptual ideas

from the beginning of the 20th century and more specifically,

the recent developments based on the formulation by Roy

Britten and Eric Davidson published in Science in 1969

[14]. The Britten-Davidson (BD) model is a clear study of

transformative innovation in a scientific field. As discussed in

[10], the citations to the 1969 BD paper illustrate its persistent

impact. Specifically, the citations rapidly increased throughout

the 1970s, dropping somewhat during 1980s and 1990s, and

again increasing in the 2000s and 2010s. Furthermore, second

order citations, or citations of papers that cite the BD paper,

tell a similar story - including a sharp increase in second

order citations in 2000s and 2010s. Second order citations are

good indicators of broader impact of the idea, especially when

combined with first order citation patterns.

Study of the BD model and its impact on the field has

allowed for an observation of the fact that scientific innovation

at least in this case, leads to re-wiring of patterns of collabo-

ration. Based on the analysis of this case study, truth or signal

subgraphs were created by co-authorship graphs of the authors

that have directly cited the BD paper. The signal subgraphs

span 1969 to 2000. All citation graphs were extracted from the

Web of Science database and covered a representative sample
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of the field of developmental biology, specifically, the top 12

journals in the field plus Science, Nature, and Proceeding of

the National Academy of Sciences. For each year, the graphs

considered were unweighted and undirected (co-authorship

is fundamentally undirected) yielding a symmetric adjacency

matrices. Total number of unique authors (number of vertices

in the graph) was help consistently at 294,700 (representing

the number of unique authors in the entire time period). The

ordering of authors in the graph, while arbitrary, was preserved

(as is necessary) in each year.

V. EXPERIMENTS

A. Temporal Filter Optimization

Within the SPG framework, the spectral norm is a good

power metric for signal and noise power [15]. When an

embedded subgraph’s spectral norm is large, its vertices are

more likely to stand out in the eigenspace. When working

with the temporal integration technique described in Section

III, this means that it is desirable to choose filter coefficients

that maximize the spectral norm of the principal submatrix of

the adjacency matrix associated with the subgraph vertices.

As originally discussed in [16], the subgraph’s spectral

norm can be maximized by forming a 3-way tensor from

the subgraph adjacency matrix, and computing a low-rank

approximation for this tensor. Let AS be an NS×NS×ℓ tensor

for the subgraph vertices, where NS = |VS |. The first two

dimensions represent vertices and the third dimension repre-

sents time. Much like approximating a matrix with its singular

value decomposition, a low-rank tensor decomposition can be

used to approximate AS. For a rank-1 approximation, this is

achieved by solving

arg maxλ,x,y,z

NS
∑

i=1

NS
∑

j=1

ℓ
∑

t=1

(AS(i, j, t)− λxiyjzt)
2

(1)

subject to ‖x‖2 = 1, ‖y‖2 = 1, ‖z‖2 = 1.

Here x, y ∈ R
NS and z ∈ R

ℓ are vectors, and λ ∈ R is a

scalar. Our objective is to maximize the spectral norm of the

integrated adjacency matrix whose ijth entry is given by

ahij =
ℓ

∑

t=1

AS(i, j, ℓ+ 1− t)h(t).

It turns out that this quantity is optimized—under the con-

straint that the squares of the filter weights sum to 1—

by setting the filter weights h(t) equal to the time-reversed

temporal factor zℓ+1−t from (1). This computation can be

done in Matlab using the PARAFAC decomposition [17] in

the Tensor Toolbox [18].

The effect of tuning the filter with respect to the vertices of

interest has been demonstrated in simulation [16], but here we

demonstrate application to the well-studied period of scientific

innovation described in Section IV: we optimize the filter

applied to the coauthorship graph from 1969 to 1980. As

demonstrated in Fig. 1, the impact is extremely significant.

Within each plot, there is one curve for each vertex in the

subgraph of interest. In each case, the eigenvectors associated

with the largest 20 (nonnegative) eigenvalues were computed,

with smaller indices corresponding to larger eigenvalues. The

values of the plots are the components of the (unit-normalized)

eigenvectors that are associated with the subgraph vertices.

Without any knowledge of truth, one may assume that simply

averaging over time would be a reasonable approach, or that

integrating using a ramp filter (where the weight on each

successive time step increases in a linear fashion) would

detect interesting subgraphs, given that this would emphasize

emerging behavior. Using these strategies, as shown in the

figure, there is only one vertex that is particularly strong within

the eigenvectors with the largest eigenvalues. Using a method

that considers the spectral norm of the subgraph at each point

in time (i.e., using weights corresponding to the instantaneous

power of the foreground) provides some additional benefit,

as a few additional vertices stand out more prominently in

eigenvector 14. Using a filter that is optimized via the tensor

decomposition, on the other hand, brings out several more

vertices. When this filter is applied, nine vertices from the

subgraph stand out significantly in eigenvector four. Looking

back at the data used to optimize the graph (i.e., the authors

citing the seminal BD paper), these nine vertices comprise the

largest connected component in any given year, and in fact

form a clique (a graph with all possible edges) in 1977. Two

of the authors in this cluster are also part of a larger clique

with nine other authors in the background, who also stand out

in the same eigenvector. This is a significant finding: the most

interconnected that authors citing the BD paper ever become

in a given year, as well as other close collaborators. Without

this temporal integration technique, the subgraph would not

stand out from the background within this low-dimensional

space. We will focus on this subgraph for the remainder of

the experiments.

B. Data Corruption

In many applications, the datasets from which the graphs are

derived are inherently incomplete or noisy. When forming the

graph, these errors can have a significant impact on detection

performance. Interference or noise can lead to incorrect or

missing edges. Clerical errors can lead to an edge being

switched from one vertex to another. And data are frequently

sampled from a population, giving an inherently incomplete

view of the individual interactions. All of these factors can

significantly hinder performance of detection algorithms.

The impact of network uncertainty on subgraph detection

has been of interest in recent years [19], [20]. In this paper,

we consider the impact of two of the corruption mechanisms

from [20] on detection of the subgraph pulled out of the

noise in Section V-A. One mechanism is a simple missing

data model, in which each edge that exists in the true graph

exists in the observed graph with equal probability. As noted in

[20], this mechanism reduces the power of random background

behavior more slowly than it reduces the power of clusters that

stand out in the eigenspace. This is a consequence of Wigner’s

semicircle law. Considering an Erdős–Rényi random graph—
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Fig. 1. Projections of subgraph vertices onto principal eigenvectors with various temporal integration techniques. Within the space of the principal eigenvectors,
only one vertex is particularly prominent when using equal weights (top left), linearly increasing weights (top right), or weights determines by eigenvalues
(bottom left). Only when an optimized filter is applied (bottom right) do a substantial number of subgraph vertices become prominent in the eigenspace.

where all possible edges are equally probable—the range of

eigenvalues is proportional to the standard deviation of the

edge presence probability,
√

p(1− p). For sparse graphs, p
will be small and thus changing p will change the largest

eigenvalues by approximately
√
p. Meanwhile, the subgraph

that does not fit the background model will have its spectral

norm reduced by a factor of p, reducing the signal-to-noise

ratio and making the detection problem more difficult. As

shown in [20], this phenomenon also occurs in more realistic

models that incorporate arbitrary degree structure.

The other corruption mechanism we consider is an edge-

flipping mechanism, where there is a random model for data

corruption based on vertex degree. For each vertex in the

graph, we assume that the number of errors is proportional to

the number of edges the vertex has. Similarly to the Chung–Lu

model, we assign a weight wi to vertex vi, where

wi =
α

√

∑N

j=1 kj

ki.

The probability of an edge error between vertices vi and vj
is then pcorrij = wiwj . If there is an edge in the true graph

between these two vertices, then it will not be observed with

probability pcorrij , and if there is no such edge, then this is the

probability with which an edge will be incorrectly observed.

The scalar α controls the overall number of errors. In this

paper, the corruption is focused on those vertices—in the

entire graph, including the subgraph of interest—that are most

prominent in the principal eigenspace for the true graph. This

concentrates the effects of the corruption on the portion of the

graph that we analyze, to better demonstrate the impact of this

mechanism on eigenvector analysis.

A typical example of the impact of these data corruption

mechanisms on subgraph detection ability is illustrated in

Fig. 2. Each scatter plot in the figure is created using the two

eigenvectors (among the principal 10) that most prominently

feature the subgraph vertices. The nine-vertex clique from

the data of interest, and the nine other close collaborators,

clearly stand out in the fourth eigenvector when the graph

is uncorrupted. For missing data, we consider a case where

only 15% of the edges are observed. In the plotted instance,

the subgraph vertices were most prominent in the eighth and

ninth eigenvectors. While some of the vertices still stand out

662



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−0.1

0

0.1

0.2

0.3

Eigenvector 4

E
ig

e
n

v
e
c
to

r 
5

True Graph

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

Eigenvector 8

E
ig

e
n

v
e
c
to

r 
9

Missing Data

−0.3 −0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

0.3

Eigenvector 5

E
ig

e
n

v
e
c
to

r 
6

Degree−Based Corruption

Fig. 2. Scatter plots emphasizing the subgraph from the known period of innovation. Background vertices are in blue, while the nine-vertex clique and its
close collaborators are in red. When working with the true graph (left), the vertices all stand out in the fourth eigenvector. When only observing 15% of
the edges, the subgraph partially stands out in the eighth and ninth eigenvectors, but many vertices are buried in the background (center). The degree-based
corruption method similarly has a few vertices standing out in the 5th and 6th eigenvectors, but many of them are overpowered by background noise.

in this space, most of them are subsumed by other activity, and

many vertices are very close to the origin. The degree-based

corruption model (where about half of the observed vertices

are errors) has a different effect on performance, but the result

is similar. In the case plotted in the figure, the subgraph

vertices stand out the most in the 5th and 6th eigenvectors.

The background is much noisier due to the extra activity, and

many of the subgraph vertices are buried within the noise. In

both of these cases, the loss in power will reduce detection

performance.

C. Fusion of Corrupted Data

While the medium through which we observe a network

can create artifacts that hinder detection performance, it will

sometimes be possible to get multiple “looks” at the data. If the

error mechanisms are not correlated, it is possible to use the

diversity of the measurement domains to recover performance.

As alluded to in [20], this can be done via a Bayesian fusion

method or by weighting the individual observations based on

the level of trust in the source.

At relatively small scale, a Bayesian fusion method can be

quite powerful for performance recovery. With the two cor-

ruption mechanisms considered in this paper, we can estimate

that an edge exists in the latent graph in the following way.

Let pprior be the prior probability of edge existence in the

latent graph, and let aij , amiss
ij , and acorrij be the ijth entry in

the adjacency matrix of the true graph, the graph with missing

data, and the graph with degree-based corruption, respectively.

If amiss
ij is 1, then aij is 1, since edges can only be taken away

with the missing data mechanism. If amiss
ij is zero, then the

probability that the edge exists in the true graph is

P [aij = 1] =















(1−pobs)pcorr
ij pprior

(1−pobs)pcorr
ij

+(1−pcorr
ij )

if acorr = 0

(1−pobs)(1−pcorr
ij )pprior

(1−pobs)(1−pcorr
ij )+pcorr

ij

if acorr = 1.
(2)

While fusing in this fashion has the potential to completely

recover detection performance—as demonstrated in simulation

in [20]—the posterior expected value of A will be dense, and

may not have the sort of exploitable structure (e.g., low-rank

structure) that enables efficient eigenvector analysis at scale.

In practice, it may also be difficult to estimate the model

parameters, and there may be mismatch with the true model.

We therefore focus on a method for fusing based on a weighted

sum.

When given the two observed graphs, they will be fused as

follows. For each pair of vertices, a fused observation will be

computed as

âij =
1

1 + exp
(

−β0 − β1amiss
ij − β2acorrij

) . (3)

Here the β parameters are the weights of the corrupted obser-

vations. We are operating in the context of logistic regression,

where a linear function of the observations is mapped to an

expected value via the logistic function. Within this context,

values for âij only need to be computed if an edge exists

between vi and vj in one of the observations. Otherwise,

the probability is assumed to be 1/(1 + e−β0), which can

be accounted for by adding a rank-1 matrix to the fused

observations.

Fusing the observations in this way improves the repre-

sentation of our subgraph of interest in the eigenspace, as

demonstrated in Fig. 3. Under the same corruption scenarios as

in Section V-B, we measured the “power” of the subgraph in

the first 10 eigenvectors. Let U be the N × 10 matrix where

each column is an eigenvector of the integrated modularity

matrix for the observed (or fused) graph, and let x ∈ {0, 1}N
be an indicator vector for the subgraph that is emphasized by

the optimized filter. We measure the power of the subgraph

in this space as ‖UTx‖22, i.e., the L2 norm squared of the or-

thogonal projection into the space spanned by the 10 principal

eigenvectors. Using the optimized filter, this will be reduced by

the corruption mechanisms, but can be recovered by fusing the

two observations. Let Ptrue be the power when U is computed

from the true graph, and we will compare the power P from

other cases to this quantity. Fig. 3 provides cumulative density

functions (CDF) demonstrating the probability that a corrupted

(or fused) observation will provide the signal power within

its principal eigenspace, as determined via a Monte Carlo

simulation. As shown in the figure, working with only 15% of

663



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Power Threshold t

P
ro

b
(P

/P
tr

u
e
≤
 t

)
Subgraph Representation in Eigenspace

 

 

Missing Edges

Degree−Based Corruption

Equal Weights

Logistic Weights

Fig. 3. Cumulative density functions for the signal power maintained in
various scenarios. The power level considered is the norm squared of the
projection of the indicator vector for the subgraph. The horizontal axis is the
ratio of this power level for observed or fused data to the same quantity with
the true (uncorrupted) graph.

the edges can significantly reduce the power of the subgraph

in the top eigenvectors: about half the time less than 50% of

the power remains. The degree-based corruption mechanism in

which about half of the observations are incorrect also reduces

performance, but not usually as drastically, maintaining, on

average, over 62% of the power. By simply averaging the two

observations together, we shift the CDF by over 10%. Finally,

by using the fusion technique of (3), we improve upon this

result, increasing the signal power maintained by an additional

5%.

VI. CONCLUSION

This paper investigates the use of temporal and multi-source

integration to enable detection of known innovation patterns

in scientific literature. Dynamic collaboration networks are

analyzed with the signal processing for graphs framework,

focused principally on eigenspace analysis of graph residuals

integrated over time. The temporal weights are optimized with

respect to a known innovation period surrounding the Britten-

Davidson model for gene regulation, specifically among au-

thors that cite the seminal paper on the model. We demonstrate

that this technique boosts the power of the largest connected

component of this subset of the data to a point where it

can be detected within a low-dimensional projection of the

data. Using two simple error models for graph data, we show

the negative impact of working with a corrupted graph, with

the detected subgraph having its power reduced while being

subsumed by other activity in the principal eigenspace. Using

a simple weighting procedure, we demonstrate that we can

recover the power of the subgraph within this space.

There are numerous potential areas for future development.

One interesting area would be determining an approximation

to the Bayesian fusion method in (2) that would allow the

technique to scale to very large graphs. Another possibility

would be to study optimization of filter coefficients when there

are missing data in the training set, as in [21]. At a higher level,

it would be interesting to determine what other subgraphs can

be emphasized by this technique, and to find what subgraphs

are detected using the same filters in more recent publication

data. A comparative study of which filters detect patterns of

innovation in different scientific fields might also contribute

to a better understanding of the structure of different scientific

practices.
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