
Fusing Social Network Data with Hard Data

T. Abirami, Ehsan Taghavi,

R. Tharmarasa and T. Kirubarajan

McMaster University

Hamilton, Ontario, Canada

{thirua2, taghave, tharman, kiruba}@mcmaster.ca

Anne-Claire Boury-Brisset

Defence Research and Development Canada

Valcartier, Quebec, Canada

anne-claire.boury-brisset@drdc-rddc.gc.ca

Abstract—Social networking sites such as Twitter, Facebook
and Flickr play an important role in disseminating breaking
news about natural disasters, terrorist attacks and other events.
They serve as sources of first-hand information to deliver
instantaneous news to the masses since millions of users visit
these sites to post and read news items regularly. Hence, by
exploring efficient mathematical techniques like Dempster–
Shafer theory and Modified Dempster’s rule of combination,
we can process large amounts of data from these sites to
extract useful information in a timely manner. In surveillance
related applications, the objective of processing voluminous
social network data is to predict events like revolutions and
terrorist attacks before they unfold. By fusing the soft and often
unreliable data from these sites with hard and more reliable data
from sensors like radar and the Automatic Identification System
(AIS), we can improve our event prediction capability. In this
paper, we present a class of algorithms to fuse hard sensor data
with soft social network data (tweets) in an effective manner.
Preliminary results using real AIS data are also presented.

Index terms: Dempster–Shafer belief theory, Random finite
set theory, Modified Dempster’s rule of combination, soft and
hard data fusion, airborne surveillance of surface targets, event
prediction, social data analysis

I. INTRODUCTION

In defence, military or homeland security systems in order

to track and predict events, and to track mobile target states,

the decision makers need accurate data. Due to limited fields-

of-view and obscuration, conventional prediction and tracking

methods [2], [3] that rely exclusively on hard sensors (e.g.,

radar, sonar, video) can make erroneous decisions. On the

other hand, algorithms that use only soft data (e.g., human

input, social network data) can be ineffective due to conflicting

unreliable information. In some cases, the unreliability of soft

data might be intentional. Social Network (SN) data is one

form of soft data that has many advantages: it is voluntary,

voluminous, instantaneous and evolving. As a result, it is a

rich source of data that is contributed over time by a large

number of identifiable users, who are often close to unfolding

events of interest, at virtually no cost to us. This has spurred

great interest in mining social data for information extraction

and exploitation. Specifically, the fusion of soft and hard data

is of significant interest in many surveillance systems. This

indeed provides the motivation for the proposed work.

However, there are many challenges in the fusion of soft

data with hard data since they are often incompatible with

each other and the computational load of processing large

amounts of social network data for fusion can be prohibitive.

The incompatibility stems from the fact that soft data is

qualitative while hard data is quantitative [19]. We need

both qualitative and quantitative information to predict events

or to estimate target states precisely and with real-time

capability. Such fusion is of interest in asymmetric military

operations where human–generated data are shown to be of

crucial importance [1]. Recent developments in the literature

on human–centered information fusion [9], [23] as well as

several preliminary works on soft/hard fusion are part of

a trend towards more general data fusion frameworks [10]

where both human (soft) and non–human (hard) data can be

processed efficiently to yield better results. To develop an

effective soft and hard data fusion system, one has to deploy

an effective mathematical framework to fuse data and infer

information while appropriately factoring in uncertainties.

Commonly used frameworks for fusion are probabilistic,

Dempster-Shafer, fuzzy set [25], possibilistic [5] and rough

set theory [14]. This paper presents a novel approach for

fusing soft social network data with hard data. Specifically,

Twitter feeds are used as the source of soft data while

Automatic Identification System (AIS) [12], [20] reports are

used as hard data. The context of the motivating problem is

the prediction of events like revolutions and terrorist attacks

using social network data along with airborne surveillance

data. The proposed work relies on the Modified Dempster’s

Rule of Combination (MDRC) [16] because of its simplicity

and its ability to resolve conflicts during fusion.

Automatic Identification System provides a way for ships

to electronically send and receive data, which includes vessel

identification, position, speed and coarse with vessel traffic

service stations as well as with other ships. AIS uses the

Global Positioning System (GPS) [18] data over digital Very

High Frequency (VHF) radio communication equipment to

electronically exchange location as well as other information.

AIS is generally used by marine vessels along with the

Vessel Traffic Service (VTS) to monitor vessel location and

movement, which is primarily needed for vessel traffic control,

collision avoidance and other safety applications. AIS has

previously been used in many applications including fusion

with radar data, anomaly detection (see Figure 1) and traffic

pattern analysis. We chose AIS as the hard data source because

of our focus on airborne surveillance of surface targets as well
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as its ubiquity and versatility. A typical AIS functionality as

shown in Figure 2 uses an array of data collection aircraft

and satellites as well as coastal stations to collect information

about the movement of vessels.

Fig. 1: Anomaly detection based on automatic identification

system data (courtesy of Google)

Fig. 2: Automatic identification system functionality

In the following sections, the proposed framework for soft

and hard fusion with examples and implementation details is

discussed. Section II presents the basic fusion framework using

Dempster–Shafer Theory. Section III presents experimental

results and discussions. Conclusions are presented in Section

IV.

II. SOFT/HARD DATA FUSION USING

DEMPSTER–SHAFER THEORY

A. Proposed approach

The proposed approach follows a hierarchy in which the

data from social networking sites such as Twitter is initially

processed with a set of keywords as shown in Figure 3. The

output of such a processing block is the refined information

according to the list of keywords. The pre–filtered data is

then sent to another block to be fused with AIS data. As a

fundamental step, it is necessary to address the uncertainty in

the soft data in order to convert it into a quantitative value.

This step is crucial as the soft data is going to be compared

and fused with the output of hard sensors. In order to process

large amounts of soft/hard data efficiently, an efficient method

must be utilized. Here we proposed an efficient method to fuse

the social network data with AIS data/hard data. The method

that we follow in this paper starts with processing the SN data

with a set of keywords assuming that the keywords are defined

based on some evidence (see Figure 3). After extraction,

there will be uncertainties and conflicts in the collected data.

To remove the conflicts and uncertainties we apply Fuzzy

Dempster-Shafer Belief Mass Assignment to the data. Then,

Modified Dempster’s Rule of Combination (MDRC) [11], [24]

is used to address the issue of fusing large amount of SN/Soft

data with AIS/Hard data.

Social 

network data 

that 

includes 

message, 

date, time 

and ID

Set of predefined 

keywords
Output

Fusion of 

Twitter and 

AIS data

(using hard 

and soft data 

fusion 

techniques)

AIS data

Processing 

Twitter data 

and 

extracting 

the required 

information

Fig. 3: Block diagram of data flow in soft/hard data fusion

B. Dempster–Shafer theory

Here we consider a system with a finite set of possible

states. These states are called the frame of discernment (also

called state space) [4] in which the event under the observation

can take place [1], [21]. A set of all possible outcomes of

an event is formed by the Frame of Discernment (FoD). A

single element of the newly formed set by FoD is called the

proposition. If Φ be a set of disjoint states which forms the

FoD, then the power set can be defined as 2Φ. This is the set

of all subsets of Φ including the null set {∅}. Furthermore, the

theory of evidence assigns a belief mass [7] to each element

of the power set. The Belief Mass Assignment (BMA) assigns

values m(ξ) for all subsets ξ ∈ 2Φ such that

m (ξ) ≥ 0 (1)

m (∅) = 0 (2)
∑

ξ∈2Φ

m (ξ) = 1 (3)
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The belief mass that has been assigned to the proposition ξ can

be treated as the certainty of the observer in the correctness of

ξ. The actual state of the system is represented by the elements

of the power set concerning its propositions, by containing all

and only the states in which the proposition is true. Dempster–

Shafer theory belief function is then the total belief that the

proposition is true [17]. The belief function b(·) of a particular

proposition ξ is given by

b(ξ) =
∑

θ⊆ξ

m(θ), ξ, θ ∈ 2Φ (4)

C. Uncertain measurements

Handling the raw data from social network sites comes with

a lot of uncertainties and conflicts in the data. In order to

deal with the uncertain measurements we need to use fuzzy

belief mass assignment to assign values to the measurements.

Assuming that we are giving BMA based on subsets ω with

associated values m(ω) on the set of all the subsets £, that is

1) m(ω) ≥ 0 is a function defined on all closed subsets

ω ⊆ £

2) m(ω) ≥ 0 for all ω

3) m(ω) 6= 0 for finite number of ω (which are focal

subsets of m)

then following is true
∑

ω⊆£

m(ω) = 1 (5)

where the summation is well defined because of the third

property. The function m(ω) is known as the Dempster–

Shafer measurement. Each ω is a hypothesis of the observed

measurement z. Let {ω1, ω2, . . . , ωk} be the focal subsets of

m, where k is the last focal subset. One of the hypotheses

constrains z to be in ω1, i.e., z ∈ ω1 with the wight associated

it as m(ω1). The other hypothesis can be constraining z to

be in ω2, i.e., z ∈ ω2 with the wight ω2 and so on. If we

know nothing about the measurement z, then the weight of the

hypothesis associated with that is the total value of m(£)(the

null hypothesis).

A fuzzy/vague measurement is thus an uncertain mea-

surement whose focal subsets are linearly ordered under set

theoretic inclusion (nested). A Fuzzy Dempster–Shafer Belief

Mass Assignment (FBMA) m(ψ) is defined by the same

properties as normal BMA [17]. As such the following is true
∑

ψ

m(ψ) = 1 (6)

The logical meaning of m(ψ) can be given by the fact that

each ψ is a fuzzy hypothesis about the identity of z [17].

Let {ψ1, . . . , ψk} be the focal fuzzy subsets of m(·) and

assume that they are finite–level. It is unclear that z is or

is not constrained by a particular subset ψ1,1, therefore we

must treat ψ1,1 as initial guess about the meaning of the first

fuzzy hypothesis ψ1, where ψi,j is jth subset of ith focal

fuzzy subset ψi. By sequencing these into nested sequence

{ψ1,1 ⊆ ... ⊆ ψ1,k}, we can further elaborate the nature of

the uncertainty involved in the hypothesis ψ1. This defines the

finite–level fuzzy membership function ψ1. However ψ1 need

not to be finite–level. Therefore we can interpret the remaining

focal set {ψ2, . . . , ψk} in the same manner, where k is the last

subset of m.

Consider we have FDS measurements m,m′. Then the FDS

combination of m and m′ is given by [16, pp. 144, Eq. (4.129)]

(m ∗m′) (ψ′′) = 0 if ψ′′ = 0 (7)

and if ψ′′ 6= 0, then

(m ∗m′) (ψ′′) = αFDS (m ∗m′)
−1

×
∑

ψ·ψ′=ψ′′

m (ψ) ·m (ψ′) (8)

where αFDS(m,m
′) 6= 0 and the FDS agreement of m,m′ is

αFDS (m ∗m′) =
∑

ψ·ψ′ 6=0

m (ψ) ·m (ψ′) (9)

Here, (ψ · ψ′) , ψ(z) · ψ′(z) and the event ψ 6= 0 means

ψ(z) 6= 0 for at least one z.

D. Modified Dempster’s rule of combination

In this subsection we explain the data fusion using Modified

Dempster’s Rule of Combination (MDRC). When actual sub-

sets are the same as the focal subsets, then FDS combination

reduces to Dempster’s rule of combination [16] as

(m ∗m′)(ω′′) = αFDS(m ∗m′)−1

×
∑

ω∩ω′=ω′′

m(ω) ·m′(ω′) (10)

where Dempster–Shafer agreement is

αDS(m ∗m′) =
∑

ω∩ω′=ω′′

m(ω) ·m′(ω′) (11)

The quantity 1− αDS(m ∗m′) is the conflict between m and

m′. If in addition the focal subsets of m are singletons [13],

then

(m ∗m′)(ω) ∝ m(ω) ·m′(ω) (12)

If m and m′ are interpreted as posterior probability distribu-

tions, then this is a special case of Bayes parallel combination

[8]. As result we have

(m ∗m′)(ω) ∝ m(ω) ·m′(ω) · q(ω)−1 (13)

In (13) we assume that the two posterior distributions p1(ω)
and p2(ω) are independent, they are conditioned on indepen-

dent information and share common prior uniform distribution

q(ω). Consequently, (8) can be rewritten as

(m ∗m′)(ψ′′) = αFDS(m ∗m′)−1

×
∑

ψ·ψ′=ψ′′

m(ψ) ·m(ψ′)αq(ω, ω
′) (14)
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their associated probabilities  from disks and 
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longitude, other details of 

vessels)

MDRC (to remove 

the conflicts)

Fig. 4: Proposed hard/soft data fusion algorithm block diagram

providing that the modified agreement is non–zero and defined

as

α = αq(m,m
′) ,

∑

m,m′

m(ω) ·m′(ω′)

×

[

q(ω ∩ ω′)

q(ω) · q(ω′)

] (15)

where q(ω) ,
∑

ν∈ω q(ν). If m and m′ are BMA’s [15] whose

only focal sets are singletons, then

(m ∗m′)(ν) ∝ m(ν) ·m′(ν) · q(ν)−1 (16)

The advantage of using MDRC over Dempster’s Rule of Com-

bination(DRC) is its ability to resolve conflicts. For example,

assume that a marine vessel potentially containing terrorists

is approaching a coastline that has three cities, namely, A, B

and C. AIS data predicts that the vessel has 99% chance of

attacking city A and 1% chance of attacking city B but Social

Network data such as Twitter trends suggest that there is 99%

chance of an attack in city C and 1% in B. This situation is

called a conflict, as it has conflicting information. A simple

DRC fusion for this situation can be counter-intuitive whereas

MDRC can provide a reasonable prediction. The numerical

quantification of this situation is presented in Table I.

TABLE I: Advantage of MDRC over DRC

City AIS data SN data
DRC

fusion data

MDRC

fusion data

A 0.9900 0 0 0.4135

B 0.0100 0.0100 1.0000 0.1730

C 0 0.9900 0 0.4135

E. Hard/soft data fusion algorithm

Figure 4 illustrates the flow of the proposed approach for

hard/soft data fusion. First, the raw data from social network

is analyzed based on their location, content and network.

This step gives the opportunity to have access to the refined

data from social network for further analysis. Next, important

hashtags, name of places and number of the repeats are

extracted from the refined data and stored as a list.

It is of special interest to combine the list from social

network data with hard data. Here we assume that we have

access to AIS data, which consist of all the details about the

vessels (name, latitude, longitude, speed, coarse, etc.). This

AIS data needs to be processed using the anomaly detection

algorithms to get the required information to be fused. By

doing so a similar refined data list similar to social network

data can be created based on AIS data.

At this stage we created similar materials from two different

data sources. To combine all the information together and get

the best decision out of it, we propose to, for each of the

entities in the final combined list, put a disk center on the

related coordinates of the problem. This way we can assign

weights to those centers by using a belief mass assignment

function. It is only after using BMA that we can send the

sets, their associated probabilities and disk information to a

Dempster–Shafer function to create all possible subsets and

their associated probabilities. Finally, by applying MDRC to

the output of the Dempster–Shafer function we can remove

the conflicts between the information carried by the subsets

and form the final list of subsets and probabilities to make

our final decision (figure 4)

III. SIMULATIONS AND DISCUSSIONS

Marine security is a growing concern [6]. There are various

types of threats that can enter a country through its water-

ways. For instance, a small water craft can be turned into a

weapon and destroy the navy or to pirate a ship. Increased

surveillance of sea is needed to protect countries from these

types of threats. Presently, AIS signal and anomaly detection

algorithms are used to filter the unusual behavior in maritime

security systems. There are various types of sensors that are

engaged in maritime security such as high frequency radar,

active and passive sonar, and synthetic aperture radar. For
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example, Canada’s CP-140 Aurora platform consists of many

sensors that are used to collect data for the surveillance of

surface targets [22].

In airborne surveillance of surface targets, sensor perfor-

mance and data fusion are two major research areas. In this pa-

per we proposed a novel approach of using the social network

data (soft data) along with AIS or other airborne surveillance

data sensors data (hard data) by fusing them to get a better

estimation for tracking surface targets and also to increase the

maritime security. In order to understand how the proposed

algorithm works under different circumstances, we investigate

two different scenarios in the following subsections.

A. Scenario 1

In this scenario we assume that data is collected from a

social networking website (Twitter). Figure 5 shows the tweets

in an area with green and red dots. Also, we consider that the

red dots are the data is filtered. The threats have been identified

and sorted in a list. Overall, l the total data collected about a

particular threat ℜ for our specific example is listed as follows:

• Data from sensors covering Mumbai region

• Attack on Mumbai

• Firing in Navi Mumbai

• Could be a blast in Pune

The data that we collected is the combination of both

hard data from sensors and uncertain vague reports from

social networking sites. This is why we first need to form

the hypotheses. To form the first hypothesis, we consider a

probabilistic area as a circular disk equal to ω1 centered at

Mumbai. The second hypothesis ω2 be a closed disk centered

at Mumbai. Third hypothesis ω3 is a closed disk centered

at Navi Mumbai. The fourth hypothesis ω4 is a closed disk

centered at Pune and we model it as the null hypothesis. If we

have more data about some other threats going to happen in

other places, we can place the disks as {ω5, . . . , ωT } where

T is the total number of propositions.

Now we can model the uncertain hard and soft data using

these hypotheses by assigning weights ̺T ≥ . . . ≥ ̺3 ≥ ̺2 ≥
̺1 ≥ ̺0 with these four hypotheses such that

T
∑

i=0

̺i = 1 (17)

Due to the vagueness in data, we cannot capture the place or

situation correctly. Hence, we can replace each ωi with the

function of ψi(z), that is the model for ith hypothesis, with

probability ̺i which represents the correct hypothesis. Then

the weights ̺1, . . . ̺T along with the set {ψ1, . . . , ψT } give

the measurement that has been collected, where T is the last

subset. By using this, we can define a random subset

Ξℜ = z|S ≤ ψI(z) (18)

where 1 ≤ I ≤ T is the random integer defined by

Pr(I = i) = ̺i assuming S and I are independent. This

is the random set representation of the threat ℜ. By having

the set representation, we can apply the MDRC fusion rule to

fuse the data and get the accurate position.

B. Scenario 2

Consider anomalous vessel movements in a maritime

environment. The AIS data provides all details such as the

name, latitude, longitude, Speed Over Ground (SOG), Course

Over Ground (COG), base station and destination of all

the vessels in a particular maritime region. By applying the

anomaly detection algorithms to AIS data we can obtain the

details of the anomalous vessels. We propose to use Twitter

for getting our SN data to fuse with AIS data and find the

anomaly of vessels by fusing them.

Consider country “A” receiving an alert regarding a possible

terrorist attack. In this scenario we again consider taking

SN data from Twitter. Tweets from a particular area of

country “A” are collected through Twitter Application Program

Interface (API) and processed using the JAVA programming

language. According to the weights given to the propositions

(m1, . . . ,mn) of keywords, we can form the subsets in order

to apply the Dempster–Shafer theory. After that, the MDRC

theory is applied to reject the conflicts between the proposi-

tions and also to combine them together.

On the other hand, we can take the latitude and longitude

data of vessels from AIS platform that are then converted

into X and Y coordinate to be fused with the probabilistic

measures that we get from SN data. Now that we have both

SN and AIS data of a particular area over time, we can further

analyze and fuse hard and soft collected data by our proposed

fusion algorithm as shown in Figure 4.

Table II shows the probability of finding the threat for a

city by adding SN data to AIS data. For the purpose of this

simulation, AIS data and SN data for 6 cities are randomly

sampled and fused using (14).

TABLE II: Probability of Threat

Cities AIS data SN data Fused data

1 0.2096 0.2340 0.0749

2 0.3116 0.1737 0.0869

3 0.4093 0.5033 0.4125

4 0.6365 0.4069 0.5458

5 0.6582 0.9553 0.9763

6 0.8853 0.9548 0.9939

Table II shows probability of threat to a particular city with

AIS data, SN data, and fused data. It shows that probability

of finding the city associated with threat more effectively after

adding SN data to AIS data. Figure 6 is the fusion simulation

for 1000 sample cities using random probability values of hard

and soft data (discrete data). In this figure we can see that

when both AIS and SN prediction of threat is low (less than

0.45) the fusion predicts the threat to be lower than its parent

data. On the other hand, if both AIS and SN predicts higher

threat (greater than 0.7) then the fusion predicts even higher

threats. These predictions are consistent with the analysis in

[17]. We also performed a sample fusion of hard and soft data
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Fig. 5: Ship movements and tweets in Mumbai area (courtesy of Google Earth)

Fig. 6: Trend Analysis of thousand sample cities

that varies with time (continuous data). For this study, the AIS

and SN data are arbitrarily assumed to be a sinusoidal function

and they are fed into the fusion algorithm. The resulting fusion

data along with the assumed AIS and SN data are presented

in Figure 7.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a novel approach for predicting events and

tracking vessels by fusing soft (e.g., Twitter) data with hard

Fig. 7: The time evolution fused data over a day for a sample

city using assumed AIS and SN data

(e.g., AIS) data to improve the prediction capability was pro-

posed. This framework was demonstrated on a representative

airborne surface surveillance environment and the proposed

framework can be used for other surveillance applications as

well. The novelty of the work was in the use of Modified

Dempster’s Rule of Combination to efficiently process large

amounts of social network data along with large-scale AIS
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data and the preliminary results were presented. We plan to

extend the work to consider more realistic scenarios with even

larger data sets. In addition, theoretical performance quantifi-

cation and computational complexity analysis are needed to

be performed for assessing its efficiency.
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