
Secure and Resilient Distributed Machine Learning Under Adversarial Environments

Rui Zhang and Quanyan Zhu

Abstract—With a large number of sensors and control units in
networked systems, the decentralized computing algorithms play
a key role in scalable and efficient data processing for detection
and estimation. The well-known algorithms are vulnerable to
adversaries who can modify and generate data to deceive the
system to misclassify or misestimate the information from the
distributed data processing. This work aims to develop secure,
resilient and distributed machine learning algorithms under ad-
versarial environment. We establish a game-theoretic framework
to capture the conflicting interests between the adversary and a
set of distributed data processing units. The Nash equilibrium of
the game allows predicting the outcome of learning algorithms
in adversarial environment, and enhancing the resilience of the
machine learning through dynamic distributed learning algo-
rithms. We use Spambase Dataset to illustrate and corroborate
our results.

I. INTRODUCTION

Machine learning algorithms have been widely used in

multiple application domains including spam filtering, pattern

recognition, search engines and multimedia. However, well-

known algorithms such as Kalman filtering [1], SVMs [2] and

PCAs [3], are generally vulnerable to adversaries who can

modify and generate data to deceive the system to misclas-

sify or misestimate the information from the distributed data

processing. For example, an attacker can strategically craft

training data for the spam filter to increase its misclassification

rates and evade spam detectors [4]. In addition, an attacker can

change the measurement of a subset of sensors to mislead the

fusion center to a wrong conclusion of the environment [5] or

stealthily bypass the alert system [6].

The security of the machine learning algorithms will be ex-

acerbated when the computations become decentralized across

a large-scale network of distributed sensor or control units. An

adversary can launch a number of cyber attacks, such as node

capture [7] or replication attack [8], to compromise and take

over nodes in the network. Despite the fact that distributed

computation provides scalable and efficient data processing,

the vulnerability of machine learning algorithms on each node

will lead to unanticipated consequence at a larger scale.

Hence, it is imperative to address these security concerns by

developing secure and resilient distributed learning algorithms.

In this paper, we focus on a class of support vector machines

algorithms, and aim to establish a game-theoretic framework

to capture the conflicting interests between the adversary

and a set of distributed data processing units. In the two-

person nonzero-sum game, the learner aims to decentralize the

computations over a network of nodes and minimize the error

with an effort of misclassification, while an attacker seeks to

R. Zhang and Q. Zhu are with Department of Electrical and Com-
puter Engineering, New York University, Brooklyn, NY, 11201 E-
mail:{rz885,qz494}@nyu.edu

strategically modify the training data and maximize the error

constrained by its computational capabilities.

The game formulation of the security problem enables

a formal analysis of the impact of the machine learning

algorithm in adversarial environment. The Nash equilibrium

of the game allows the prediction of the outcome, and yields

optimal response strategies to the adversary behaviors. The

game framework also provides a theoretic basis for developing

dynamic learning algorithms that will enhance the security and

the resilience of distributed SVMs.

Our work intersects the research areas on game theory, cyber

security and machine learning. This research is closely related

to the distributed support vector machines proposed in [9].

We leverage a similar consensus-based approach to develop

decentralized machine learning algorithms. Our work is also

related to a recent body of work on the security of machine

learning, e.g. [10]–[13]. In [10], Barreno et. al. presents a

taxonomy of attacks on machine learning algorithms. In [13],

Liu et. al. introduces a Stackelberg game to model interaction

between the adversary and the learner. The major focus on

their work is on centralized machine learning tools. In this

work, we extend the security framework to a distributed

framework in which the security issue is aggravated by the

distributed nature of the system, and the constraints from the

network topology.

The major contribution of this work can be summarized as

follows:

1) We capture the attacker’s objective and constrained

capabilities in a game-theoretic framework, and develop

a non-zero-sum game to model the strategic interactions

between an attacker and a learner with a distributed set

of nodes.

2) We fully characterize the Nash equilibrium by showing

the strategic equivalence between the original nonzero-

sum game and a zero-sum game.

3) We develop secure and resilient distributed algorithms

based on alternating direction method of multipliers

(ADMoM) [15]. Each node communicates with its

neighboring nodes, and updates its decision strategically

in response to adversarial environment.

4) We demonstrate that network topology plays an impor-

tant role in resilience to adversary behaviors. Networks

with less nodes and higher connectivity are shown to be

more resilient.

The rest of this paper is organized as follows. Section 2

outlines the distributed support vector designs. In Section 3,

we establish game-theoretic models for the learner and the

attacker. Section 4 deals with the distributed and dynamic

algorithms for the learner and the attacker. Finally, Section

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 644

5 and Section 6 present numerical results and concluding

remarks.

A. Summary of Notations

Notions in this paper are summarized as follows. Boldface

letters are used for matrices (column vectors); (·)T denotes

matrix and vector transposition; [·]vu denotes the vu-th entry

of a matrix; diag(x) is the diagonal matrix with x on its main

diagonal; ‖ · ‖ is the norm of the matrix or vector; U denotes

the action set which is used by the attacker.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we present a two-player machine learning

game in a distributed network involving a learner and an

attacker to capture the strategic interactions between them.

The network is modeled by an undirected graph G(V, E)
with V := {1, ..., V } representing the set of nodes, and E
representing the set of links between nodes. Node v ∈ V only

communicates with his neighboring nodes Bv ⊆ V . Note that

without loss of generality, graph G is assumed to be connected;

in other words, any two nodes in graph G are connected

by a path. However, nodes in G do not have to be fully

connected, which means that nodes are not required to directly

connect to all the other nodes in the network. The network can

contain cycles. At every node v ∈ V , a labelled training set

Dv := {(xvn, yvn) : n = 1, ..., Nv} of size Nv is available,

where xvn ∈ R
p represents a p-dimensional pattern and they

are divided into two groups with labels yvn ∈ {+1,−1}.

Examples of a network of distributed nodes are illustrated in

Fig. 1(a). An attacker can compromise a set of nodes in the

network and modify their training dataset. Fig. 1(b) shows two

nodes, 3 and 4, are controlled by the attacker.

(a) Network example without an
attacker

(b) Network example with an at-
tacker

Fig. 1. Network example: There are 7 nodes in this network. Each node
contains a labelled training set Dv := {(xvn, yvn) : n = 1, ..., Nv}. Node
4 can communicate with its 4 neighbors: node 1, 2, 5 and 7. An attacker can
take over a subset of the nodes in the network as seen in (b). The compromised
nodes are marked in red.

The goal of the learner is to design distributed SVM

algorithms for each node in the network based on its lo-

cal training data. To achieve this, the learner aims to find

a maximum-margin linear discriminant function gv(x) =
x
T
w

∗
v+b∗v at every node v ∈ V with the consensus constraints

w1 = w2 = · · · = wV , b1 = b2 = · · · = bV , forcing

all the local variables {w∗
v, b

∗
v} to agree across neighboring

nodes. This approach enables each node to classify any new

input vector x to one of the two classes {+1,−1} without

communicating Dv to other nodes v′ 6= v. Variables w
∗
v and

b∗v of the local discriminant functions gv(x) can be obtained

by solving the following convex optimization problem:

min
{wv,bv,{ξvn}}

1
2

V∑
v=1

‖wv‖
2
2 + V Cl

V∑
v=1

Nv∑
n=1

ξvn

s.t.
yvn(w

T
v xvn + bv) ≥ 1− ξvn, ∀v ∈ V, n = 1, ..., Nv;

ξvn ≥ 0, ∀v ∈ V, n = 1, ..., Nv;
wv = wu, bv = bu, ∀v ∈ V, u ∈ Bv.

(1)

In the above problem, slack variables ξvn account for non-

linearly separable training sets. Cl is a tunable positive scalar

for the learner.

On the other hand, an attacker takes over a set of nodes

with the aim of breaking the training process of learner. We

assume that the attacker has the complete knowledge of the

learner’s problem (1), and he can modify the value xvn of the

node v into x̂vn = xvn − δvn, where δvn ∈ U , and U is the

attacker’s action set which is described in detail in Definition

1 and 2, [14].

Definition 1 An atomic action set U0 ⊆ R
p has the following

two properties.

(I) 0 ∈ U0;
(II) For any w0 ∈ R

p :
max
δ∈U0

[
w

T
0 δ

]
= max

δ′∈U0

[
−w

T
0 δ

′
]
< +∞.

The first property states that the attacker can choose not to

change the value of xvn. The second property states that the

atomic action set is bounded and symmetric. Here, ”bounded”

means that the attacker has the limit on changing xvn. It is

reasonable since changing the value too much will result in the

evident recognition by the learner. In particular, all norm balls

and ellipsoids centered at the origin are atomic action sets.

Furthermore, we further specify a class of sublinear aggregated

action sets for the the attacker, which will be convenient to

characterize the attacker’s behavior.

Definition 2 A set U ⊆ R
p×n is a sublinear aggregated

action set of an atomic action set U0, if U− ⊆ U ⊆ U+,

where

U− ∆
=

n
∪
t=1

U−
t ,U−

t

∆
=

{
(δ1, ..., δn)

∣∣∣∣
δt ∈ U0;
δi = 0, i 6= t.

}
;

U+ ∆
=



(α1δ1, ..., αnδn)

∣∣∣∣∣∣

n∑
i=1

αi = 1;αi ≥ 0,

δi ∈ U0, i = 1, ..., n



.

Figure 2 provides an example of sublinear aggregated action

sets. Without loss of generality, the sublinear aggregated action

set we used in this paper takes the form of

U =

{
(δ1, ..., δn)

∣∣∣∣∣

n∑

i=1

‖δi‖ ≤ Cδ

}

, which has the atomic action set U0 = {δ |‖δ‖ ≤ Cδ }.

645

(a) U− (b) U (c) U+

Fig. 2. Illustration of a sublinear aggregated action set U

For the learner, the learning process is to find the dis-

criminant function which separates the training data into two

classes with less error, and then use the discriminant function

to classify testing data. Since the attacker has the ability to

change the value of original data xvn ∈ X into x̂vn ∈ X̂ ,

the learner will find the discriminant function that separates

data in X̂ more accurate, rather than data in X . As a result,

when using the discriminant function to classify the testing

data x ∈ X , it will be prone to be misclassified.

Since the learner aims at high accuracy, the attacker seeks

to lower the accuracy, we will capture the conflicting goals of

the players in a game-theoretic framework.

III. DISTRIBUTED SUPPORT VECTOR MACHINES WITH

ADVERSARY

Before stating the game problem, we first reformulate the

learner’s problem (1) into an equivalent problem as follows:

min
{wv,bv}

1
2

V∑
v=1

‖wv‖
2

+ V Cl

V∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

s.t. wv = wu, bv = bu, ∀v ∈ V, u ∈ Bv.

(2)

In the above problem, the term
[
1− yvn(w

T
v xvn + bv)

]
+
:=

max[1− yvn(w
T
v xvn + bv), 0] is the hinge loss function,

which captures the constraints yvn(w
T
v xvn + bv) ≥ 1− ξvn

and ξvn ≥ 0 which are related to ξvn in problem (1).

Optimization problem (2) is formed by the learner who

seeks to find the maximum-margin linear discriminant func-

tion. Since an attacker takes over a set of nodes Va :=
{1, ..., Va} and changes xvn into x̂vn = xvn − δvn. We use

Vl = {1, ..., Vl} to represent nodes without the attacker. Note

that, V = Va+Vl and V = Vl∪Va. The behavior of the learner

can be captured by the following optimization problem:

min
{wv,bv}

1
2

V∑
v=1

‖wv‖
2

+ VlCl

Vl∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaCl

Va∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

s.t. wv = wu, bv = bu, ∀v ∈ V, u ∈ Bv.
(3)

By minimizing the objective function in problem (3), the

learner can obtain the optimal variables {wv, bv}, which can

be used to build up the discriminant function to classify the

testing data. The attacker, on the other hand, aims to find

an optimal way to modify the data using variables {δvn} to

maximize the same objective function. The behavior of the

attacker can thus be captured as follows:

max
{δvn}

1
2

V∑
v=1

‖wv‖
2

+ VlCl

Vl∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaCl

Va∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Va∑
v=1

Nv∑
n=1

‖δvn‖0.

s.t. (δv1, ..., δvNv
) ∈ Uv, ∀v ∈ Va.

(4)

In above problem, the term Ca

Va∑
v=1

Nv∑
n=1

‖δvn‖0 represents the

cost function for the attacker. l0 norm is defined as ‖x‖0 =
|{i : xi 6= 0}|, i.e., a total number of nonzero elements in

a vector. Here, we use the l0 norm to denote the number of

elements which are changed by the attacker. The objective

function with l0 norm captures the fact that the attacker aims

to find a minimum set of training data in a node.

The problem (3) and problem (4) can constitute a two-

person nonzero-sum game between an attacker and a learner.

The solution to the game problem is often described by Nash

equilibrium, which yields the equilibrium strategies for both

players, and predicts the outcome of machine learning in

the adversarial environment. By comparing problem (3) with

problem (4), we notice that they contain the same terms in their

objective functions and the constraints in the two problems

are uncoupled. As a result, the nonzero-sum game can be

reformulated into a zero-sum game, which takes the minimax

or maximin form as follows:

min
{wv,bv}

max
{δvn}

K ({wv, bv} , {δvn})
∆
= 1

2

V∑
v=1

‖wv‖
2

+ VlCl

Vl∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaCl

Va∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Va∑
v=1

Nv∑
n=1

‖δvn‖0

s.t.
wv = wu, bv = bu,

(δv1, ..., δvNv
) ∈ Uv,

∀v ∈ V, u ∈ Bv;
∀v ∈ Va.

(5)

Note that there are two sets of constraints: The first one

wv = wu, bv = bu, ∀v ∈ V, u ∈ Bv , only contributes to the

minimization part of the problem, while the second one

(δv1, · · · , δvNv
) ∈ Uv, ∀v ∈ Va, only affects the maximization

part. The first term of K ({wv, bv} , {δvn}) is the inverse of

the distance of margin. The second term is the error penalty of

nodes without attacker. The third term is the error penalty of

nodes with attacker, and the last term is the cost function for

the attacker. On one hand, minimizing the objective function

captures the trade-off between a larger margin and a small

error penalty of the learner, while on the other hand, maxi-

mizing the objective function captures the trade-off between

a larger error penalty and a small cost of the attacker. As a

646

result, solving problem (5) can be understood as finding the

saddle point of the zero-sum game between the attacker and

the learner.

Based on the property of sublinear aggregated action set

and atomic action set, Problem (5) can be further simplified

as stated in the following Proposition 1.

Proposition 1 Assume Uv is a sublinear aggregated action

set with corresponding atomic action set Uv0. Then, problem

(5) is equivalent to the following optimization problem:

min
{wv,bv}

max
{δv}

1
2

V∑
v=1

‖wv‖
2
+ V Cl

V∑
v=1

Nv∑
n=1

ξvn

+
Va∑
v=1

(
VaClw

T
v δv − Ca‖δv‖0

)

s.t.
yvn(w

T
v xvn + bv) ≥ 1− ξvn,

ξvn ≥ 0,
wv = wu, bv = bu,

δv ∈ Uv0,

∀v ∈ V, n = 1, ..., Nv;
∀v ∈ V, n = 1, ..., Nv;
∀v ∈ V, u ∈ Bv;
∀v ∈ Va.

(6)

Proof . See Appendix A.

IV. ADMOM-DSVM AND DISTRIBUTED ALGORITHM

In the previous section, we have combined problem (3) for

the learner with problem (4) for the attacker into one min-

max problem (5), and showed its equivalence to problem (6).

In this section, we will develop iterative algorithms to solve

problem (6).

Firstly, we define rv := [wT
v , bv]

T , the augmented matrix

Xv := [(xv1, ...,xvNv
)T ,1v], the diagonal label matrix Yv :=

diag([yv1, ..., yvNv
]), and the vector of slack variables ξv :=

[ξv1,, ξvNv
]T . With these definitions, it follows readily that

wv = (Ip+1 − Πp+1)rv , where Πp+1 is a (p + 1) × (p + 1)
matrix with zeros everywhere except for the (p+ 1, p+ 1)-st

entry, given by [Πp+1](p+1)(p+1) = 1. Thus, problem (6) can

be rewritten as

min
{rv,ξv,ωvu}

max
{δv}

1
2

V∑
v=1

r
T
v (Ip+1 −Πp+1)rv + V Cl

V∑
v=1

1
T
v ξv

+
Va∑
v=1

(
VaClr

T
v (Ip+1 −Πp+1)δv − Ca ‖δv‖0

)

s.t.

YvXvrv ≥ 1v − ξv,

ξv ≥ 0v,

rv = ωvu, ωvu = ru,

δv ∈ Uv0,

∀v ∈ V;
∀v ∈ V;
∀v ∈ V, ∀u ∈ Bu;
∀v ∈ Va.

(7)

With the alternating direction method of multipliers (AD-

MoM), the iterations of solving problem (6) are summarized

as follows:

Proposition 2 With arbitrary initialization δv(0), rv(0), λv(0)
and αv(0) = 0(p+1)×1, the iterations per node are given by:

δv(t+ 1) ∈ arg max
{δv,sv}

VaClr
T
v (t)(Ip+1 −Πp+1)δv

− 1
T sv

s.t.
Caδv ≤ sv,

Caδv ≥ −sv,

δv ∈ Uv0,

∀v ∈ Va;
∀v ∈ Va;
∀v ∈ Va.

(8)

λv(t+ 1)
∈ arg max

0≤λv≤V Cl1v

− 1
2λ

T
v YvXvU

−1
v X

T
v Yvλv

+ (1v +YvXvU
−1
v fv(t))

T
λv,

(9)

rv(t+ 1) = U
−1
v

(
X

T
v Yvλv(t+ 1)− fv(t)

)
, (10)

αv(t+ 1) = αv(t) +
η

2

∑

u∈Bv

[rv(t+ 1)− ru(t+ 1)], (11)

where Uv = (Ip+1−Πp+1)+2η|Bv|Ip+1, fv(t) = VaClδv(t)+
2αv(t)− η

∑
u∈Uv

(rv(t) + ru(t)).

Proof . See Appendix B.

Iterations (8) - (11) are summarized into Algorithm 1 below.

Note that at any given iteration t of the algorithm, each node

v ∈ V evaluates its own local discriminant function g
(t)
v (x)

for any vector x as

g(t)v (x) = [xT , 1]rv(t) (12)

Algorithm 1

Randomly initialize δv(0), rv(0), λv(0) and αv(0) = 0(p+1)×1

for every v ∈ V .

1: for t = 0, 1, 2, ... do

2: for all v ∈ V do

3: Compute δv(t+ 1) via (8).

4: end for

5: for all v ∈ V do

6: Compute λv(t+ 1) via (9).

7: Compute rv(t+ 1) via (10).

8: end for

9: for all v ∈ V do

10: Broadcast rv(t+ 1) to all neighbors u ∈ Bv .

11: end for

12: for all v ∈ V do

13: Compute αv(t+ 1) via (11).

14: end for

15: end for

Algorithm 1 solves the min-max problem using ADMoM

technique. It is a fully decentralized network operation, and

it does not require exchanging training data or the value of

decision functions, which meets the reduced communication

overhead and privacy preservation requirements at the same

time. The nature of the iterative algorithms also provides

resiliency to the distributed machine learning algorithms. It

provides mechanisms for each node to respond to its neighbors

and the adversarial behaviors in real time. When unanticipated

events occur, the algorithm will be able to automatically

respond and self-configure in an optimal way.

V. NUMERICAL EXPERIMENTS

In this section, we analyze the performance of DSVM with

attacker changing the training data. We use average empirical

risk as a metric to assess the accuracy of the learning, which

is defined as follows:

Remp(t) :=
1

NTest

V∑

v=1

NvT∑

n=1

1

2
|ỹvn − ŷvn(t)|, (13)

647

where ỹvn is the true label, ŷvn(t) is the predicted label.

Clearly, a high average empirical risk indicates a bad perfor-

mance.

Figure 3(a) depicts the risk of the ADMoM-DSVM in the

game with the attacker. Here, we use a fully connected network

with 4 nodes. Each node contains 50 labeled 2-dimension

training samples and 50 testing samples from global training

set which is shown in Figure 3(b). The attacker uses the

atomic action set with Cδ = 100 and Ca = 1. Clearly,

Figure 3(a) shows that the attacker has a significant impact

on DSVM since the risk is higher than the one for the DSVM

without attacker. Figure 3(b) plots the result of the training

samples. Blue line represents the discriminant functions found

by the ADMoM-DSVM without an attacker, and the black one

represents the situation with an attacker. Clearly, the black line

does not separate green samples and red samples properly.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
is

k

DSVM without Attacker

DSVM with Attacker

(a)

−4 −2 0 2 4
−10

−5

0

5

10

x

Y

Class 1

Class −1

DSVM Without Attacker

DSVM With Attacker

(b)

Fig. 3. Evolution of the empirical errors of ADMoM-DSVM with the attacker.
Training data and testing data are generated from two Gaussian classes.

It is obvious that the attacker can cause disastrous results for

the learner. In next subsections, we will illustrate in detail how

the attacker affects the training process with different values

of Ca, Cδ and numbers of nodes he can take over. From the

learner’s aspect, we will study how the network connections

affect the attacker’s objective.

The data we used here is Spambase Data [16]. We use 600

samples for training and the other 600 samples for testing.

Each sample has 57 dimensions, and the labels of each samples

are either 1 or -1.

A. Effect of Parameters Ca, Cδ and the Number of Nodes the

Attacker Can Take Over

The effect of the attacker depends to a great extent on

parameters Ca and Cδ . Ca represents the parameter of the

cost function for the attacker. A larger Ca means a larger cost

for the attacker. Cδ is the parameter of the attacker’s action

set, which describes the fact that the norm of the values which

the attacker has modified is bounded by Cδ . In this simulation,

we study the effect of the two parameters respectively, notice

that here we assume that the attacker takes over all the nodes.

Figure 4(a) shows the results of different Ca with Cδ = 100,

from the figure, we can see that there is a higher risk if the

attacker has a lower Ca, and also it takes more iterations to

converge. Another important observation is that, when Ca is

high enough, i.e., Ca = 13, the learner will achieve the similar

results to the case where there is no attacker. Figure 4(b) shows

the results of different Cδ with the same Ca = 1. It shows that

a higher bound of the attacker’s action set will account for a

higher risk and lower convergence rate.

In the above experiments, an attacker is assumed to be able

to take over all nodes in the network. In the next experiment,

we study the case where the attacker’s capability is limited,

and he can only take over a subset of nodes in the network.

We investigate how the number of compromised nodes by the

attacker affects the classification results of the global network.

Figure 7 shows the result of the experiment. From the figure,

we can conclude that if the attacker has the ability of taking

over more nodes, he will create a higher impact on the learner.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

R
is

k

No Attacker

C
a
 = 1

C
a
 = 5

C
a
 = 9

C
a
 = 11

C
a
 = 13

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
is

k

No Attacker

C
δ
 = 10

C
δ
 = 50

C
δ
 = 100

C
δ
 = 150

(b)

Fig. 4. Evolution of the risk of ADMoM-DSVM, with different Ca in (a) and
different Cδ in (b). The network contains 10 nodes and it’s fully connected.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
is

k

No Attacker

C
a
 = 1

C
a
 = 5

C
a
 = 9

C
a
 = 11

C
a
 = 13

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
is

k

No Attacker

C
δ
 = 10

C
δ
 = 50

C
δ
 = 100

C
δ
 = 150

(b)

Fig. 5. Evolution of the risk of ADMoM-DSVM, with different Ca in (a) and
different Cδ in (b). The network contains 20 nodes and it’s fully connected.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
is

k

No Attacker

C
a
 = 1

C
a
 = 5

C
a
 = 9

C
a
 = 11

C
a
 = 13

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
is

k

No Attacker

C
δ
 = 10

C
δ
 = 50

C
δ
 = 100

C
δ
 = 150

(b)

Fig. 6. Evolution of the risk of ADMoM-DSVM, with different Ca in (a)
and different Cδ in (b). The network contains 10 nodes but each node has
the connectivity of 0.33.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
is

k

No Attacker

Attacker attacks 1 node

Attacker attacks 3 nodes

Attacker attacks 6 nodes

Attacker attacks 10 nodes

Fig. 7. Evolution of the risk under different numbers of nodes the attacker
can take over.

B. Effect of the Network Connectivity

In this section, we use a fully connected network with 10

nodes to study the effect of the network connectivity on the

game between the learner and the attacker. Figure 5 shows the

648

results of classifying the same training and testing data in a

fully connected network with 20 nodes. Compared to Figure 4,

a network with more nodes is more vulnerable to the attacker

when he can control every node in the network. Notice that

when Ca = 13, our experiment shows that the attacker has no

impact on the learner, but in the experiment with more nodes

in network, the attacker has a significant impact on the learner.

Figure 6 shows the results of the situation when the network

has less average connectivity. The connectivity being 0.33

indicates that the average of neighbors in each node is 3. In this

experiment, we assume that all nodes have 3 neighbors. Note

that with less connectivity, the risks of the network with an

attacker converge faster but become higher. Hence we see that

the convergence rate becomes slower with higher connectivity,

and it will reduce the errors due to the attacker’s behavior.

The last two experiments illustrate that the attacker will have

more impact on the learner if the network contains more nodes

or less connectivity, but all the experiments are conducted

under the condition that the nodes in the network have the

same level of connectivity. The next experiment will study

the effect of nodes with heterogeneous connectivity in one

network.

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The ability of the Attacker: C
δ
 / C

a

A
v
e

ra
g

e
 R

is
k
 a

t
th

e
 C

o
n

v
e

rg
e

n
c
e

 P
e

ri
o

d

Line

without attacker

attack green node

attack blue node

attack 6 nodes

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The ability of the Attacker: C
δ
 / C

a

A
v
e

ra
g

e
 R

is
k
 a

t
th

e
 C

o
n

v
e

rg
e

n
c
e

 P
e

ri
o

d

Star

without attacker

attack green node

attack blue node

attack 6 nodes

Fig. 8. Global Risk of ADMoM-DSVM in the game with an attacker in two
different networks, line and star. First row shows the network topologies;
second row shows the result in either network. Clearly, nodes with more
neighbors are more sensitive to the attacker.

Without losing generality, consider networks with same

number of nodes and average connectivities, which is shown

in Figure 8. Clearly, attacking 6 nodes will result in higher

classification errors, but when the attacker can only take

control of one node. Nodes with more neighbors (blue) turn

out to be more sensitive to the capabilities of the attacker.

In particular, as the attacker becomes more powerful, blue

nodes will cause more damage than the green nodes with less

neighbors.

VI. CONCLUSION

Machine learning algorithms are ubiquitous but inherently

vulnerable to adversaries. This paper has investigated the

security issues of distributed support vector machines in an

adversarial environment. We have established a game-theoretic

framework to capture the strategic interactions between an

attacker and a learner with a network of distributed nodes.

We have shown that the nonzero-sum game is strategically

equivalent to a zero-sum game, and hence its equilibrium

can be characterized by a saddle-point equilibrium solution

to a minimax problem. By using the technique of ADMoM,

we have developed secure and resilient algorithms that can

respond to adversarial environment. Experimental results have

shown that an attacker can have a significant impact on SVM if

his capability and resources are sufficiently large. In addition,

a network with a large number of nodes and low connectivity

is less resilient than a network with higher connectivity.

Hence, the network topology has a strong relation to the

resiliency of the distributed SVM algorithm. One direction of

future works is to develop a network design theory to form

machine-learning networks that can achieve a desirable level

of resiliency. In addition, we would also extend the current

framework to investigate nonlinear distributed SVM, and other

machine learning algorithms.

APPENDIX A: PROOF OF PROPOSITION 1

By using hinge loss function, we reformulate problem (6)

into the following problem:

min
{wv,bv,ξvn}

max
{δv}

1
2

V∑
v=1

‖wv‖
2

+ VlCl

Vl∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaCl

Va∑
v=1

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+
Va∑
v=1

(
VaClw

T
v δv − Ca ‖δv‖

)

s.t.
wv = wu, bv = bu, ∀v ∈ V, n = 1, ..., Nv;
(δv1, ..., δvNv

) ∈ Uv, ∀v ∈ Va.
(14)

As a result, we only need to prove that problem (5) is

equivalent to problem (14). Since both of problems are min-

max problems with the same variables, we only need to prove

that we minimize the same maximization problem, as a result,

we only need to show that the following problem

max
(δv1,...,δvNv

)∈Uv

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖

(15)

is equivalent to the following problem

max
δv∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaClw
T
v δv − Ca ‖δv‖ .

(16)

Since δv is independent in (16), and {δvn} is independent

in (15), we can separate maximization problem into Va

sub-maximization problems, and solving the sub-problems

is equivalent to solving the global maximization problem.

Therefore, we only need to show the equivalence between the

sub-problem.

649

We adopt the similar proof in [14], recall the definition of

sublinear aggregated action set, U−
v ⊆ Uv ⊆ U+

v . Hence, fixing

any (wv, bv) ∈ R
n+1, we have the following inequalities:

max
(δv1,...,δvNv

)∈U−

v

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖

≤

max
(δv1,...,δvNv

)∈Uv

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖

≤

max
(δv1,...,δvNv

)∈U+
v

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖ .

(17)

To prove the theorem, we show that (16) is no larger than the

leftmost term and no smaller than the rightmost term. We first

show that

max
δv∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaClw
T
v δv − Ca ‖δv‖

≤

max
(δv1,...,δvNv

)∈U−

v

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖ .

(18)

As the samples {xvn, yvn}
Nv

v=1 are not separable, there exists

tv ∈ [1 : Nv] which satisfies that

ytv (wv
T
xtv + bv) < 0. (19)

Hence, recall the definition of sublinear aggregated action

set, we have:

max
(δv1,...,δvNv

)∈U−

vtv

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖

= max
δvtv

∈Uv0

VaCl

∑
n6=tv

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaCl

[
1− yvtv (w

T
v (xvtv − δvtv) + bv)

]
+

− Ca ‖δvtv‖
= max

δvtv
∈Uv0

VaCl

∑
n6=tv

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaCl

[
1− yvtv (w

T
v xvtv + bv)

]
+

+ VaCl(yvtvw
T
v δvtv)− Ca ‖δvtv‖

= max
δv∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaClw
T
v δv − Ca ‖δv‖ .

(20)

The second and third equalities hold because of the inequality

(19) and max
δtv∈Uv0

(yvtvwv
T δtv) being non-negative (recall that

0 ∈ Uv0). Besides, we use δv to replace δvtv . Since U−
vtv

⊆
U−
v , Inequality (18) holds.

In the following step, we prove that

max
(δv1,...,δvNv

)∈U+
v

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖

≤

max
δv∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaClw
T
v δv − Ca ‖δv‖ .

(21)

Recall the definition of U+, we have:

max
(δv1,...,δvNv

)∈U+
v

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − δvn) + bv)

]
+

− Ca

Nv∑
n=1

‖δvn‖

= max∑
Nv

n=1
αvn=1;

αvn≥0;δ̂vn∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v (xvn − αvnδ̂vn) + bv)

]
+

− Ca

Nv∑
n=1

‖αvnδvn‖

≤ max∑
Nv

n=1
αvn=1;

αvn≥0;δ̂vn∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+
Nv∑
n=1

VaClαvnw
T
v δ̂vn − Ca

Nv∑
n=1

‖αvnδvn‖

= max∑
Nv

n=1
αvn=1;

αvn≥0.

max
δ̂vn∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ αvn

Nv∑
n=1

(
VaClw

T
v δ̂vn − Ca ‖δvn‖

)

= max
δv∈Uv0

VaCl

Nv∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+ VaClw
T
v δv − Ca ‖δv‖ .

(22)

Inequality (21) holds.

By combining the two steps, we can show the equivalence

between (15) and (16). Hence, Proposition 1 holds.

APPENDIX B: PROOF OF PROPOSITION 2

We use best response dynamics to construct the best re-

sponse for the min-problem and max-problem separately. The

min-problem and max-problem are archived by fixing {rv}
and {δv}, respectively. For fixed {r∗v, ξ

∗
v},

δ∗v ∈ argmax
{δv}

Va∑
v=1

(
VaClr

∗
v

T (Ip+1 −Πp+1)δv

)

s.t. δv ∈ Uv0, ∀v ∈ Va.

(23)

We relax l0 norm to l1 norm to represent the cost function

of the attacker. By writing the dual form of the l1 norm, we

650

arrive at

δ∗v ∈ arg max
{δv,sv}

VaClr
∗
v

T (Ip+1 −Πp+1)δv

− 1
T sv

s.t.
Caδv ≤ sv,

Caδv ≥ −sv,

δv ∈ Uv0,

∀v ∈ Va;
∀v ∈ Va;
∀v ∈ Va.

(24)

For a fixed {δ∗v}, we have

min
{rv,ωvu,ξv}

1
2

V∑
v=1

r
T
v (Ip+1 −Πp+1)rv

+ VaCl

Va∑
v=1

r
T
v (Ip+1 −Πp+1)δ

∗
v + V Cl

V∑
v=1

1
T
v ξv

s.t.
YvXvrv ≥ 1v − ξv, ∀v ∈ V;

ξv ≥ 0v, ∀v ∈ V;
rv = ωvu, ωvu = ru, ∀v ∈ V, ∀u ∈ Bu.

(25)

Note that term −Ca ‖δ
∗
v‖ is removed since it does not play

a role in the maximization problem. Based on (24) and (25),

we have the method of solving problem (7) as follows: The

first step is to randomly pick an initial {rv(0), δv(0)}, then

solve max-problem (24) with {rv(0)}, and obtain{δv(1)},

next step is to solve min-problem (25) with {δv(1)}, and

obtain {rv(1)}, then we repeat solving max-problem with

{r∗v} from the previous step and solving min-problem with

{δ∗v} from the previous step until the pair{rv, δv} achieves

convergence. Furthermore, we use the alternating direction

method of multipliers(ADMoM) to solve problem (25).

ADMoM is a distributed optimization algorithm for solving

the following problem:

min
r

f(r) + g(ω)

s.t. Mv = ω;
(26)

where f and g are convex functions, M is a p2 × p1 matrix.

[15]

The augmented Lagrangian corresponding to (26) is

L(r, ω, α) = f(r) + g(ω) + αT (Mv − ω) +
η

2
‖Mv − ω‖

2
.

(27)

where α ∈ R
p2 denotes the Lagrange multiplier.

Then, the ADMoM solves problem (26) by the update rules

below:

r(t+ 1) ∈ arg min
r∈P1

L(r, ω(t), α(t)). (28)

ω(t+ 1) ∈ arg min
ω∈P2

L(r(t+ 1), ω, α(t)). (29)

α(t+ 1) = α(t) + η(Mv(t+ 1)− ω(t+ 1)). (30)

The objective here is to transform problem (25) into the form

of (26), then solve that by iterations used in (28), (29) and

(30). We adopt the similar method in [9] to solve problem

(25), which leads to the following result.

Lemma Each node iterates λv(t), rv(t) and αv(t), given by

λv(t+ 1) ∈ arg max
0≤λv≤V Cl1v

− 1
2λ

T
v YvXvU

−1
v X

T
v Yvλv

+ (1v +YvXvU
−1
v fv(t))

Tλv,
(31)

rv(t+ 1) = U
−1
v

(
X

T
v Yvλv(t+ 1)− fv(t)

)
, (32)

αv(t+ 1) = αv(t) +
η

2

∑

u∈Bv

[rv(t+ 1)− ru(t+ 1)], (33)

where Uv = (Ip+1 −Πp+1) + 2η|Bv|Ip+1, fv(t) = VaClδ
∗
v +

2αv(t)− η
∑

u∈Bv
(rv(t) + ru(t)), η > 0 .

By combining the above lemma with Problem (24), we

obtain Proposition 2.

REFERENCES

[1] Brown, Robert Grover, and Patrick YC Hwang. Introduction to random

signals and applied Kalman filtering. Vol. 3. New York: Wiley, 1992.
[2] Suykens, Johan AK, and Joos Vandewalle. Least squares support vector

machine classifiers. Neural processing letters 9, no. 3 (1999): 293-300.
[3] Wold, Svante, Kim Esbensen, and Paul Geladi. Principal component

analysis. Chemometrics and intelligent laboratory systems 2, no. 1 (1987):
37-52.

[4] Meyer, Tony A., and Brendon Whateley. SpamBayes: Effective open-
source, Bayesian based, email classification system. In CEAS. 2004.

[5] Kavitha, T., and D. Sridharan. Security vulnerabilities in wireless sensor
networks: A survey. Journal of information Assurance and Security 5,
no. 1 (2010): 31-44.

[6] Xie, Liang, Xinwen Zhang, Ashwin Chaugule, Trent Jaeger, and Sencun
Zhu. Designing system-level defenses against cellphone malware. In
Reliable Distributed Systems, 2009. SRDS’09. 28th IEEE International

Symposium on, pp. 83-90. IEEE, 2009.
[7] Tague, Patrick, and Radha Poovendran. Modeling adaptive node capture

attacks in multi-hop wireless networks. Ad Hoc Networks Ad Hoc
Networks 5, no. 6 (2007): 801-814.

[8] Parno, Bryan, Adrian Perrig, and Virgil Gligor. Distributed detection of
node replication attacks in sensor networks. In Security and Privacy, 2005

IEEE Symposium on, pp. 49-63. IEEE, 2005.
[9] Forero, Pedro A., Alfonso Cano, and Georgios B. Giannakis. Consensus-

based distributed support vector machines. The Journal of Machine

Learning Research 11 (2010): 1663-1707.
[10] Barreno, Marco, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar.

The security of machine learning. Machine Learning 81, no. 2 (2010):
121-148.

[11] Dalvi, Nilesh, Pedro Domingos, Sumit Sanghai, and Deepak Verma.
Adversarial classification. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pp.
99-108. ACM, 2004.

[12] Kantarcioglu, Murat, Bowei Xi, and Chris Clifton. Classifier evaluation
and attribute selection against active adversaries. Data Mining and

Knowledge Discovery 22, no. 1-2 (2011): 291-335.
[13] Liu, Wei, and Sanjay Chawla. A game theoretical model for adversarial

learning. In Data Mining Workshops, 2009. ICDMW’09. IEEE Interna-

tional Conference on, pp. 25-30. IEEE, 2009.
[14] Xu, Huan, Constantine Caramanis, and Shie Mannor. Robustness and

regularization of support vector machines. The Journal of Machine

Learning Research 10 (2009): 1485-1510.
[15] Eckstein, Jonathan, and Yao Wang. Augmented Lagrangian and alter-

nating direction methods for convex optimization: A tutorial and some
illustrative computational results. RUTCOR Research Reports 32 (2012).

[16] Lichman, Moshe. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science, 2013.

651

