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Abstract—A requisite for unmanned aircraft systems (UAS)
to operate within a controlled airspace is a capability to sense
and avoid collisions with non-cooperative aircraft. Ground-based
transmitters and UAS-mounted receivers are preferred due to
the limitations on the size, weight and power of UAS. This
paper assumes a constant velocity motion of an intruder (target)
aircraft and presents a method to estimate the state (motion
parameters — position and velocity) of the target so as to predict
the closest point of approach. Bistatic range and Doppler are
assumed the only measurements available, with the employment
of low-cost omni-directional antennas. Several configurations are
investigated from a parameter observability point of view. It
turns out that one needs three transmitters in a general three-
dimensional (3-D) scenario to achieve very good observability
of the target motion parameter. With the assumption that
the target is at the same altitude as the ownship, one has a
two-dimensional (2-D) scenario in which two transmitters are
required to have good observability. Simulation results show that
the maximum likelihood (ML) estimate of the target parameter
using iterated least squares (ILS) search is statistically efficient
in both multistatic configurations with good observability. The
collision warning is formulated as a hypothesis testing problem
using a generalized likelihood function. The warning algorithm
has no missed detection of a collision event in either configuration.
It has a lower false alarm rate in a 3-D scenario than in a 2-D
scenario at the expense of one more ground-based transmitter.

I. INTRODUCTION

Sense-and-Avoid (SAA) capabilities are required for un-

manned aircraft systems (UAS) to operate within the national

airspace. The proliferation of UAS has increased the risk of

aircraft collision. The air traffic control radar beacon system

works well to coordinate cooperative aircraft. Active sensing

methods have to be employed for UAS to be functional against

non-cooperative targets. The limitations on the size, weight

and power of UAS suggest an implementation with ground

based transmitters and UAS mounted receivers.

There have been numerous works on the UAS collision

avoidance problem [1]. Most have emphasized avoidance

algorithms [5][8][9], while sensing and estimation methods

have not been extensively explored. In [7], a monostatic

radar configuration in a 2-D plane with range and bearing

measurements is considered for collision avoidance. In [10], a

confidence corridor is mathematically constructed without any

specification of the measurements.

In our previous work [6], a strategy for collision warning

in a 3-D space is presented where we assume a constant

velocity motion of an aircraft of interest (target/intruder) and

attempt to estimate the state (position and velocity) of the

target so as to predict the closest point of approach (CPA).

Since an inexpensive system is the goal, only bistatic range and

Doppler measurements are available. Several configurations

are investigated from a parameter observability point of view.

The target parameter is shown to be unobservable in a bistatic

configuration (that is: one transmitter and one receiver, not

co-located) and a change of course of the receiver (the

“observability platform maneuver” that is the saving grace for

angle-only target motion analysis (TMA)) merely improves the

observability marginally. In a multistatic configuration, one

has marginal observability using two transmitters but good

observability with three transmitters. Simulation results show

that the ML estimate of the target parameter is statistically

efficient in a multistatic configuration with three transmitters.

This paper extends the previous work [6] with an inclusion

of a special 2-D problem based on the assumption that the

target is at the same altitude as the ownship and attempts to

provide a comprehensive guideline on configuration selection

for air collision warning. A few more scenarios are analyzed

from the parameter observability point of view. In a bistatic

configuration, the target parameter is still badly observable

with an assumed target altitude. The observability is improved

by a small maneuver of the ownship but is not good enough.

One can have very good observability of the target motion

parameter with two transmitters in a multistatic configuration

under the same target and ownship altitude assumption, which

turns out to be another practically useful configuration in

addition to a multistatic configuration with three transmitters.

Simulation results confirms the statistical efficiency of the ML

estimator of the target parameter in this new useful config-

uration. Furthermore, the collision warning is formulated as

a hypothesis testing problem using a generalized likelihood

function. Monte Carlo simulation shows the collision warning

algorithm using three transmitters has no missed detection

of a collision and has no false alarm when the intruder and
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ownship altitude separation is beyond 100 m. The collision

warning algorithm using two transmitters with the same alti-

tude assumption has no missed detection of a collision, either.

It has higher false alarm rates in some scenarios, however, the

avoidance maneuver action caused by such false alarms can

be simply accomplished if one prefers more savings.

The remaining sections of this paper are organized as

follows. Section II describes and formulates a general 3-D

problem and extends to a special 2-D problem. Section III

analyzes several possible configurations for collision warning

including some new 2-D scenarios and shows two of them

are practically useful. Section IV presents the ML estimator

and the collision warning algorithm. Section V confirms the

efficiency of the ML estimator of the target parameter and

shows the new findings on the performance of the collision

warning algorithm and Section VI draws conclusions.

II. PROBLEM FORMULATION

Assume a target of interest (intruder) is moving in the 3-

D space with a constant velocity. The 3-D target position in

Cartesian coordinates at time k is

ξ(x, k) = x0 + kT ẋ0 k = 0, 1, . . . (1)

where

x = [x′
0, ẋ

′
0]

′
= [x, y, z, ẋ, ẏ, ż]

′
(2)

is the unknown target parameter which is a vector of di-

mension nx = 6 consisting of the target’s position x0 and

velocity ẋ0 in Cartesian coordinates at time k = 0 (or at

a chosen reference time); and T is the sampling period.

There are NTX (NTX ≥ 1) transmitters at known locations

ui = [xui
, yui

, zui
]′, i = 1, . . . , NTX. At time k (k > 0),

a moving receiver (the ownship) with known position s(k)
and velocity ṡ(k) can obtain measurements consisting of the

bistatic range [4] and the bistatic Doppler, as illustrated in

Figure 1, from the ith transmitter located at ui given by

zi(k) = hi(x, k) +wi(k) i = 1, . . . , NTX (3)

where

hi(x, k) =

[

ri(k)
ṙi(k)

]

=





‖ξ(x, k)− s(k)‖+ ‖ξ(x, k)− ui‖

[ξ(x,k)−s(k)]′[ẋ0−ṡ(k)]
‖ξ(x,k)−s(k)‖ + [ξ(x,k)−ui]

′
ẋ0

‖ξ(x,k)−ui‖



 (4)

and wi(k) are the measurement noises, assumed to be inde-

pendent and identically distributed zero-mean white Gaussian

sequences with known covariance matrix

Ri =

[

σ2
r 0
0 σ2

ṙ

]

(5)

The measurement function comprising all the measurements

at time k is

z(k) = h(x, k) +w(k) k = 1, . . . (6)

Fig. 1. A multistatic configuration in the X-Y plane

where

z(k) = [z1(k)
′ . . . zNTX

(k)′]
′

(7)

h(x, k) = [h1(x, k)
′ . . .hNTX

(x, k)′]
′

(8)

w(k) = [w1(k)
′ . . .wNTX

(k)′]
′

(9)

and

R(k) = E[w(k)w(k)′]

=











R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · RNTX











(10)

Since both the intruder and the ownship are moving, it is

important to avoid any collision between them. The goal is

thus to estimate the target parameter x based on N frames of

measurements long enough before a possible collision occurs

so as to predict the CPA and presumably, to do something

about it if needed.

A. Parameter Observability

We need to check observability to see whether there is

sufficient information in the data. Observability requires the

invertibility of the Fisher information matrix (FIM), which is

given by [2]

J = E {[∇x ln Λ(x;Z)][∇x ln Λ(x;Z)]
′}|

x=xt
(11)

where Λ(x;Z) is the likelihood function of the parameter

based on the measurement set

Z = z(k)
N
k=1 (12)

and xt is the true value of the parameter.
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Since the measurement noises are assumed to be white, we

have

Λ(x;Z) =

N
∏

k=1

p (z(k)|x) (13)

where

p (z(k)|x) = |2πR(k)|−
1

2

· exp

(

−
1

2
[z(k)− h(x, k)]

′
R(k)−1 [z(k)− h(x, k)]

)

(14)

The gradient of the log-likelihood function is

∇x ln Λ(x;Z) = −
N
∑

k=1

[∇xh(x, k)
′]R(k)−1 [z(k)− h(x, k)]

(15)

Substituting (15) into (11) yields

J =
N
∑

k=1

[∇xh(x, k)
′]R(k)−1 [∇xh(x, k)

′]
′
∣

∣

∣

x=xt

=
N
∑

k=1

NTX
∑

i=1

[∇xhi(x, k)
′]R−1

i [∇xhi(x, k)
′]
′
∣

∣

∣

x=xt

(16)

If J is not invertible, then the parameter is unobservable.

Otherwise, the size of confidence region for the target position

[2] can be used to distinguish between marginal observability

and good observability.

B. Confidence Region

Suppose an unbiased parameter estimate x̂ is obtained,

then according to the Cramer Rao lower bound (CRLB), the

covariance matrix is bounded from below as (if the FIM is

invertible)

E
[

[x̂− xt] [x̂− xt]
′] ≥ J−1 (17)

We further assume that the parameter estimation error

x̃ , xt − x̂ (18)

is Gaussian distributed with covariance equal to the CRLB,

that is,

P , E [x̃x̃′] = J−1 (19)

The validity of (19) is confirmed in Section V.

The 3-D target position estimate at an arbitrary time t is

x̂p(t) =





1 0 0 t 0 0
0 1 0 0 t 0
0 0 1 0 0 t



 x̂ , Φp(t)x̂ (20)

and the corresponding covariance is

Pp(t) = Φp(t)PΦp(t)
′ (21)

The normalized estimation error squared (NEES) for the target

position xp(t) at t, defined as

ǫp(t) = [xp(t)− x̂p(t)]
′
P−1
p (t) [xp(t)− x̂p(t)] (22)

is chi-square distributed with nx/2 degrees of freedom, that

is,

ǫp(t) ∼ χ2
nx/2

(23)

Let g be such that

P{ǫp(t) ≤ g2} = 1−Q (24)

where Q is a small tail probability. Given the true target

position xp(t) at t, one can say that the 100(1 − Q)%
probability region for the predicted position at t is the ellipsoid

given by

[xp(t)− x̂p(t)]
′
P−1
p (t) [xp(t)− x̂p(t)] = g2 (25)

Alternatively, given the predicted position x̂p(t), (25) is the

confidence region of the true position [3]. If this region is large,

one has marginal observability of the target position; if the

position confidence region is small, one has good observability

of the target position.

C. Intruder and Ownship at the Same Altitude

If the intruder’s altitude z is assumed to be known and is

equal to that of the ownship, then the 2-D X-Y plane at the

altitude z is of interest and everything related to the target

can be considered in this 2-D space. Specifically, the target

parameter to be estimated becomes

x
2D = [x, y, ẋ, ẏ]

′
(26)

Correspondingly, the 2-D target position at an arbitrary time t

is

x
2D
p (t) =

[

1 0 t 0
0 1 0 t

]

x
2D (27)

The confidence region for the target position around its esti-

mate is now an ellipse given by (25).

III. SCENARIOS AND OBSERVABILITY ANALYSIS

A radar system, which consists of three transmitters on the

ground and one receiver mounted on an unmanned aircraft

system (UAS) — the ownship — is used to warn of a possible

collision between the UAS (ownship) and other intruder air-

craft. The transmitters are located at (0 m, 1000 m, 0 m), (0 m,

–1000 m, 0 m) and (1000 m, 0 m, 0 m) in Cartesian coordinates,

and are denoted by TX1, TX2 and TX3, respectively. The UAS

is moving at an altitude of 1500 m.

Eight collision scenarios and one non-collision scenario

listed in the Table I differing in the number of transmitters, the

motion of the UAS and the dimensionality of target parameter

are studied here. Scenarios with the known target altitude

assumption are referred to as 2-D scenarios. The rest are 3-D

scenarios. Two motions of UAS are considered. In a constant

velocity (CV) motion, the UAS starts moving from the point

(–4500 m, 0 m, 1500 m) at time t = 0 s with a constant velocity

ṡ0 = [50m/s, 0m/s, 0m/s]′. In a two-segment CV motion, the

UAS starts with a constant velocity [43.3m/s,−25m/s, 0m/s]′

from the point (–4305.6 m, 751.7 m, 1500 m) at time t = 0 s

for 27 s and then executes a 5◦ /s coordinated turn for 6 s before
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TABLE I
SCENARIO SPECIFICATIONS

Scenario Transmitters used UAS motion Target altitude Collision Semiaxis lengths of 99.9999% probability region (m)

1 TX1 CV Unknown Yes 3× 109, 2020, 62
2 TX1 two-segment CV Unknown Yes 6468, 1660, 109
3 TX1 and TX2 CV Unknown Yes 1542, 50, 41
4 TX1 and TX2 two-segment CV Unknown Yes 1402, 51, 41
5 TX1,TX2 and TX3 CV Unknown Yes 50, 42, 11
6 TX1,TX2 and TX3 CV Unknown No 48, 43, 12
7 TX1 CV Known Yes 2600, 81
8 TX1 two-segment CV Known Yes 301, 25
9 TX1 and TX2 CV Known Yes 40, 8

changing to another velocity [50m/s, 0m/s, 0m/s]′ when it

arrives at the location (–2850 m, 0 m, 1500 m). In all the

collision scenarios, the intruder aircraft starts from the position

(4500 m, 0 m, 1500 m) at time t = 0 s with a constant velocity

ẋ0 = [−50m/s, 0m/s, 0m/s] and will collide with the UAS at

time t = 90 s. In the non-collision scenario, the altitude of

the intruder aircraft is assumed to be 1600 m, which is 100 m

higher than in the collision scenarios, and the CPA occurs at

time t = 90 s. Bistatic range and Doppler measurements are

made from the ownship every 1 s over a period of 60 s, which

is 30 s before the CPA time. The noise standard deviations

for the range and Doppler measurements are assumed to be

8.66 m and 1 m/s, respectively, at all times.

Figure 2 visualizes all the nine scenarios and plots the

99.9999% probability region, the lengths of the semiaxes

of which are also shown in Table I, around the collision

point or the target CPA in each scenario. Figure 3 provides

the magnified view of the 99.9999% probability region in

Scenarios 5, 6 and 9 where the observability is good.

In Scenario 1, the FIM is nearly singular with a condition

number1 of 18.8. The huge uncertainty ellipsoid indicates

the target parameter is practically unobservable and even an

efficient estimator is useless in such a situation.

In Scenario 2, the FIM is not ill-conditioned. The uncer-

tainty ellipsoid is much smaller than in the first scenario, which

indicates the change of course in the ownship trajectory im-

proves the observability. However, the size of the uncertainty

region is still quite large so that even an efficient estimator

remains practically useless.

Compared with the 3-D bistatic configuration (Scenarios

1 and 2), adding a second transmitter in Scenarios 3 and

4 reduces the target localization uncertainty, although the

size of the probability region is still too large to be useful.

Comparison between Figures 2(c) and 2(d) indicates that

the further reduction of the localization uncertainty resulting

from the change of course in the ownship trajectory in the

multistatic configuration is not as significant as in the bistatic

counterpart.

As shown in Figure 2(e) and 2(f), the addition of a third

transmitter into the multistatic configuration has significantly

improved the observability of the target location, which makes

1The condition number is log10
λmax

λmin
, where λmax and λmin are the

largest and smallest eigenvalues of the FIM.

the localization uncertainty as small as what is practically

useful. Therefore, one needs three transmitters in a multistatic

configuration to build up an efficient estimator based on which

a useful collision warning algorithm can be designed.

Compared with 3-D scenarios, the knowledge of target

altitude in a 2-D scenario results in a significant reduction

in the uncertainty about the target localization. In Scenario

7, the size of the uncertainty region is still too large to be

useful. In Scenario 8, the uncertainty region could be useful,

however, it is due to the change of course of the ownship and

this maneuver action itself could lead a safety situation to a

dangerous collision. In Scenario 9, adding a second transmitter

reduces the target localization uncertainty significantly. The

size of this region is practically useful. Therefore, with the

knowledge of the target altitude one needs two transmitters in

a multistatic configuration to build up an efficient estimator

based on which a useful collision warning algorithm can be

designed.

In the sequel, collision warning is only considered in those

two practically useful configurations — 3 transmitters in

general 3-D scenarios and 2 transmitters with known target

altitude in 2-D scenarios.

IV. THE MAXIMUM LIKELIHOOD ESTIMATOR AND

COLLISION WARNING

A. Estimation of the Target Parameter

The ML estimate of the target parameter x in (1) is

x̂ML = argmax
x

Λ(x;Z) (28)

where Λ(x;Z) is given in (13). The ILS technique [3] was

used to find the ML estimate in this case. If we set (15) to zero,

we will notice that there is no closed-form solution. Using a

first order series expansion about an estimate x̂
j at the end of

the j-th iteration leads to an iterative scheme and the (j+1)-th
estimate is

x̂
j+1 = x̂

j +
[

(Hj)′R−1Hj
]−1

(Hj)′R−1
[

z− h(x̂j)
]

(29)
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

Fig. 2. 99.9999% uncertainty region around the collision point or the target CPA. The region is an ellipsoid in Scenarios 1 to 6 and is an ellipse in Scenarios 7
to 9. The parameter is mathematically unobservable in Scenario 1. The paramter is badly observable in Scenarios 2, 3, 4, 7 and 8. The parameter observability
is good in Scenarios 5, 6 and 9.
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(a) Scenario 5 (b) Scenario 6 (c) Scenario 9

Fig. 3. Magnified version of 99.9999% uncertainty region around the collision point or the target CPA in Scenarios 5, 6 and 9.

where

z = [z(1)′, z(2)′, . . . , z(N)′]
′

(30)

h(x̂j) =
[

h(x̂j , 1),h(x̂j , 2), . . . ,h(x̂j , N)
]′

(31)

R =











R(1) 0 · · · 0

0 R(2) · · · 0

...
...

. . .
...

0 0 · · · R(N)











(32)

and

Hj =











[∇xh(x, 1)
′]
′∣
∣

x=x̂
j

[∇xh(x, 2)
′]
′∣
∣

x=x̂
j

...

[∇xh(x, N)′]
′∣
∣

x=x̂
j











(33)

An initial estimate can be obtained by solving (3) with

the noise set to zero based on the measurements for two

transmitters at two different time instants.

The ML estimate of the target parameter x2D in (26) in

a 2-D scenario can be found using the ILS technique in the

same manner.

B. Collision Warning via Hypothesis Testing Based on a

Generalized Likelihood Function

The collision event at time t (t to be determined) is defined

by equating the true target position xp(t) to the ownship

position, namely,

{Collision at t} , {xp(t) = s(t)} (34)

Following [3], the likelihood function of collision is the pdf

of the predicted target position to time t (the “observation”

based on which the collision warning can be made) condi-

tioned on (34)

Λ [xp(t) = s(t); x̂p(t)] = p[x̂p(t)|xp(t) = s(t)]

= N [x̂p(t); s(t), Pp(t)] = |2πPp(t)|
−1/2

· exp

(

−
1

2
(x̂p(t)− s(t))′Pp(t)

−1(x̂p(t)− s(t))

)

(35)

where x̂p(t) is given by (20). The use of the covariance Pp(t)
in (35) is justified based on the discussion presented in Section

V, which confirms that (28) is a statistically efficient estimator.

Since the time t in (35) is not known, we estimate the CPA

time as

t̂CPA = argmax
t

Λ [xp(t) = s(t); x̂p(t)] (36)

The collision warning can be formulated as a hypothesis

testing problem as follows. The two hypotheses are, based on

(36)

H0 : xp(t̂CPA) = s(t̂CPA) (37)

H1 : xp(t̂CPA) 6= s(t̂CPA) (38)

The (generalized2) likelihood function for H0 is

Λ
[

H0; x̂p(t̂CPA)
]

= N
[

x̂p(t̂CPA); s(t̂CPA), Pp(t̂CPA)
]

= N
[

s(t̂CPA); x̂p(t̂CPA), Pp(t̂CPA)
]

(39)

Then H0 is rejected at a level of, say, 0.0001% if s(t̂CPA) is

outside the 99.9999% confidence region centered at x̂p(t̂CPA),
then one can say that collision is unlikely (< 0.0001%).

Otherwise a collision warning is issued.

2This is a generalized likelihood function because it relies on t̂CPA, which
is an estimate.
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TABLE II
THE NUMBER OF WARNINGS IN 100 RUNS USING THE 3-D COLLISION

WARNING ALGORITHM

CPA angle
Separation in altitude (m) 180◦ 165◦ 150◦ 135◦

0 100 100 100 100
50 30 28 38 49
100 0 0 0 0
150 0 0 0 0
200 0 0 0 0
250 0 0 0 0
300 0 0 0 0

TABLE III
THE NUMBER OF WARNINGS IN 100 RUNS USING THE 2-D COLLISION

WARNING ALGORITHM

CPA angle
Separation in altitude (m) 180◦ 165◦ 150◦ 135◦

0 100 100 100 100
50 100 100 99 99

100 100 100 84 14
150 100 98 7 0
200 100 77 0 0
250 100 36 0 0
300 100 14 0 0

V. SIMULATION RESULTS

A. Efficiency of ML Estimator of the Target Parameter

The sample averages of the NEES for the 6-D target

parameter in Scenario 5 from 100 Monte Carlo runs based

on the CRLB evaluated at the truth and at the estimate are

calculated. The values are 5.6244 and 5.6146, which can be

considered practically identical. Both values fall inside the

two-sided 95% probability region [5.34, 6.70], which confirms

the validity of the CRLB as the actual covariance of the 3-D

estimator. The sample averages of the NEES for the 4-D target

parameter in Scenario 9 from 100 Monte Carlo runs based on

the CRLB evaluated at the truth and at the estimate are also

calculated. The values are 4.1169 and 4.1205, which can also

be considered practically identical. Both values fall inside the

two-sided 95% probability region [3.46 4.57], which confirms

the validity of the CRLB as the actual covariance of the 2-

D estimator. Therefore, the efficiency of the ML estimator is

verified in both scenarios.

B. Collision Warning with Estimated CPA Time

The root mean square (RMS) error for the CPA time from

100 Monte Carlo runs in Scenarios 5, 6 and 9 is 0.023 s, 0.31 s

and 0.012 s, respectively. And the corresponding maximum

deviation from the true CPA time in each scenario is 0.061 s,

0.35 s and 0.032 s. The maximum deviation in position at a

speed of 50m/s is less than 20 m, which is smaller than the

dimension of an airplane. Therefore, the estimation error in

the CPA time is acceptable in practice.

The collision warning is “on” for all 100 runs in Scenario 5

and 9, that is, at the estimated CPA time the ownship position

is inside the confidence region of the true target position

around its estimate as illustrated in Figure 4(a) and 4(c). The

collision warning is “off” for all 100 runs in Scenario 6, that

is, at the estimated CPA time the ownship position is outside

the confidence region of the true target position around its

estimate as illustrated in Figure 4(b).

The term “CPA angle” is defined as the angle formed by

the target velocity vector and the ownship velocity vector at

the CPA time when they are projected on a plane at the same

altitude. Therefore, the CPA angle is 180◦ in Scenario 5, 6

and 9.

The performance of the 3-D collision warning algorithm is

further evaluated by varying the target and ownship altitude

separation3 from 0 to 300 m in steps of 50 m and the CPA

angle from 180◦ to 135◦ in steps of -15◦ one parameter at

a time in Scenario 5. From Table II, the performance of 3-

D collision warning algorithm is not influenced by the CPA

angle. It has no missed detection of a collision and has no

false alarm when the intruder and ownship altitude separation

is beyond 100 m when there is no collision.

The performance of the 2-D collision warning algorithm is

evaluated in the same manner and the results are shown in

Table III. It has no missed detection when there is indeed a

collision, which is the same as the 3-D algorithm. The CPA

angle is more influential in the 2-D case. Recall that in the 2-D

scenarios it is assumed that the intruder is at the same altitude

as the ownship, which is not true when the altitude separation

is not zero. When the CPA angle is close to 180◦, the collision

is very likely to occur based on the same altitude assumption,

the false alarm rate is therefore very high. When the CPA angle

is reduced beyond 150◦, the 2-D collision warning algorithm

has no false alarms when the intruder and ownship altitude

separation is beyond 200 m.

The warning algorithm is useful in both 3-D and 2-D

scenarios. It is very accurate but more expensive using 3

transmitters. One could use two transmitters for more savings.

Although the false alarm rate is very high when the CPA angle

is close to 180◦, the avoidance maneuver action (changing the

course of the ownship by a small angle) caused by the false

alarm can be readily realized because of the small size of the

confidence region as shown in Figure 4(c).

VI. CONCLUSIONS

The ability to sense and avoid non-cooperative targets is

essential for UAS to perform routine tasks when they are not

alone in the airspace. We investigated several configurations

with bistatic range and Doppler measurements for collision

warning. It turned out that a multistatic configuration is needed

to provide good observability of the target localization param-

eter, which is useful for collision avoidance. The minimum

number of the transmitters required is three in a 3-D scenario

and two in a 2-D scenario. We also implemented an ML

estimator in both types of scenarios using the ILS technique

and showed that the estimator is statistically efficient through

Monte Carlo simulations. Based on the ML estimator, the

31000 ft (≈ 300 m) is a global standard for vertical separation
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(a) Scenario 5 (b) Scenario 6 (c) Scenario 9

Fig. 4. Collision warning decisions in a single run in Scenarios 5, 6 and 9. Collison warning is “on” in Scenarios 5 and 9 and is “off” in Scenario 6.

collision warning was formulated as a hypothesis testing

problem using a generalized likelihood function. The warning

algorithm has no missed detection of a collision in both the

3-D and 2-D scenarios. The warning algorithm has much

lower false alarm rates using the 3-D estimator than the 2-

D counterpart at the expense of one more transmitter.
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