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Abstract—A likelihood function for a multi-sensor, passive
sonar Bayesian tracker may use data directly from the array
elements or, alternatively, from the output of a conventional
beamformer (CBF). Here, we compare the performance of a
Bayesian tracker when using element- versus CBF-level data. We
observed that, provided the CBF’s beams are sufficiently closely
spaced, the tracker’s performance with CBF-level data is similar
to when it is using element-level data. However, when the spacing
between CBF beams becomes too large, tracker performance
with CBF-level data degrades significantly, particularly when the
target is located between the maximum response axes of two
adjacent beams.

I. INTRODUCTION

Bayesian trackers integrate measurements by way of a

likelihood function describing the likelihood of the observed

measurement given that a target is in a particular state [1].

For passive sonars, the likelihood function is ideally derived

based on the statistics of the raw signals observed at the

outputs of the array elements [2], [3]. For a single signal

of interest, this allows the likelihood function to implicitly

leverage the interference and noise rejection capabilities of

adaptive beamforming techniques such as minimum variance

distortionless response (MVDR) beamforming [4]–[6].

However, some passive sonar receivers may provide access

only to the output signals of a conventional beamformer

(CBF). As compared to element-level data, CBF-level data

is much simpler to analyze due to its explicit dependence on

bearing. Furthermore, when the number of CBF beams is less

than the number of array elements, conventional beamforming

provides a form of data compression that relaxes system

requirements for data storage and data processing.

One approach to handling CBF-level data is to formu-

late a likelihood function based on the signals’ power (i.e.,

magnitude-squared) statistics [7]. This is not optimal however,

as it neglects the phase-dependent covariances between signals

from different beams. Here, we present a passive sonar single-

signal log-likelihood ratio (SSLLR) based on the statistics of

the raw outputs of the CBF. This new formulation enables

Bayesian passive sonar tracking with CBF-level passive sonar

data and inherently provides interference and noise rejection

via MVDR beamforming of the CBF-level data as in [8], [9].

We demonstrate by use of simulations that CBF-level data

and element-level data lead to comparable performance of a 2-

D Cartesian-based position-velocity Bayesian tracker provided

that a sufficient number of CBF beams are used.

We begin by describing the signal model in Section II.

SSLLRs for element- and CBF-level data are presented in

Section III. Section IV describes the process for estimat-

ing various signal and noise parameters required to use the

SSLLRs. In Section V, we compare the performance of a

Bayesian tracker when using either the element- or CBF-level

SSLLR. Conclusions are presented in Section VI.

II. SIGNAL MODEL

A. Element-Level Signals

For a single frequency f , the kth T -second snapshot of the

output of an N element array of omnidirectional sensors in the

presence of M+1 uncorrelated sources and ambient noise may

be described by an N -element column vector x given by

xk =
M
∑

m=0

sk,mv(φm) + nk, (1)

where sk,m is the signal due to the mth source during snapshot

k, v is the array steering vector, φm denotes the direction of

arrival of the mth source’s signal in azimuth during snapshot

k and nk is the ambient noise during snapshot k. Here,

k ∈ {1, 2, · · · ,K}, m ∈ {0, 1, · · · ,M}. For simplicity, we

assume that φm is effectively constant over K snapshots. We

also assume all sources are in the far-field of the array whereby

the signals impinging on the array may be modeled as plane

waves. The array steering vector is an N -element column

vector given by

v(φ) =
[

ejk(φ)·r1 · · · ejk(φ)·rN
]T

(2)

for some direction of arrival φ. In (2), rn, n ∈ {1, 2, · · · , N}
denotes the position of the nth array element, and k is the

wavevector given by

k(φ) =
2πf

c
k̂(φ), (3)

where c is the speed of sound and k̂(φ) is a unit vector in the

direction φ.

The element-level sample covariance matrix is

Cx =
1

K

K
∑

k=1

xkx
H
k , (4)
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whereby the covariance matrix is estimated from K snapshots

and (·)H denotes the conjugate transpose. In practice, Kt

snapshots may be taken at Kf closely-spaced frequencies such

that K = KtKf , provided that T/8Kf is less than the transit

time of the array and the target may be approximated as

stationary in bearing for duration KtT [10].

We assume sk,m and nk for all k, m may be described

by uncorrelated circular complex Gaussian random processes

that are wide-sense stationary over the K snapshots. Then, the

covariance matrix of xk is

Rx(s) = E{xkx
H
k } =

M
∑

m=0

σ2
mv(φm)vH(φm) +Rn, (5)

where σ2
m is the variance of the mth source’s signal and Rn

is the covariance matrix of the noise nk as given by

Rn = E{nkn
H
k }, (6)

and s = {σ2
m, φm,Rn}

M
m=0 is the set of all considered state

parameters.

B. Conventional Beamformer-Level Signals

Let us assume that the element-level outputs are processed

by a CBF using L look directions ψℓ. The L-element output

vector for the CBF is given by

yk = BHxk, (7)

where B is the N -by-L matrix of weights for the CBF as

given by

B =
[

v(ψ1) · · · v(ψL)
]

. (8)

For later use, we define the CBF-level sample covariance

matrix as

Cy =
1

K

K
∑

k=1

yky
H
k (9)

and the CBF-level array steering vector as

ṽ(φ) = BHv(φ). (10)

III. SINGLE-SIGNAL LOG-LIKELIHOOD RATIO

We consider the SSLLR as described in [4], [11], which

marginalizes the log-likelihood ratio from a dependence on

all state parameters s to a dependence solely on the bearing

of the signal-of-interest. We assume that the m′th source is

the signal-of-interest, whereby the other M sources (m 6= m′)

are effectively interferers.

A. Element-Level Single-Signal Log-Likelihood Ratio

For element-level signals, the SSLLR for the m′th signal is

logLm′(X|φm′) =

K



− log

(

1 +
σ2
m′

ν(φm′)

)

+





σ2

m′

ν(φ
m′ )

1 +
σ2

m′

ν(φ
m′ )





P (φm′)

ν(φm′)



 (11)

as shown in [4], [11], where X = {xk}
K
k=1 is the set of K

element-level snapshots, Pm′(φ) is the MVDR beamformer’s

received power versus look angle as given by

Pm′(φ) = wH
m′(φ)Cxwm′(φ) (12)

and νm′(φ) is the average received noise-plus-interference

versus look angle as given by

νm′(φ) = wH
m′(φ)Rn+i,m′wm′(φ). (13)

In (12) and (13), wm′ is the MVDR beamformer’s weights

given by

wm′(φ) =
R−1

n+i,m′(s)v(φ)

v(φ)HR−1
n+i,m′(s)v(φ)

(14)

and Rn+i,m′(s) in (12)-(14) is the combined noise-plus-

interference covariance matrix given by

Rn+i,m′(s) =

M
∑

m=0
m 6=m′

σ2
mv(φm)vH(φm) +Rn, (15)

which is similar to (5) except that the summation excludes the

signal of interest corresponding to m = m′

Observe that the SSLLR is formulated under the assumption

that the noise-plus-interference covariance matrix Rn+i,m′(s)
and the m′th source’s signal power σ2

m′ are known or may

be estimated from the measurement data. Then, the SSLLR

depends only on the signal-of-interest’s direction-of-arrival

φm′ . The estimation of Rn+i,m′(s) and σ2
m′ shall be addressed

in Section IV.

B. CBF-Level Single-Signal Log-Likelihood Ratio

It may be shown that the SSLLR for CBF-level signals takes

a form similar to that presented in (11):

logLm′(Y|φm′) =

K



− log

(

1 +
σ2
m′

ν̃(φm′)

)

+





σ2

m′

ν̃(φ
m′ )

1 +
σ2

m′

ν̃(φ
m′ )





P̃ (φm′)

ν̃(φm′)



 (16)

where Y = {y}Kk=1 is the set of K CBF-level snapshots. In

(16), P̃m′(φ) is the CBF-level MVDR beamformer’s output

power given by

P̃m′(φ) = w̃H
m′(φ)Cyw̃m′ (17)

and ν̃m′(φ) is the CBF-level noise-plus-interference given by

ν̃m′(φ) = w̃H
m′(φ)R̃n+i,m′(s)w̃m′(φ). (18)

In (17) and (18), w̃m′ is the CBF-level MVDR beamformer

weights as given by

w̃m′(φ) =
R̃−1

n+i,m′(s)ṽ(φ)

ṽ(φ)HR̃−1
n+i,m′(s)ṽ(φ)

. (19)

In (18) and (19), R̃n+i,m′(s) is the CBF-level noise-plus-

interference covariance matrix as given by

R̃n+i,m′(s) = BHRn+i,m′(s)B. (20)
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IV. ESTIMATION OF THE SIGNAL AND NOISE PARAMETERS

As indicated by (15), computation of Rn+i,m′(s) [or

R̃n+i,m′(s) by way of (20)] requires knowledge of the in-

terfering sources’ parameters φm and σ2
m for m 6= m′, the

noise covariance matrix Rn, and the signal-of-interest’s power

σ2
m′ . The following sections describe our approach to esti-

mating these parameters. For brevity, we limit our discussion

to signal power and noise estimates for element-level data.

As may be deduced from Sections III, the corresponding

parameter estimates for beam-level data may be determined by

making the following substitutions in the text and equations:

L → N , Cy → Cx, ṽ(φ) → v(φ), BHRnB → Rn, and

BHRisoB → Riso, where Riso is the element-level covariance

matrix for isotropic noise as discussed in Section IV-A.

A. Noise Estimation

We assume the underwater ambient noise is isotropic such

that the element-level noise covariance matrix is given by

Rn = σ2
nRiso, (21)

where σ2
n is the noise power at each array element and

Riso describes the covariance between array elements due

to unit power isotropic ambient noise; see [12] for guidance

on computing Riso. In [11], the noise was assumed spatially

white such that the noise covariance matrix was assumed

proportional to an identity matrix. This enabled a simple

computation of the maximum likelihood noise power estimate

[11]. Although the formulation may be adapted to isotropic

noise, we have found it to be unreliable due to the potentially

ill-conditioned nature of Riso, particularly when the array is

operated at a frequency well below its design frequency. We

thus use an alternative noise estimate that is based on the

solution to the following minimization problem:

min
σ̂2
n

∥

∥

∥

∥

∥

Cx −

[

M
∑

m=0

σ̂2
mv(φ̂m)vH(φ̂m) + σ̂2

nRiso

]∥

∥

∥

∥

∥

2

, (22)

where ‖·‖ denotes the Frobenius norm. Equation (22) finds the

noise power estimate such that the modeled covariance matrix,

given by
∑M

m=0 σ̂
2
mv(φ̂m)vH(φ̂m)+ σ̂2

nRiso, is closest to the

sample covariance matrix Cx in the Frobenius norm. In (22),

φ̂m and σ̂2
m denote direction-of-arrival estimates and source

power estimates, respectively.

Defining

Cn = Cx −

M
∑

m=0

σ̂2
mv(φ̂m)vH(φ̂m) (23)

as the nominally noise-only sample covariance matrix, (22)

becomes

min
σ2
n

∥

∥Cn − σ̂2
nRiso

∥

∥

2
. (24)

The solution to (24) is

σ̂2
n =

tr
(

V−1CnVD
)

tr (D2)
, (25)

where the columns of V are the eigenvectors of Riso and D is

a diagonal matrix whose elements are the corresponding real

eigenvalues dn such that

Riso = VDV−1, (26)

and tr(·) denotes the matrix trace. Using the matrix trace, (25)

may be rewritten as

σ̂2
n =

∑N

n=1(cn/dn)|dn|
2

∑N

n=1 |dn|
2

, (27)

where cn is the nth diagonal element of V−1CnV.

Equation (27) shows that σ̂2
n is a weighted average of

the ratio cn/dn. The weighting |dn|
2 makes σ̂2

n robust when

the ratio’s denominator dn approaches zero. However, it also

tends to skew the estimate towards values of cn/dn where

|dn| is large. Through numerical simulations, we have found

that (27) tends to underestimate the noise power, leading to

false detections. We have addressed this problem by making

two modifications to the formulation. First, we force Cn

to be positive semidefinite. This is achieved by zeroing out

any negative eigenvalues of Cn as defined in (23). Second,

assuming dn composing D are sorted from greatest to least

such that dn−1 ≥ dn for all n ∈ {0, 1, · · ·N}, we estimate

the noise power by way of an unweighted average of the first

N ′ ratios cn/dn:

σ̂2
n =

1

N ′

N ′

∑

n=1

cn/dn. (28)

The truncation point N ′ is determined by the number of

significant eigenvalues dn. Specifying r as the rank of Rn,

we determine the truncation point as

N ′ = maxN ′ s.t.
N ′

∑

n=0

|dn| ≤

(

1−
1

10r

) r
∑

n=0

|dn|. (29)

For example, if Rn had a rank of r = 10, N ′ is chosen such

that the first N ′ eigenvalues contain approximately 99 % of

the power in Rn.

B. Signal Parameter Estimation

We use maximum likelihood estimates σ̂2
m′ and φ̂m′ for

the signal power and direction-of-arrival, respectively, of the

m′th source as done in [11]. The estimates are given by the

solutions to

{σ̂2
m′ , φ̂m′} = argmax

σ̂2

m′
,φ̂

m′

logLm′(X|φ̂m′) (30)

for all m′ ∈ {0, 1, 2, . . . ,M} with the constraint that σ2
m′ ≥ 0.

Due to the dependence of Equation (30)’s parameter estimates

for the m′th source on the parameter estimates for all other

sources, (30) must be solved iteratively, with each iteration

including a refinement of the noise power estimate in (28).
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C. Iterative Refinement of Estimates

Following [4], the iterative estimation procedure is initial-

ized by first assuming that one source was present (M = 0).

The mean of the N − M − 1 smallest eigenvalues of Cx

is used as the noise estimate. Then, the signal parameters of

the M + 1 sources are estimated followed by a new noise

estimate using (29). The signal and noise estimation step

is then repeated until the estimates converge. The assumed

number of sources is then incremented (i.e., M = 1), a new

initial noise estimate is computed, and the signal parameter

estimates and noise estimates are again iteratively refined. This

procedure is repeated until the assumed number of sources

equals the actual number of sources, which must be known

a priori or else postulated from the measurements.

Once all parameters have been determined, the signal-of-

interest’s direction-of-arrival φm′ is treated as an unknown

dependent variable so as to evaluate the SSLLR in (11) for

different bearings of the source-of-interest. This measurement-

based likelihood function may then be combined with a priori

estimates of the probability density function of the source-

of-interest’s bearing/location and a stochastic model of the

source-of-interest’s kinematics so as to realize a Bayesian

tracker.

D. Matrix Inversion

The SSLLR requires the inversion of Rn+i. Depending

on the array configuration and relative signal powers, this

matrix may be ill-conditioned such that its inverse is extremely

susceptible to numerical error. We address this issue by

use of the regularized matrix inverse appearing in Tikhonov

regularization of ill-conditioned linear least-squares problems.

For a matrix A, this regularized inverse is given by (c.f. [13])

Â−1 =
(

AHA+ λI
)−1

AH , (31)

where I is the identity matrix and λ is the scalar regularization

parameter. Conventional approaches to specifying λ make use

of the observation vector in an ill-conditioned linear least-

squares problem; see [13]–[15] and references therein. Lacking

a linear least-squares problem—we are fundamentally trying

to solve for the MVDR weights, which are the solutions to a

linearly constrained quadratic problem—we opt to set λ equal

to the smallest “significant” singular value of A, which we

denote as sNλ
. This is motivated by applying the singular

value decomposition A = USVH to (31), which yields

Â−1 = V
(

S2 + λ2I
)−1

SUH . (32)

Comparing (32) to the pseudoinverse of A as given by

VS−1UH , we see that λ suppresses the reciprocal of “small”

singular values (i.e., those much less than λ) while negligibly

perturbing “large” singular values (i.e., those much greater

than λ). In a procedure analogous to that used in (29), we

specify rA as the rank of A and determine Nλ via

Nλ = maxN ′
λ s.t.

Nλ
∑

i=1

si ≤

(

1−
1

10rA

) rA
∑

i=1

si. (33)

TABLE I
SIMULATION DETAILS

Parameter Value

Ambient noise spectrum level 60 dB re 1 µPa2/Hz

Target source spectrum level 123 dB re 1 µPa2/Hz

Target source bandwidth 3 Hz

Measurement center frequency 750 Hz

Snapshot duration T = 0.64 s

Frequency snapshots per measurement Kf = 9

Time snapshots per measurement Kt = 188

Total snapshots per measurement K = KfKt = 1692

Measurement duration KtT = 120 s

Tracking bandwidth Kf/T = 14 Hz

Array directivity 16 dB at 750 Hz

V. SIMULATIONS

The bearing-dependent SSLLRs were mapped to Cartesian

space for integration into a 2-D Cartesian Bayesian tracker

designed to facilitate multi-sensor data fusion. The tracker

featured a 2-D Cartesian position-velocity probability density

grid [16], a hybrid particle-grid motion update procedure [17],

and a birth-death model for the movement of a source into

or out of the tracking region [18]. Further details about the

Bayesian tracker implementation may be found in [19], [20].

Although the tracker supports multi-sensor data fusion, we

limit our scope to single sensor scenarios so as to compare

the performance of the tracker with element-level versus CBF-

level signals.

The Sonar Simulation Toolset (SST) [21] was used to gen-

erate three different underwater target detection and tracking

scenarios. The simulations used a uniform circular array of

N = 50 omnidirectional elements. The inter-element spacing

was 0.75 m, which corresponds to a half-wavelength at 1 kHz.

The array was positioned in the horizontal plane at a depth of

20 m. Tracking was done within an 80 km by 80 km region

of interest centered about the array. The signal of interest was

a narrowband signal at 750 Hz generated by a single target

moving at a speed of 5 m/s within the tracking region at a

constant depth of 20 m. Our immediate application of interest

does not consider interferers, so no additional sources were

specified. Additional simulation details are provided in Table I.

Element-level data was simulated from SST and used to

compute the CBF-level data via (7). For the CBF-level data,

we considered L ∈ {30, 40, 50} look directions equispaced in

bearing. The element- and CBF-level data were then used to

compute SSLLRs. Each of the three simulation scenarios was

repeated five times by generating five unique element-level

data sets from SST.

A. Tracker Performance Metrics

We consider three performance metrics for the Bayesian

tracker: target probability Pt, the error in the maximum

a posteriori (MAP) of the target bearing probability density

function (PDF) φMAP, and the angular spread of the target
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bearing PDF Λφ. The target probability comes naturally from

the Bayesian tracker framework and indicates the probability

that a target is in the region of interest. The MAP target

bearing is the maximum of the posterior of the target bearing

PDF, denoted fΦ(φ), which is itself conditioned on a target

being in the tracking region. The target bearing PDF fΦ(φ) is

calculated by marginalizing the tracker’s 2-D Cartesian target

position PDF with respect to range from the array. The bearing

PDF angular spread provides a measure of target localization.

As shown in [22], it is computed as

Λφ =

√

1−
|F1|2

|F0|2
, (34)

where Fn are angular Fourier coefficients calculated as

Fn =

∫ 2π

0

fΦ(φ)e
jnφdφ. (35)

The bearing PDF angular spread1 takes on values from 0 to

1, with 0 corresponding to a highly localized target [e.g., for

fΦ(φ) = δ(φ−φ0) where δ(φ) is the Dirac delta function] and

1 corresponding to a poorly localized target [e.g., for fΦ(φ) =
1/(2π)].

B. Simulation 1: Linear Target Path within CBF Beam

For the first scenario, the target’s initial bearing and range

are 0◦ and 30 km, respectively. The target’s heading is 180◦

and is closing on the receiver array at a rate of 5 m/s. The

L equispaced CBF beams are arranged such that the first

beam’s maximum response axis (MRA) is at 0◦. Thus, for

this scenario, the target is headed straight towards the receiver

and its path lies along the MRA of the first CBF beam.

Tracker performance metrics averaged over the five sim-

ulation trials are presented in Fig. 1. We observe that the

transition from Pt ≈ 0 to Pt ≈ 1 occurs during measurements

20–30, wherein the target range is 18–12 km, and the tracking-

bandwidth-averaged spectrum level of the signal-of-interest

arriving at the array is 34–30 dB re 1 µPa2/Hz, respectively.

Excepting for CBF-level data with L = 30, the tracker

performance for CBF- and element-level data is similar. When

only L = 30 CBF beams are used, we observe a slight

degradation in the tracker’s performance that is realized as

a latency in the detection and localization of a target.

C. Simulation 2: Linear Target Path between CBF Beams

For the second scenario, we use the same target path that

was used in the first scenario but consider a rotation of the L
CBF beams by π/L such that 0◦ in bearing lies between the

maximum response axes of the CBF’s first and second beams.

As compared to scenario #1, this “between CBF beams”

configuration is expected to result in a consistently lower target

signal-to-noise ratio (SNR) such that detection and localization

of the target does not occur until the target is closer to the

1Angular spread as defined by (34)-(35) was originally conceived as a
measure of how incident power is spread in azimuth; that is, the width of
a power-angle spectrum. We have found it equally useful for quantifying the
width of a bearing-dependent PDF.

receiver. For this rotated beam configuration, we note that the

first and second beams’ scalloping loss in the direction of

the target (0◦) for L = 50, 40, and 30 is 3.2 dB, 5.5 dB,

and 12.2 dB, respectively. For convenience and to facilitate

comparisons to scenario #1, we use the element-level data

from scenario #1’s five trials to compute the CBF-level data for

the rotated CBF beams. Therefore, the corresponding element-

level results for scenario #2 are identical to those in scenario

#1.

Figure 2 presents the tracker performance metrics for the

rotated CBF beams averaged over the five trials. For the

between-beam configuration, we observe a much greater la-

tency in the target detection and localization when using

L = 30 CBF beams as compared to scenario #1’s within-beam

configuration. This is attributed to the 12.2 dB reduction in

SNR due to the beams’ scalloping loss in the direction of the

target. For L = {50, 40}, we observe a very small degradation

in tracker performance, with L = 50 performing slightly better

than L = 40. This behavior was found to be consistent across

all five trials.

D. Simulation 3: Spiral Target Path

For the third scenario, the target slowly approaches the

receiver array along the spiral path shown in Fig. 3. The

target maintains a constant speed of 5 m/s. We use the non-

rotated CBF beam arrangement from scenario #1 where the

first beam’s MRA is at 0◦.

Figure 4 compares the trial-averaged tracker performance

for the different configurations. We observe that the transition

from Pt ≈ 0 to Pt ≈ 1 occurs during measurements 60–

90, wherein the target range is 18–14 km, and the tracking-

bandwidth-averaged spectrum level of the signal-of-interest

arriving at the array is 34–32 dB re 1 µPa2/Hz, respectively.

Similar to scenario #2, we observe a significant degradation in

target detection and localization with L = 30 as compared to

the element-level data configuration. In contrast to scenario #2,

we observe that CBF-level data with L = 40 shows slightly

better performance than L = 50 during the time in which the

target is becoming detectable, roughly measurements 70–85.

Examining the per-trial results, we have found that for the fifth

trial, L = 40 demonstrated better performance than L = 50.

However, for all other trials, the performance of L = 40 and

L = 50 were nearly identical. Thus, we do not consider the

differences in performance between L = 50 and L = 40 in

Fig. 4 to be significant. Additional trials are needed to confirm

this.

VI. CONCLUSIONS

Using CBF-level data with L < N can be desirable when

one wants to reduce the data storage and/or throughput require-

ments for a target tracker. Here, we have shown that tracking

performance when using element- versus CBF-level data can

be comparable provided that a sufficient number of CBF

beams are used. For the tracking scenarios, array geometry,

and measurement frequency considered here, we observed the

tracking performance for an N = 50 element uniform circular
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(c) RMS MAP target bearing error

Fig. 1. Tracker performance metrics averaged over five runs for the linear
target path within a CBF beam.
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Fig. 2. Tracker performance metrics averaged over five runs for the linear
target path between CBF beams.
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Fig. 3. Spiral path of the target used in Simulation 3. The receiver position
is marked by the square. The target’s initial position is marked by the circle,
and its position at each measurement is marked by dots.

array was comparable when using element-level data directly

versus using CBF-level data with L ∈ {50, 40} equispaced

CBF beams; a significant degradation in tracker performance

was observed when using L = 30 beams.

In [8], it was shown that one should choose the number of

CBF beams L such that the CBF-level covariance matrix Ry

is full-rank for L beams and rank-deficient for L + 1 beams

so as to maximize the SNR of the adaptively beamformed

CBF-level data. This in turn may be expected to maximize the

tracker’s performance with CBF-level data. While theoretically

sound, this guidance for choosing L can be of limited utility in

practice, because the distinction between a full-rank albeit ill-

conditioned Ry and a truly rank-deficient Ry is rarely clear

and depends on the actual signals at the array elements.

An alternative approach to choosing L would be to consider

the between-beams scalloping loss. Increased scalloping loss

will reduce the SNR of the CBF-level data, which will in turn

reduce the maximum achievable SNR of the adaptively beam-

formed CBF-level data and degrade the detection and localiza-

tion performance of the tracker. Between-beam scalloping loss

depends on a combination of the number of beams L, their

arrangement in bearing space, the measurement frequency, and

even the array geometry. Based on the simulations presented

here, as well as additional simulations at 500 Hz and 1 kHz,

tracker performance with CBF-level data is expected to be

comparable to performance with element-level data provided

that the number of beams L and their arrangement are chosen

such that the between-beam scalloping loss does not exceed

6 dB.
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(c) RMS MAP target bearing error

Fig. 4. Tracker performance metrics averaged over five runs for the spiral target path.
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