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Abstract—We present a Bayesian tracker for broadband pas-
sive sonar. The Bayesian formulation in Cartesian coordinates
facilitates multi-sensor fusion of a distributed field of receivers.
The likelihood functions used in the tracker are formulated so
as to leverage a priori knowledge about the signal-of-interest’s
bandwidth and spectral mask when available. The use of a priori
knowledge about the signal enables substantial gains in the
tracker’s detection and localization performance, even when this
knowledge is approximate.

I. INTRODUCTION

Sub-band energy detection schemes (e.g., sub-band peak

energy detector [SPED] and sub-band extrema energy detector

[SEED]) have long been the de facto standard for processing

broadband passive sonar measurements from a single sensor

[1], [2]. However, these approaches are ill-suited for data-

fusion-type applications wherein measurements are available

from multiple distributed sensors. In contrast, likelihood func-

tions combined with a Bayesian tracker provide a natural

paradigm for multi-sensor data fusion.

For broadband sources, the likelihood function is typically

formulated in terms of the total power within a given conven-

tional beamformer (CBF) beam after integrating over the entire

measurement bandwidth [3], [4]. However, the likelihood func-

tion may alternatively be derived based on the statistics of the

raw signals observed at the outputs of the array elements [5].

For a single signal of interest, the use of the raw signal allows

the likelihood function to implicitly leverage the interference

and noise rejection capabilities of adaptive beamforming as

was demonstrated in [6] for narrowband signals and [7] for

broadband signals.

Here, we extend the likelihood formulation described in

[6], [8] for use with broadband signals. We describe two

different approaches to marginalizing the broadband likelihood

ratios. One approach is applicable when one has no a priori

knowledge of the signal’s spectral mask; the other approach

leverages a priori knowledge of the signal’s spectral mask to

significantly improve tracking performance. Simulation results

obtained by use of a 2-D Cartesian-based position-velocity

Bayesian tracker reveal that this latter approach is robust to

errors in the assumed spectral mask of the signal.

We begin by describing the signal model in Section II.

Narrowband and broadband single-signal log-likelihood ratios

(SSLLRs) are presented in Section III. Section IV describes

the process for estimating various signal and noise parame-

ters required to use the SSLLRs. We consider two different

approaches to estimating the signal parameters depending on

the available a priori knowledge of the signal of interest. In

Section V, we assess the performance of a Bayesian tracker

for a broadband signal with a range of potential bandwidths

and different degrees of a priori knowledge of the signal (e.g.,

known/unknown bandwidth and spectral mask). Conclusions

are presented in Section VI.

II. SIGNAL MODEL

At a frequency f , the kth T -second snapshot of the output of

an N element array of omnidirectional sensors in the presence

of M + 1 uncorrelated sources and ambient noise may be

described by an N -element column vector x given by

xk(f) =

M
∑

m=0

sk,m(f)v(φm, f) + nk(f), (1)

where sk,m(f) is the signal due to the mth source during

snapshot k, v is the array steering vector, φm denotes the

direction of arrival of the mth source’s signal in azimuth

during snapshot k, and nk(f) is the ambient noise during

snapshot k. Here, k ∈ {1, 2, . . . ,K}, m ∈ {0, 1, . . . ,M},

and we assume M is known. For simplicity, we assume that

φm is effectively constant over K snapshots. We also assume

all sources are in the far-field of the array whereby the signals

impinging on the array may be modeled as plane waves. The

array steering vector v(φ, f) is an N -element column vector

given by

v(φ, f) =
[

ejk(φ,f)·r1 · · · ejk(φ,f)·rN
]T

(2)

for some direction of arrival φ. In (2), rn, n ∈ {1, 2, . . . , N}
denotes the position of the nth array element, and k is the

wavevector given by

k(φ, f) =
2πf

c
k̂(φ), (3)

where c is the speed of sound and k̂(φ) is a unit vector in

the direction φ. The element-level sample covariance matrix

is given by

Cx(f) =
1

K

K
∑

k=1

xk(f)x
H
k (f), (4)

whereby the covariance matrix is estimated from K snapshots

and (·)H denotes the conjugate transpose.
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We assume sk,m(f) and nk(f) for all k, m may be

described by uncorrelated circular complex Gaussian random

processes that are wide-sense stationary over the K snapshots.

Then, the covariance matrix of xk(f) is

Rx(s, f) = E{xk(f)x
H
k (f)}

=

M
∑

m=0

Pmpm(f)v(φm, f)vH(φm, f) +Rn(f)
,

(5)

where Pm is the total power of the mth source’s signal,

pm(f) is the signal’s spectral mask defined such that Pmpm(f)
is the corresponding power-spectral density, and Rn is the

covariance matrix of the noise nk as given by

Rn(f) = E{nk(f)n
H
k (f)}. (6)

III. SINGLE-SIGNAL LOG-LIKELIHOOD RATIO

We consider the SSLLR as described in [6], [8]. The SSLLR

is the marginalization of the log-likelihood ratio, given by

logL(X|s) =
Q
∑

q=1

−K
[

log |Rx(s, fq)|+ tr
(

R
−1
x

(s, fq)Cx(fq)
)]

, (7)

such that it depends only on the signal-of-interest’s direction-

of-arrival. In (7), s = {Pm, φm,Rn}
M

m=0 is the set of all

considered state parameters and X = {xk}
K
k=1 is the set of

K snapshots.

A. Narrowband

At a single frequency, the SSLLR for the m′th source is

logLm′(X(f)|φm′) = K

[

− log

(

1 +
Pm′pm′(f)

νm′(φm′)

)

+





Pm′pm′ (f)
νm′ (φm′ ,f)

1 + Pm′pm′ (f)
νm′ (φm′ ,f)





PMVDR,m′(φm′ , f)

νm′(φm′ , f)

]

(8)

as presented in [6]. In (8), PMVDR,m′ is the minimum variance

distortionless response (MVDR) power versus look angle as

given by

PMVDR,m′(φ, f) = w
H
m′(φ, f)Cx(f)wm′(φ, f), (9)

νm′(φ, f) is the average received noise-plus-interference with

respect to the m′th source as given by

νm′(φ, f) = w
H
m′(φ, f)Rn+i,m′(f)wm′(φ, f), (10)

wm′ is the MVDR beamformer weights given by

wm′(φ, f) =
R

−1
n+i,m′(f)v(φ, f)

vH(φ, f)R−1
n+i,m′(f)v(φ, f)

, (11)

and Rn+i,m′(f) is the combined noise-plus-interference co-

variance matrix with respect to the m′th source as given by

Rn+i,m′(s, f) =
M
∑

m=0
m 6=m′

Pmpm(f)v(φm, f)vH(φm, f) +Rn(f). (12)

Note that the computation of R−1
n+i,m′ in (11) can be unstable

due to the matrix’s potentially large condition number. A

regularized approach to computing the inverse is described

in [9].

B. Broadband

When the signal of interest spans multiple frequencies fq
with q ∈ {1, 2, . . . , Q}, we may sum (8) over all fq under

the assumption that the signal and noise at different fq are

uncorrelated. This is a reasonable assumption for many types

of signals that may be modeled as random processes. Using

this assumption, the broadband single-signal log-likelihood

ratio takes the form

logLm′(X|φm′) =

Q
∑

q=1

logLm′(X(fq)|φm′). (13)

The summation in (13) is nominally over the frequency band

of interest, but it may also be taken across the entire mea-

surement band at the cost of reduced detection and tracking

performance. This may be appropriate when the bandwidth

and/or center frequency of the m′th signal is unknown.

IV. MARGINALIZATION OF THE BROADBAND

SINGLE-SIGNAL LIKELIHOOD RATIO

Evaluation of the broadband SSLLRs requires estimates of

the interfering sources’ parameters φm, Pm, and pm(f) for

m 6= m′; the noise covariance matrix Rn(f); and the signal-

of-interest’s power Pm′ and spectral mask pm′(f). In this

section, we discuss how these parameters may be estimated.

A. Noise Estimation

We assume the noise nk is due to isotropic ambient noise,

and estimate Rn(f) independently at each frequency using the

approach described in [9]. It is likely that a better estimate

of Rn(f) may be attained by leveraging knowledge of the

frequency dependence of the ambient noise. For example, the

noise power may be a slowly varying function of frequency,

which would allow some amount of frequency smoothing.

However, to facilitate comparisons between the two different

source parameter estimation techniques described in Sec-

tions IV-B1 and IV-B2, we restrict ourselves to narrowband

estimates.
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B. Source Parameter Estimation

We consider source parameter estimation under two scenar-

ios: when the spectral masks pm(f) are known and when they

are unknown.

1) Known Spectral Mask: Provided one has knowledge

of the spectral masks pm(f) of the M + 1 signals, one

can estimate the source powers Pm and bearings φm jointly

across all frequencies of interest. We consider the maximum

likelihood estimates P̂m′ and φ̂m′ corresponding to the signal

power and bearing of the m′th source. For a given bearing

estimate φ̂m′ , the maximum likelihood estimate P̂m′ for the

m′th source’s signal power is

P̂m′ = argmax
P̂m′

{

Q
∑

q=1

−K
[

log |Rx(ŝ, fq)|+ tr
(

R
−1
x

(ŝ, fq)Cx(fq)
)]

}

(14)

with the constraint that P̂m′ ≥ 0 for some m′ ∈
{0, 1, 2, . . . ,m}, where ŝ = {P̂m, φ̂m, R̂n}

M
m=0 denotes the

current estimate of all state parameters. As shown in the

appendix, the estimate P̂m′ that maximizes (14) also solves

the scalar equation

0 =

Q
∑

q=1

pm′(fq)

×
P̂m′pm′(fq) + ν̂m′(φ̂m′ , fq)− P̂MVDR,m′(φ̂m′ , fq)

[

P̂m′pm′(fq) + ν̂m′(φ̂m′ , fq)
]2 ,

(15)

where ν̂m′ and P̂MVDR,m′ , and ŵ
H
m′ are estimates of the noise-

plus-interference power, MVDR power, and MVDR weights as

defined by (9)-(12) with Rn+i,m′(s, f) replaced by its estimate

R̂n+i,m′(ŝ, f).

Equation (15) may be used to estimate the signal power

P̂m′ given an estimate of the source’s bearing φ̂m′ . Given an

estimate of the signal power P̂m′ , the maximum likelihood

estimate for the source’s bearing φ̂m′ is

φ̂m′ = argmax
φ̂m′

{

Q
∑

q=1

−K
[

log |Rx(ŝ, fq)|+ tr
(

R
−1
x

(ŝ, fq)Cx(fq)
)]

}

, (16)

which may be simplified to the following scalar expression:

φ̂m′ = argmax
φ̂m′

{

Q
∑

q=1

[

− log

(

1 +
P̂m′pm′(fq)

ν̂m′(φ̂m′ , fq)

)

+





P̂m′pm′ (fq)

ν̂m′ (φ̂m′ ,fq)

1 +
P̂m′pm′ (fq)

ν̂m′ (φ̂m′ ,fq)





P̂MVDR,m′(φ, fq)

ν̂m′(φ̂m′ , fq)

]}

. (17)

As in [6], the bearing and power maximum likelihood

estimates may be determined by solving (15) for a finely

discretized set of φ̂m′ ∈ [0, 2π). The resulting set of parameter

pairs (φ̂m′ , P̂m′) is then substituted into (17) so as to deter-

mine which parameter pair maximizes the log-likelihood ratio

and thus constitute the maximum likelihood estimates.

2) Unknown Spectral Masks: Lacking a priori knowledge

of the spectral masks pm(f) of the M + 1 signals, one must

estimate the narrowband signal power σ2
m,q = Pmpm(fq) for

each q ∈ {1, 2, . . . , Q}. From the discussion in Section IV-B1,

it is tempting to seek a bearing φm′ and a set of narrowband

signal powers σ2
m′,q for the m′th signal that maximizes the

broadband log-likelihood ratio in (13). However, we have

found this approach to be unsatisfactory for Bayesian tracking.

This is because the maximum likelihood estimates for the

narrowband signal powers σ̂2
m′,q always result in a set of

frequency-dependent log-likelihood ratios that add construc-

tively at the maximum likelihood estimate for the bearing φm′

of the m′th signal. This likelihood maximization is expected

for any maximum likelihood estimate, but here it has the

unintended consequence of always driving the broadband log-

likelihood ratio high enough such that the Bayesian tracker

declares a target detection even when no target is present.

Due to this false-detection issue, we investigated a simpler

approach to marginalization of the log-likelihood ratio for use

when the signals’ spectral masks are unknown. In this ap-

proach, we treat the measurements at the different frequencies

as independent of one another, and independently compute Q
narrowband SSLLRs of the form

logLm′(X(fq)|φ0) = K

[

− log

(

1 +
σ2
m′,q

ν(φm′ , fq)

)

+





σ2

0,q

ν(φm′ ,fq)

1 +
σ2

m′,q

ν(φm′ ,fq)





PMVDR,m′(φm′ , fq)

ν(φm′ , fq)

]

. (18)

This effectively converts the problem of marginalizing a broad-

band SSLLR spanning Q frequencies into one of marginalizing

Q narrowband SSLLRs. Details on marginalizing a narrow-

band log-likelihood ratio of the form shown in (18) may be

found in [6], [8]–[10]. Here, we use the specific estimation

procedures described in [9].

C. Iterative Refinement of Parameter Estimates

Due to the interdependence of the noise and signal parame-

ter estimates, they must be determined iteratively in a manner

analogous to the alternating maximization algorithm [6], [10].
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For the frequency-independent source parameter estimation

described in Section IV-B2, this iterative refinement is done

independently for each frequency fq . For the spectral mask-

based source parameter estimation described in Section IV-B1,

the iterative refinement is done as described below.

Following [6], the iterative estimation procedure is initial-

ized by first assuming one source is present (M = 0). At each

frequency fq , the mean of N −M −1 smallest eigenvalues of

Cx(fq) is used as an estimate of the noise power, which leads

to an estimate of the noise covariance matrix Rn(f). Then,

the signal parameters for the M + 1 sources are estimated.

This is followed by a new noise estimate, then a new set of

signal parameters, and so on until the estimates converge. The

assumed number of sources is then incremented (i.e., M = 1),

a new initial noise estimate is computed, and the signal

parameter estimates and noise estimates are again iteratively

refined. This procedure is repeated until the assumed number

of sources equals the actual number of sources, which must

be known a priori or else postulated from the measurements.

Once all parameters have been determined, the signal-of-

interest’s direction-of-arrival φ0 is treated as an unknown

dependent variable so as to evaluate the broadband SSLLR

in (13) for different bearings of the source-of-interest. This

measurement-based likelihood function may then be combined

with a priori estimates of the probability density function

of the source-of-interest’s bearing/location and a stochastic

model of the source-of-interest’s kinematics so as to realize

a Bayesian tracker.

V. SIMULATIONS

The bearing-dependent SSLLRs were mapped to Cartesian

space for integration into a 2-D Cartesian Bayesian tracker

designed to facilitate multi-sensor data fusion. The tracker

featured a 2-D Cartesian position-velocity probability density

grid [11], a hybrid particle-grid motion update procedure [12],

and a birth-death model for the movement of a source into

or out of the tracking region [13]. Further details about the

Bayesian tracker implementation may be found in [14], [15].

Although the tracker supports multi-sensor data fusion, we

limit our scope to single sensor scenarios so as to compare

the performance of the tracker with element-level versus CBF-

level signals.

The Sonar Simulation Toolset [16] was used to generate

three different underwater target detection and tracking sce-

narios. The simulations used a uniform circular array of N =
50 omnidirectional elements. The inter-element spacing was

0.75 m, which corresponds to a half-wavelength at 1 kHz. The

array was positioned in the horizontal plane at a depth of 20 m.

Tracking was done within an 80 km by 80 km region centered

about the array. The signal of interest was generated by a single

target located 54 km east of the array at a depth of 20 m and

moving directly toward the array at a constant speed of 5 m/s.

The signal generated by the target had a Gaussian power-

spectral density centered at fc = 750 Hz with a root-mean-

square (RMS) bandwidth (i.e., “standard deviation”) of σBW.

In the simulations, we considered signal RMS bandwidths of
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Fig. 1. Signal power spectral densities for different signal bandwidths σBW .

TABLE I
SIMULATION DETAILS

Parameter Value

Ambient noise spectrum level 60 dB re 1 µPa2/Hz

Target peak spectrum level 113 dB re 1 µPa2/Hz

Measurement center frequency 750 Hz

Snapshot duration T = 0.23 s

Time snapshots per measurement K = 515

Measurement duration KT = 120 s

FFT resolution 4.3 Hz

Array directivity 16 dB at 750 Hz

σBW = {100, 30, 10} Hz. Figure 1 presents the power spectral

densities for the different bandwidths. Additional simulation

details are provided in Table I.

We considered four tracking scenarios based on the dif-

ferent source parameter estimation techniques and different

degrees of a priori knowledge of the signal. These scenarios

are outlined in Table II. The ‘Tracking Bandwidth’ column

indicates what portion of the 500 Hz measurement bandwidth

was used for broadband tracking; for all scenarios, the tracking

bandwidth (BW) was centered about 750 Hz. ‘Full BW’

indicates that the log-likelihood ratio was evaluated over the

entire 500 Hz measurement bandwidth; ‘Signal BW’ indicates

that log-likelihood ratio was evaluated for frequencies within

a ±2σBW band (i.e., plus/minus two standard deviations of

the Gaussian mask) centered about 750 Hz.

The ‘Signal BW, known pm(f)’ scenario evaluates the

broadband tracking performance when one has complete

a priori knowledge of the signal of interest and represents

the best-case scenario in terms of both a priori knowledge

and, as will be shown, tracker performance. The ‘Signal

BW, pm(f) ≈ 1’ scenario evaluates the broadband tracking

performance when one has a priori knowledge of the signal-

of-interest’s frequency band and approximate albeit erroneous

knowledge of its spectral mask. The ‘Signal BW, unknown
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TABLE II
TRACKING SCENARIOS

Name Description
Tracking

Bandwidth (BW)

Source Parameter

Estimation Technique

Signal BW, known pm(f)

Broadband tracking over the target signal’s bandwidth;
signal’s fc is known; signal’s BW is approximated as
4σBW; signal’s spectral mask is known exactly over
approximated BW.

4σBW

Section IV-B1
Known Spectral Mask

Signal BW, pm(f) ≈ 1

Broadband tracking over the target signal’s bandwidth;
signal’s fc is known; signal’s BW is approximated as
4σBW; spectral mask is approximated as constant over
approximated BW.

4σBW

Section IV-B1
Known Spectral Mask

Signal BW, unknown pm(f)
Broadband tracking over the target signal’s bandwidth;
signal’s fc is known; signal’s BW is approximated as
4σBW; spectral mask is unknown.

4σBW

Section IV-B2
Unknown Spectral Mask

Full BW, unknown pm(f)
Broadband tracking over the entire measurement BW;
signal’s fc and BW unknown; spectral mask is un-
known.

500 Hz
(Full BW)

Section IV-B2
Unknown Spectral Mask

Narrowband Narrowband tracking at 750 Hz.
4.3 Hz

(FFT resolution)
Section IV-B2

Unknown Spectral Mask

pm(f)’ scenario evaluates the broadband tracking performance

when one has a priori knowledge of the signal-of-interest’s

frequency band (i.e., center frequency and bandwidth) but

no knowledge of its spectral mask. The ‘Full BW, unknown

pm(f)’ scenario evaluates the broadband tracking performance

when one has no a priori knowledge of the signal emitted by

the target. Finally, the ‘Narrowband’ tracking scenario at the

single frequency of 750 Hz provides a reference for gauging

the relative performance of the different broadband tracking

scenarios.

A. Tracker Performance Metrics

We consider three performance metrics for the Bayesian

tracker: target probability Pt, the error in the maximum

a posteriori (MAP) of the target bearing probability density

function (PDF) φMAP, and the angular spread of the target

bearing PDF Λφ. The target probability comes naturally from

the Bayesian tracker framework and indicates the probability

that a target is in the region of interest. The MAP target

bearing is the maximum of the posterior of the target bearing

PDF, denoted fΦ(φ), which is itself conditioned on a target

being in the tracking region. The target bearing PDF fΦ(φ) is

calculated by marginalizing the tracker’s 2-D Cartesian target

position PDF with respect to range from the array. The bearing

PDF angular spread provides a measure of target localization.

As shown in [17], it is computed as

Λφ =

√

1−
|F1|2

|F0|2
, (19)

where Fn are angular Fourier coefficients calculated as

Fn =

∫ 2π

0

fΦ(φ)e
jnφdφ. (20)

The bearing PDF angular spread1 takes on values from 0 to

1, with 0 corresponding to a highly localized target [e.g., for

fΦ(φ) = δ(φ−φ0) where δ(φ) is the Dirac delta function] and

1 corresponding to a poorly localized target [e.g., for fΦ(φ) =
1/(2π)].

B. Results

Figures 2–4 summarize the tracker’s performance for the

different tracking scenarios and signal bandwidths. The figures

present the average of the performance metrics from the five

simulation runs. Figure 2 shows the average target probability.

Figure 3 shows the average angular spread of the target bearing

PDF. Figure 4 shows the RMS error in the target bearing MAP.

We note that at measurements {30, 50, 70}, the target range is

{35, 23, 11} km, and the peak spectrum level of the signal of

interest arriving at the array is {22, 26, 32} dB re 1 µPa2/Hz,

respectively.

For all of the metrics and signal bandwidths, we see that

the best performance is achieved with ‘Signal BW, known

pm(f)’, followed closely by ‘Signal BW, pm(f) ≈ 1’.

These two scenarios, which rely on exact and approximate

knowledge of the signal’s spectral mask, respectively, show

significant performance gains relative to the other approaches.

This clearly demonstrates the utility of approximate knowledge

of the signal’s spectral mask.

The ‘Narrowband’ and ‘Signal BW, unknown pm(f)’ sce-

narios perform very similarly. Recall that the ‘Signal BW,

unknown pm(f)’ log-likelihood ratio is just the sum of mul-

tiple narrowband log-likelihood ratios. This implies that the

performance of ‘Signal BW, unknown pm(f)’ is highly depen-

dent on the underlying tracking performance enabled by the

narrowband log-likelihood ratio. By restricting ‘Signal BW,

unknown pm(f)’ to frequencies wherein the power spectral

1Angular spread as defined by (19)-(20) was originally conceived as a
measure of how incident power is spread in azimuth; that is, the width of
a power-angle spectrum. We have found it equally useful for quantifying the
width of a bearing-dependent PDF.
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density is relatively large, the overall tracking performance of

‘Signal BW, unknown pm(f)’ remains similar to that of the

‘Narrowband’ approach.

Despite this similarity, it is still advantageous to use ‘Sig-

nal BW, unknown pm(f)’ over ‘Narrowband’ whenever the

signal’s frequency support is known. The broadband log-

likelihood ratio used in ‘Signal BW, unknown pm(f)’ in-

herently sums multiple narrowband log-likelihood ratios at

frequencies spanning the signal’s bandwidth. This makes the

‘Signal BW, unknown pm(f)’ approach less sensitive to

variations in the signal’s spectral mask as compared to the

‘Narrowband’ approach, which could inadvertently be used at

a frequency corresponding to a null in the signal’s spectral

mask.

The performance of ‘Full BW, unknown pm(f)’ is compa-

rable to ‘Narrowband’ for σBW = 100 Hz but is degraded for

smaller bandwidths. Recall that ‘Full BW, unknown pm(f)’
uses the entire 500 Hz measurement band and thus uses fre-

quencies outside of the signal’s bandwidth. Narrowband log-

likelihood ratios formed at frequencies outside of the signal’s

bandwidth tend toward a “no target” state that biases the

overall broadband likelihood ratio. Going from σBW = 100 Hz

to σBW = 10 Hz, the signal occupies a shrinking fraction of

the overall measurement bandwidth, whereby the “no target”

bias increases. This effectively desensitizes the tracker and

necessitates an increasingly louder signal (i.e., closer target)

in order to detect and localize the target. This exemplifies

the difficulties inherent in trying to detect the presence of

a signal whose frequency support is unknown and whose

bandwidth is much smaller than the overall measurement

bandwidth. Ongoing research seeks to develop alternative

tracking approaches and/or likelihood ratio formulations that

may be used to detect and track a completely unknown signal

anywhere within the measurement band.

VI. CONCLUSIONS

As demonstrated by the simulations, a priori knowledge

of a broadband signal’s spectral mask enables significant

improvement in the detection and localization performance

of a Bayesian tracker, even when the knowledge of the

signal’s spectral mask is approximate. The results presented

here showed a relatively small degradation in performance

when going from the exact spectral mask to an approximate

one. Further research is necessary to better understand how

far the approximate spectral mask may deviate from the

actual spectral mask and still provide satisfactory tracking

performance. For scenarios where both the signal’s spectral

mask and its total power may be approximated, the broadband

tracking approach described here may be combined with the

source level modeling technique described in [14] so as to

yield both bearing and range estimates for sources emitting

broadband signals. This would essentially enable leveraging

of another layer of a priori knowledge of the signal.

In cases where the signal’s spectral mask cannot be approx-

imated but the signal’s frequency range is known, the perfor-

mance of the broadband tracking approach presented here was
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Fig. 2. Target probability averaged over the five simulation runs for different
signal bandwidths σBW.
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Fig. 3. Target bearing angular spread averaged over the five simulation runs
for different signal bandwidths σBW .
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Fig. 4. Target bearing MAP error magnitude averaged over the five simulation
runs for different signal bandwidths σBW.
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comparable to that of a narrowband tracker operating at the

frequency corresponding to the signal’s peak power spectral

density. This implies that the broadband tracking approach

provided robustness to the frequency-dependent variability of

the signal’s actual spectral mask. Finally, we presented a

broadband tracking approach that is applicable even when

both the signal’s spectral mask and its frequency range are

unknown. However, the lack of knowledge of the signal can

significantly impair tracking performance, particularly if the

signal’s bandwidth is a small fraction of the overall measure-

ment band. Improving the broadband tracking performance in

the absence of signal knowledge is a focus of ongoing research

efforts.

APPENDIX

The maximum of (14) may be determined by taking its

derivative with respect to P̂m′ and setting it to zero:

∂

∂P̂m′

Q
∑

q=1

−K
[

log |Rx(ŝ, fq)|+ tr
(

R
−1
x

(ŝ, fq)Cx(fq)
)]

= 0. (21)

Equation (21) simplifies to

Q
∑

q=1

pm′(fq)tr
([

R
−1
x

(ŝ, fq)−R
−1
x

(ŝ, f)Cx(fq)R
−1
x

(ŝ, fq)
]

× v(φ̂m′ , fq)v
H(φ̂m′ , fq)

)

= 0. (22)

By use of the circularity of the matrix trace operator, we

may move v
H to the left side of the matrix trace argument.

This collapses the matrix argument to a scalar, which allows

removal of the trace operator. Then, by use of the identity

R
−1
x

= R
−1
x

RxR
−1
x

, (22) becomes

Q
∑

q=1

pm′(fq)v
H(φ̂m′ , fq)R

−1
x

(ŝ, fq)

× [Rx(ŝ, fq)−Cx(fq)]R
−1
x

(ŝ, fq)v(φ̂m′ , fq) = 0. (23)

Substituting the expression (c.f., [6], [8], [10])

R
−1
x

(ŝ, f) = R
−1
n+i,m′(ŝ, f)−

P̂m′pm′(f)R−1
n+i,m′(ŝ, f)v(φ̂m′ , f)vH(φ̂m′ , f)R−1

n+i,m′(ŝ, f)

1 + P̂m′pm′(f)vH(φ̂m′ , f)R−1
n+i,m′(ŝ, f)v(φ̂m′ , f)

(24)

into (23) and simplifying yields

Q
∑

q=1

pm′(fq)v
H(φ̂m′ , fq)R

−1
n+i,m′(ŝ, fq)

× [Rx(ŝ, fq)−Cx(fq)]R
−1
n+i,m′(ŝ, fq)v(φ̂m′)

÷
[

P̂m′pm′(fq)v
H(φ̂m′ , fq)R

−1
n+i,m′(ŝ, fq)v(φ̂m′ , fq) + 1

]2

= 0. (25)

By dividing the numerator and denominator in (25) by
[

v
H(φ̂m′ , fq)R

−1
n+i,m′(ŝ, fq)v(φ̂m′ , fq)

]2

and making use of

(5) and (11), (25) becomes

Q
∑

q=1

pm′(fq)
(

P̂m′pm′(fq)

+ ŵ
H(φ̂m′ , fq) [Rn+i,m′(ŝ, fq)−Cx(fq)] ŵ(φ̂m′ , fq)

)

÷
[

P̂m′pm′(fq) + ŵ
H(φ̂m′ , fq)Rn+i,m′(ŝ, fq)ŵ(φ̂m′ , fq)

]2

= 0. (26)

Substitution of (10) and (9) into (26) yields the expression in

(15).
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