
Optimal Fusion Rules for Label Fusion of

Dependent Classification Systems

James A. Fitch, Mark E. Oxley, Christine M. Schubert Kabban

Department of Mathematics and Statistics

Air Force Institute of Technology

Graduate School of Engineering and Management

Wright-Patterson AFB, OH 45433-7765

Email: james.fitch@linquest.com, Mark.Oxley@afit.edu, Christine.SchubertKabban@afit.edu

Abstract—A classification system with M possible output labels
(or decisions) will have M(M-1) possible errors. The Receiver
Operating Characteristic (ROC) manifold was created to quantify
all of these errors. When multiple classification systems are
fused, the assumption of independence is usually made in order
to mathematically combine the individual ROC manifolds for
each system into one ROC manifold. In this paper we will
start with the independence assumption and then investigate
fused statistically-dependent classification systems. Specifically,
we will use label fusion (also called decision fusion) of multi-
ple classification systems to combine these dependent systems
and demonstrate the benefit in performance of incorporating
the dependence effects into the fused classification system. We
will derive the formula for the generalized AND rule for the
resultant ROC manifold of the fused classification system which
incorporates the individual dependent classification systems. We
will also develop a method utilizing permutation matrices to
generate formulas for other label-fusion rules. Examples will be
given that demonstrate how the formulas are used.

I. INTRODUCTION

This paper considers the fusion of two multi-class classi-

fication systems that are dependent but for which the depen-

dency is unknown. Both systems have the same output set

and are designed to classify the same events. We will start

with the independence assumption and then investigate fused

statistically-dependent classification systems. Specifically, we

will use label fusion (also called decision fusion) of multiple

classification systems to combine these dependent systems and

demonstrate the benefit in performance of incorporating the

dependence effects into the fused classification system. We

will derive the formula for the generalized AND rule for the re-

sultant ROC manifold of the fused classification systems which

incorporates the individual dependent classification systems.

We will also develop a method which utilizes permutation

matrices to generate formulas for other label-fusion rules.

Examples will be given that demonstrate how the formula is

used.

Similar work on the topic of label fusion of classifica-

tion systems has been accomplished but which relied on

assumptions of the classification systems being statistically

independent and / or the use of only two-label classifiers. See

[1], [2], [3] for example. Still other types of work such as that

discussed by Kittler [4] involves algorithms which combine

several multi-class classifiers at once. In contrast, the work

presented here pertains to label fusion of two statistically

dependent multi-classification systems.

II. MATHEMATICAL BACKGROUND

A. Classification System Theory

Let E be a population set of outcomes, and let L =
{ℓ1, ℓ2, ..., ℓM} be a label set. We assume there is a truth map-

ping T : E → L such that T partitions the population set with

P = {Eℓ1 , Eℓ2 , . . . , EℓM }, where Eℓk = {e ∈ E : T(e) = ℓk}.

That is, Eℓ1∪Eℓ2∪· · ·∪EℓM = E and Eℓi∩Eℓj = ∅ ∀i 6= j.

Let E be a σ-algebra of subsets of E that contains the partition

P , then (E ,E) is a measurable space. We seek the truth

mapping, but the best one can do is to approximate it using a

classification system. Let Pr be a probability measure defined

on E, then (E ,E,Pr) is a probability measure space. Let s

be a sensor that produces data as its output, i.e., s : E → D,

where D is the sensor data set. The outcome from this data

set may be too difficult to quantify on its own, so a feature

extractor map p, defined on D produces a refined data object

called a feature. The map p is a processor that takes a datum

and produces a feature, i.e., p : D → F . (Typically, F = R
N

for some positive integer N .) Let Θ be a threshold set or

parameter. So, for each θ ∈ Θ let aθ be a classifier mapping

F into a label set L. That is, aθ : F → L for each θ ∈ Θ. A

graphical representation of the composition of these mappings,

Aθ ≡ aθ ◦ p ◦ s, is given in the following diagram.

E
s

−→ D
p

−→ F
aθ−→ L

We design the system Aθ to map outcomes in Eℓi to ℓi ,

that is, if e ∈ Eℓi we designed for Aθ(e) = ℓi. We use the

probability measure to quantify the approximation Aθ of T

for some choice of θ ∈ Θ.

B. Receiver Operating Characteristic (ROC) Manifold

Each mapping in the classification system, as well as the

composition of mappings, has a pre-image defined as follows.

Definition (Pre-image) Let X and Y be nonempty sets. Let

the mapping f take an element from X and map it into Y ,

that is, f : X → Y or X
f

−→ Y . Given a subset Y ⊂ Y we

define the pre-image of f to be the subset in X by

f ♮(Y ) = {x ∈ X : f(x) ∈ Y }. (1)
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Thus, the pre-image of a subset Y in Y is all the elements in

X that are mapped by f into Y .

The use of pre-images allows us to take labels and express

them in terms of the underlying events. A classification system

with M labels has M possible correct classifications (one for

each of the M labels) and M2−M possible misclassifications

(each label can misclassify an object in M − 1 ways). The

ROC manifold is defined in terms of these misclassifications.

Then, since we are dealing with misclassifications, i.e. errors,

we wish to minimize these errors. We denote the probability

that system Aθ classifies an outcome e as label ℓi when the

outcome is really in Eℓj as

pi|j(Aθ) = Pr{Aθ(e) = ℓi | e ∈ Eℓj}

=
Pr
(

A
♮
θ ({ℓi}) ∩ Eℓj

)

Pr
(

Eℓj
) .

(2)

Properties of these quantities imply that for every θ ∈ Θ

M
∑

i=1

pi|j (Aθ) = 1 (3)

for each j = 1, 2, . . . ,M . Only the pj|j term is a correct clas-

sification; the other M −1 terms denote the misclassifications

(i.e., the errors) of system Aθ so,

M
∑

i=1,i6=j

pi|j(Aθ) = 1− pj|j(Aθ) (4)

for each j = 1, 2, . . . ,M and for every θ ∈ Θ. Define the

M × M matrix P (Aθ) to be the matrix whose i, j entry is

the conditional probability pi|j(Aθ) for i = 1, ...,M and j =
1, . . . ,M . That is,

[P (Aθ)]i,j = pi|j(Aθ) =
Pr(A♮

θ({ℓi}) ∩ Eℓj )

Pr(Eℓj )
. (5)

Equation (3) implies P (Aθ) is a (column) stochastic matrix

for every θ ∈ Θ. Notice that the off-diagonal entries of

P (Aθ) are the errors associated with misclassification. Next,

we define the M ×M matrix of misclassifications (dropping

the θ subscript for brevity) as

R(A) =















0 p1|2(A) p1|3(A) · · · p1|M(A)
p2|1(A) 0 P2|3(A) · · · p2|M(A)
p3|1(A) p3|2(A) 0 p3|M(A)

...
...

. . .
...

pM|1(A) pM|2(A) pM|3(A) · · · 0















. (6)

C. Two Classification Systems

Consider the case when two sensors, s1 and s2, observe

events occurring in the same population set E . Assume they

produce data in the data sets D1 and D2, respectively. Further,

assume each sensor has its own processor, p1 and p2, which

maps datums in D1 to features in F1 and D2 to features in

F2, respectively. In particular, assume p1 : D1 → F1 and

p2 : D2 → F2. Suppose there is a family of classifiers for p1

and s1 given by {aθ : θ ∈ Θ} and another family of classifiers

{bφ : φ ∈ Φ} for p2 and s2, outputting labels in the label set

L. Thus, aθ : F1 → L for each θ ∈ Θ and bφ : F2 → L for

each φ ∈ Φ. Now define the system Aθ ≡ aθ ◦p1◦s1 for each

θ ∈ Θ and Bφ ≡ bφ ◦p2 ◦ s2 for each φ ∈ Φ, and denote the

two classification system families (CSFs) A ≡ {Aθ : θ ∈ Θ}
and B ≡ {Bφ : φ ∈ Φ}.

The two classification systems developed above map out-

comes from the population set into different data, feature,

and label sets, which are then used to fuse the classification

systems together. There are, however, other ways to label the

outcomes from the event set. In this discussion, classification

systems can map outcomes into either the same or different

data sets or the same or different feature sets. The sets

which must remain the same for the mathematical development

contained herein are the event set E and the label set L.

Therefore, the classification systems must be acting from the

same event set, map into either the same or different data and

feature sets and eventually map into the same label set.

D. Fusion Rules

Let the systems A and B be defined as above. We seek to

combine these two families in some manner. The easiest way

is to combine their outputs using a function, or rule, defined

on L, that is, r : L × L → L with Dom(r) = L × L. Then a

new CSF is created by, for every outcome e ∈ E

Cθ,φ(e) = r(Aθ(e),Bφ(e))

for every θ ∈ Θ and φ ∈ Φ. Hence, C = {Cθ,φ : θ ∈ Θ, φ ∈
Φ} and we write C = r (A,B) (a slight abuse of notation).

The diagram that corresponds to this new CSF is

D1
p1 // F1

aθ // L

��
E

s1

??

s2 ��

L × L
r // L

D2
p2 // F2

bφ // L

OO

There are several rules r that exist for a label set with M

labels. In fact, there are M (M2) rules for 2 systems. If we wish

to combine N systems then the number of rules R = M (MN )

[3]. The table below gives examples to show how the number

of rules grows for a small number of labels.

Labels Systems Rules Consistent*

M N R C

2 2 16 2
2 3 256
3 2 19, 683 6
3 3 7, 625, 597, 484, 987
4 2 4, 294, 967, 296 24
5 2 298, 023, 223, 876, 953, 125 120

*We define Consistent rules in section II-F.
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E. Generalized AND Rule Assuming Independence

In this section we develop a method of combining classifi-

cation systems via label fusion assuming that the two systems

are statistically independent. In this discussion we focus on the

Boolean-like generalized AND rule as it forms the foundation

for other rules which follow. This will be expanded further in

the next section.

Let the ROC manifold associated with the classification

system family A ≡ {Aθ : θ ∈ Θ} be denoted by MA and the

ROC manifold associated with the classification system family

B ≡ {Bφ : φ ∈ Φ} be denoted by MB. In the definitions that

follow, we continue to use the label set L = {ℓ1, ℓ2, . . . , , ℓM}.

Also in the definitions that follow, we assume that the label

set is ordered in terms of the labels’ importance. That is ℓi+1

is more important than label ℓi.

The AND rule is a binary operation defined on L =
{ℓ1, ℓ2, . . . , , ℓM} and is defined as follows:

r (ℓi, ℓj) = min
L
�

{ℓi, ℓj} = ℓminR
≤
{i,j}. (7)

We denote this operation by ∧, just as in the traditional

Boolean AND operation, but here we call this rule the general-

ized AND rule. The new classification system CAND

θ,φ is defined

by the point-wise AND operation on its output, that is,

CAND

θ,φ(e) = Aθ(e) ∧Bφ(e)

= min{Aθ(e),Bφ(e)} for all e ∈ E .
(8)

This produces a new classification system family C
AND =

{Cθ,φ : θ ∈ Θ, φ ∈ Φ}. The conditional probability that

system Cθ,φ classifies an object as label ℓi when the object is

actually ℓj is given by an expression similar to (2) as

pi|j(Cθ,φ) =
Pr
(

C
♮
θ,φ ({ℓi}) ∩ Eℓj

)

Pr
(

Eℓj
)

=
Pr
(

(Aθ ∧Bφ)
♮
({ℓi}) ∩ Eℓj

)

Pr
(

Eℓj
) .

(9)

Assuming statistical independence between CFSs A and B,

Oxley [1] shows the conditional probability in terms of the

individual probabilities as:

pi|j(C
AND

θ,φ ) = pi|j(Aθ)pi|j(Bφ) +

M
∑

k=i+1

pk|j(Aθ)pi|j(Bφ)

+
M
∑

k=i+1

pi|j(Aθ)pk|j(Bφ)

(10)

A more convenient means by which to use and analyze (10)

is to form an equivalent representation. That is, the matrix

representation of (10) is

P
(

CAND

θ,φ

)

= P (Aθ)⊙ P (Bφ) +UP (Aθ)⊙ P (Bφ)

+UP (Bφ)⊙ P (Aθ)
(11)

where ⊙ denotes the Hadamard matrix product and U is an

M × M upper triangular matrix where Ui,j = 1 for i ≤ j

and 0 for i > j. Note that the matrix multiplications with U

represent the summations in (10). To simplify notation in (11),

let C = P

(

CAND

θ,φ

)

, A = P (Aθ), B = P (Bφ), and V = 1
2I+U,

then we can write (11) as

C = VA⊙ B+VB⊙ A. (12)

We wish to transform this matrix equation once more into a

matrix-vector form using properties of the Kronecker product

and the vectorization operation. We denote the Kronecker

product of an m×n matrix A and a p×q matrix B as A⊗B.

The operation vec(A) is the vertical concatenation of the

columns of A. That is, vec(A) =
[

A1 A2 · · · An

]T
,

where each Ai is the ith column of A. The Kronecker product

⊗ and vec() operation are related according to the following

theorem.

Theorem 2.1: For any three matrices A, X, and C for which

the matrix product AXB is defined,

vec(AXC) = (CT ⊗A) · vec(X).

In the case when C is the identity matrix I, then

vec(AX) = vec(AXI) = (I⊗A) · vec(X).

The Hadamard product and vec() operation are also related

by the following theorem.

Theorem 2.2: For any two matrices A and X for which the

Hadamard product A⊙X is defined,

vec(A⊙X) = diag(vec(A)) · vec(X)

where diag(A) is the diagonal matrix formed by the elements

of the vector vec (A).
We will also make use of the following two notation

simplifications. First, we will denote the Kronecker product

of the matrix X with the identity matrix, i.e., I ⊗ X as the

block diagonal matrix XD using the subscript D. Second, we

will denote vec(X) as X̄ using the over bar.

We can now rewrite (12) as

vec(C) = vec(VA)⊙ vec(B) + vec(VB)⊙ vec(A)

C̄ = VDĀ⊙ B̄+VDB̄⊙ Ā.
(13)

F. Consistent Fusion Rules

Fitch [3], [5] shows that the set of consistent rules (defined

below) are a meaningful and desirable set of fusion rules to

be used in label-based classifier fusion.

Definition (Agreement Rule) Let f : LN → L be a function.

If for every w ∈ LN , f(w) ∈ w then f is an agreement

function or agreement rule.

Definition (Symmetric Rule) Let φ : L → L be a permutation

on L. Define the function Φ : LN → LN by using φ

as follows: for w = (w1,w2, . . . ,wN ) ∈ LN , Φ(w) =
(wφ(1),wφ(2), . . . ,wφ(N)). Let f : LN → L be a function. If

for every w ∈ LN and permutation φ, f(Φ(w)) = f(w) then

f is a symmetric function or symmetric rule.

Consistent rules are then defined as follows.
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Definition (Consistent Rules) The consistent rules are formed

by the intersection of the sets of agreement rules and symmet-

ric rules. That is,

Rulesconsistent = Rulesagreement ∩Rulessymmetric

The conditional probability of the fused system after ap-

plying a consistent rule is computed via use of a permutation

matrix in (12) as follows [3], [5]

C(i) = QT
(i)VQ(i)A⊙ B+QT

(i)VQ(i)B⊙ A (14)

where, Q(i) is a permutation matrix designed to permute the

ordering of the label set L. In vector form (14) is written as

C̄(i) = QT
D(i)VDQD(i)Ā⊙ B̄+QT

D(i)VDQD(i)B̄⊙ Ā (15)

where, QD(i) = I⊗Q(i) and VD = I⊗V.

Fitch [5] shows that there are M ! consistent rules. Thus, for

a pair of 3-label classification systems, there are 3 · 2 · 1 = 6
consistent label fusion rules and thus 6 permutation matrices

which represent those 6 rules.

G. Performance Functionals

Clearly, analysis is needed to determine the best rule prior

to building a system. We define the notion of “best” by using a

performance functional ̺ so that ̺(A) is a real number, which

can be used to quantify “better”. Then we use optimization to

quantify “best”. Assume a smaller value means better, that is,

if ̺(A) < ̺(B) then A is better than B. Our definition of

Fusion is the following: if

̺(r (A,B)) < min{̺(A), ̺(B)}

then we call the rule r a fusor for families A and B with

respect to the performance functional ̺. If the performance ̺

is fixed then we can seek the best fusor via the optimization

problem

min
r∈Rules

A∈A,B∈B

̺(r (A,B)).

The performance functional we will use is Bayes cost

which allows us to incorporate prior probabilities and costs

of misclassifications as in

ρ(Aθ) = ϕ(R(Aθ))

=
M
∑

i=1

M
∑

j=1
j 6=i

ci|jPjpi|j(Aθ) = 〈Γ, R(Aθ)〉 (16)

where the matrix Γ = C · diag(P ) for the cost matrix C, and

diagonal matrix, diag(P ) of prior probabilities.

III. MAIN RESULTS

A. Generalized AND Rule with Dependence

In this section we develop a method of combining two

classification systems similar to that shown in section II-E.

However, in this case we do not assume independence between

the two systems. We begin by defining a total ordering of the

label set L = {ℓ1 ≺ ℓ2 ≺ . . . ≺ ℓM}. Then we develop

an expression for each pi|j(Cθ,φ) in terms of the individual

classification systems Aθ and Bφ.

Choose a label ℓi and fix the index i. By the total ordering

of L = {ℓ1, ℓ2, ..., ℓM} then rAND(ℓi′ , ℓj′) = ℓmin{i′,j′} = ℓi
implies that the possible choices of (i′, j′) integer pairs are

(i, i), (i+ 1, i), (i+ 2, i), ..., (M, i),

(i, i+ 1), (i, i+ 2), ..., (i,M).
(17)

Therefore, Cθ,φ(e) = rAND (Aθ(e),Bφ(e)) = ℓi implies the

set

C
♮
θ,φ ({ℓi}) = {e ∈ E : Cθ,φ(e) = ℓi}

= {e ∈ E : rAND (Aθ(e),Bφ(e)) = ℓi}
(18)

can be partitioned into the collection of the sets

{e ∈ E : [Aθ(e) = ℓi] ∩ [Bφ(e) = ℓi]},

{e ∈ E : [Aθ(e) = ℓi+1] ∩ [Bφ(e) = ℓi]}, . . .

{e ∈ E : [Aθ(e) = ℓM ] ∩ [Bφ(e) = ℓi]},

{e ∈ E : [Aθ(e) = ℓi] ∩ [Bφ(e) = ℓi+1]}, . . .

{e ∈ E : [Aθ(e) = ℓi] ∩ [Bφ(e) = ℓM ]}.

(19)

Then the set C
♮
θ,φ ({ℓi}) can be written as

C
♮
θ,φ ({ℓi}) =

[

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓi})

]

⋃

M
⋃

i′=i+1

[

A
♮
θ ({ℓi′}) ∩B

♮
φ ({ℓi})

]

⋃

M
⋃

i′′=i+1

[

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓi′′})

]

.

(20)

Now we intersect C
♮
θ,φ ({ℓi}) with event Ej , then take the

probability of both sides, and use the fact that the set compo-

nents are mutually disjoint to yield

C
♮
θ,φ ({ℓi}) ∩ Ej =

[

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓi}) ∩ Ej

]

⋃

M
⋃

i′=i+1

[

A
♮
θ ({ℓi′}) ∩B

♮
φ ({ℓi}) ∩ Ej

]

⋃

M
⋃

i′′=i+1

[

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓi′′}) ∩ Ej

]

,

(21)

Pr
(

C
♮
θ,φ ({ℓi}) ∩ Ej

)

= Pr
(

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓi}) ∩ Ej

)

+
M
∑

k=i+1

Pr
(

A
♮
θ ({ℓk}) ∩B

♮
φ ({ℓi}) ∩ Ej

)

+
M
∑

k=i+1

Pr
(

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓk}) ∩ Ej

)

.

(22)
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We then divide by the probability of event Ej to form condi-

tional probabilities so that (22) becomes

Pr
(

C
♮
θ,φ ({ℓi}) ∩ Ej

)

Pr(Ej)
=

Pr
(

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓi}) ∩ Ej

)

Pr(Ej)

+
M
∑

k=i+1

Pr
(

A
♮
θ ({ℓk}) ∩B

♮
φ ({ℓi}) ∩ Ej

)

Pr(Ej)

+
M
∑

k=i+1

Pr
(

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓk}) ∩ Ej

)

Pr(Ej)
.

(23)

To help simplify the notation, we define the left hand side

conditional probability as

pi|j
(

CAND

θ,φ

)

≡
Pr
(

C
♮
θ,φ ({ℓi}) ∩ Ej

)

Pr(Ej)
(24)

and define each conditional probability term on the right hand

side as

pi,k|j(Aθ,Bφ) ≡
Pr
(

A
♮
θ ({ℓi}) ∩B

♮
φ ({ℓk}) ∩ Ej

)

Pr(Ej)
. (25)

That is, pi,k|j(Aθ,Bφ) is the conditional probability that

system Aθ classifies the event e as label ℓi while system Bφ

classifies the event as label ℓk, given that the event was Ej .

pi|j

(

CAND

θ,φ

)

is the conditional probability that the “ANDed”

system classifies the event e as label ℓi, given that the event

was Ej . So now (23) can be written as

pi|j
(

CAND

θ,φ

)

= pi,i|j(Aθ,Bφ) +
M
∑

k=i+1

pk,i|j(Aθ,Bφ)

+
M
∑

k=i+1

pi,k|j(Aθ,Bφ).

(26)

Next we define a conditional dependency ratio, µ, corre-

sponding to each conditional probability as

µi,k|j(Aθ,Bφ) ≡
pi,k|j(Aθ,Bφ)

pi|j(Aθ)pk|j(Bφ)
. (27)

Thus, the conditional probability terms in the summation can

be written as

pi,k|j(Aθ,Bφ) = µi,k|j pi|j(Aθ)pk|j(Bφ). (28)

The conditional probability for each i, j term in the resulting

conditional probability matrix for Cθ,φ becomes the sum of

the probabilities, so therefore

pi|j
(

CAND

θ,φ

)

= µi,i|jpi|j(Aθ)pi|j(Bφ)

+

(

M
∑

k=i+1

µk,i|jpk|j (Aθ)

)

pi|j (Bφ)

+

(

M
∑

k=i+1

µi,k|jpk|j (Bφ)

)

pi|j (Aθ) .

(29)

Note that for notational brevity θ and φ are dropped from the

µ terms.

The i, j th term of the conditional probability matrix for

system Aθ can be written as the sum of pi,k|j(Aθ,Bφ) terms

as:
pi,j (Aθ) =

M
∑

k=1

pi,k|j(Aθ,Bφ)

=
M
∑

k=1

µi,k|j pi|j(Aθ)pk|j(Bφ)

= pi|j(Aθ)
M
∑

k=1

µi,k|j pk|j(Bφ).

(30)

Thus,

M
∑

k=1

µi,k|j pk|j(Bφ) = 1 for each i, j ∈ 1 . . .M (31)

Similarly, the i, j th term of the conditional probability ma-

trix for system Bφ can be written as the sum of pk,i|j(Aθ,Bφ)
terms as:

pi,j (Bφ) =

M
∑

k=1

pk,i|j(Aθ,Bφ)

=
M
∑

k=1

µk,i|j pk|j(Aθ)pi|j(Bφ)

= pi|j(Bφ)
M
∑

k=1

µk,i|j pk|j(Aθ).

(32)

Thus,

M
∑

k=1

µk,i|j pk|j(Aθ) = 1 for each i, j ∈ 1 . . .M. (33)

These two equations,
∑M

k=1 µk,i|j pk|j(Aθ) = 1 and
∑M

k=1 µi,k|j pk|j(Bφ) = 1, for each j, can be written as a

linear system of equations in block diagonal form as:

Kµ̄ = 1. (34)

Here is an M = 2 example showing the j th block. As before

using a simplified notation we let C = P

(

CAND

θ,φ

)

, A = P (Aθ),

and B = P (Bφ). Also, here the terms Aij and Bij represent

pi|j(Aθ) and pi|j(Bφ), respectively.








A1j A2j 0 0
0 0 A1j A2j
B1j 0 B2j 0
0 B1j 0 B2j

















µ11j

µ21j

µ12j

µ22j









=









1
1
1
1









Each [K]j is size 2M ×M2 and thus K is size 2M2 ×M3;

µ̄ is size M3 × 1, and 1 is size 2M2 × 1.

Now, using techniques similar to those shown in section II-E

we will form the matrix-vector representation of (29). First,

the µi,k,j arrays are written as a block diagonal matrix as

M ≡











µ(1) 0 0 0

0 µ(2) 0 0

0 0
. . . 0

0 0 0 µ(M)










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where

µ(j) ≡











µ11j µ12j · · · µ1Mj

µ21j µ22j · · · µ2Mj

...
...

. . .
...

µM1j µM2j · · · µMMj











.

Thus, the M ×M ×M array of µikj terms is arranged as an

(M ×M)×M block diagonal matrix. We now can write the

matrix-vector representation of (29) as:

C̄ =
(

MT ⊙VD

)

Ā⊙ B̄+ (M⊙VD) B̄⊙ Ā. (35)

Then, similar to the independence case as with (14), Fitch [5]

shows that we can write the consistent rule form of (35) as:

C̄(i) =
(

MT ⊙QT
D(i)VDQD(i)

)

Ā⊙ B̄

+
(

M⊙QT
D(i)VDQD(i)

)

B̄⊙ Ā.
(36)

As implied by (36), Fitch also shows that the dependency

matrix M is invariant with respect to the rule employed. Thus,

if the dependency matrix M is known for one rule, those same

dependency terms can be used to predict the ROC matrix (or

equivalent vector) of the label-fused system using each rule

depicted by permutation matrix Q(i), for each i = 1 . . .M !.

B. Compute the Dependency Terms

The dependency terms in (35), i.e., the terms in matrix

M, generally are unknown. However, here we will consider

the case in which the conditional probability matrix for the

“ANDed” system (represented in (35) by the vector C̄) is

known via measurements performed on the actual fused sys-

tem. Thus, in (35) with C̄, Ā, B̄, and VD all known quantities,

the expression is a linear equation in terms of unknown M.

We now rewrite (35) as the linear transformation

L(M) ≡
(

MT ⊙VD

)

Ā⊙ B̄+ (M⊙VD) B̄⊙ Ā. (37)

Then, with the known C̄ outcome we can write (35) as

L(M) = C̄. (38)

In order to solve this linear system we must also include

the constraints from (34). Thus (38) is augmented as follows.

Let

L =





[L]
· · ·
K





We form the matrix representation of L using the standard

basis to get [L] who’s size is M2 ×M3, then, the augmented

matrix equation becomes




[L]
· · ·
K



 µ̄ =





C̄

· · ·
1



 = b

or simply

Lµ̄ = b (39)

where µ̄ is the concatenated vectorization of each µ(j), j =
1 . . .M . We then pose the optimization problem as

min
{

‖µ̄− 1‖2 : µi,k|j ∈ R subject to Lµ̄ = b
}

. (40)

We are motivated by this form, i.e., minimizing ‖µ̄ − 1‖
because we want a µ̄ solution which is closest in some respect

to the independent result which consists of all µ̄ terms being

1. We choose the 2-norm here since it provides a convenient

method of computing a solution. We then compute the optimal

solution for µ̄ as

ˆ̄µ = L
T
(

LL
T
)†

b. (41)

As shown in [5] a unique inverse for
(

LL
T
)

does not exist,

therefore we use a pseudoinverse in the numerical computa-

tions.

IV. EXAMPLES

In this section we pose a 3-label classification problem

similar to one depicted in [6]. Let the label set L = {ℓ1, ℓ2, ℓ3}
where the indices 1, 2, and 3 imply the natural ordering of the

set. We will assume that the sensor s and processor p mapped

disjoint events E1, E2, and E3 into the feature set F = R
2

and produce sets which are not disjoint but distributed via the

following distributions.

f1(x, y) =
e−(

x−2

0.5 )e−(
y−3

1 )

(0.5)(1)
[

1 + e−(
x−2

0.5 )
]2 [

1 + e−(
y−3

1 )
]2

f2(x, y) =
0.9

2π(1)(3)
e

(

−( x+1

1 )
2
−( y−0

3 )
2
)

+
0.1

2π(0.7)(0.6)
e

(

−( x−1.5
0.7 )

2
−( y+0.5

0.6 )
2
)

f3(x, y) =
1

π2(1)(1)

[

1 +

(

x− 2

1

)2
][

1 +

(

y + 2

1

)2
]

Note that f1 is Logistic, f2 is bi-modal Gaussian, and f3
is Cauchy. The density distributions are graphed in Fig. 1.

Contour plots of the density functions are shown in Fig. 2. In

this example there are two CSFs.

Define classification system A as AΘ = aθ ◦ p ◦ s where

aθ1,θ2,θ3(x, y) =







ℓ1 if x ≥ θ1, y ≥ θ2 + (x− θ1)θ3
ℓ2 if x < θ1, y ∈ R

ℓ3 if x ≥ θ1, y < θ2 + (x− θ1)θ3

.

This classifier creates a vertical plane that shifts horizontally

with θ1. It contains a ray that begins at (θ1, θ2) with slope θ3.

Let θ = (θ1, θ2, θ3) ∈ Θ ≡ [−10, 10]× [−10, 10]× R then

define the pre-image

a
♮
θ(ℓi) = a

♮
θ1,θ2,θ3

(ℓi) = {(x, y) ∈ R
2 : aθ1,θ2,θ3(x, y) = ℓi}

and generally, the conditional probability as

pi|j(Aθ) =

∫

a
♮
θ
(ℓi)

fj(x, y)dydx.
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Fig. 1. The plots of two-dimensional density functions: f1 is Logistic, f2 is
Gaussian (bi-modal), and f3 is Cauchy.
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Fig. 2. The contour plots of two-dimensional density functions: f1 is Logistic,
f2 is Gaussian (bi-modal), and f3 is Cauchy.

This generates the following six expressions for the misclas-

sification probabilities.

p1|j(Aθ) =

∫ ∞

θ1

∫ ∞

θ2+(x−θ1)θ3

fj(x, y)dydx, for j = 2, 3

p2|j(Aθ) =

∫ θ1

−∞

∫ ∞

−∞

fj(x, y)dydx, for j = 1, 3

p3|j(Aθ) =

∫ ∞

θ1

∫ θ2+(x−θ1)θ3

−∞

fj(x, y)dydx, for j = 1, 2

Next we introduce a second classifier. This second classifier

by design is not as effective as the first. However, the goal is to

demonstrate that a fused system of two classifiers can perform

better than the single original classifier. Define classification

system B as BΦ = bφ ◦ p ◦ s where

bφ1,φ2
(x, y) =







ℓ1 if x ∈ R, y ≥ φ2

ℓ2 if x ∈ R, φ1 ≤ y < φ2

ℓ3 if x ∈ R, y < φ1

.

This classifier creates two horizontal lines which shift verti-

cally with φ1 and φ2.

Let φ = (φ1, φ2) ∈ Φ ≡ [−11, 11] × [−11, 11] then define

the pre-image

b
♮
φ(ℓi) = b

♮
φ1,φ2

(ℓi) = {(x, y) ∈ R
2 : bφ1,φ2

(x, y) = ℓi}

and generally, the conditional probability as

pi|j(Bφ) =

∫

b
♮
φ
(ℓi)

fj(x, y)dydx.

This generates the following six expressions for the misclas-

sification probabilities.

p1|j(Bφ) =

∫ ∞

−∞

∫ ∞

φ2

fj(x, y)dydx, for j = 2, 3

p2|j(Bφ) =

∫ ∞

−∞

∫ φ2

φ1

fj(x, y)dydx, for j = 1, 3

p3|j(Bφ) =

∫ ∞

−∞

∫ φ1

−∞

fj(x, y)dydx, for j = 1, 2

We will use the Bayes performance functional as presented

in section II-G given by (16):

Γ =





0 c1|2 c1|3
c2|1 0 c2|3
c3|1 c3|2 0









p1 0 0
0 p2 0
0 0 p3





=





0 1 3
2 0 2
1 3 0









1
2 0 0
0 1

3 0
0 0 1

6



 =





0 1
3

1
2

1 0 1
3

1
2 1 0



 .

(42)

A. Performance Results

To find Bayes cost for system A we minimize 〈Γ, R(Aθ)〉
over all (θ1, θ2, θ3) ∈ Θ, that is, minimize

〈Γ, R(Aθ)〉

= trace





0 1
3

1
2

1 0 1
3

1
2 1 0





T 



0 p1|2(Aθ) p1|3(Aθ)
p2|1(Aθ) 0 p2|3(Aθ)
p3|1(Aθ) p3|2(Aθ) 0





=
1

3
p1|2(Aθ) +

1

2
p1|3(Aθ) + p2|1(Aθ)

+
1

3
p2|3(Aθ) +

1

2
p3|1(Aθ) + p3|2(Aθ).

The resulting Bayes cost is

̺(A) = min
θ∈Θ

〈Γ, R(Aθ)〉 = 0.266

occurring at (θ∗1 , θ
∗
2 , θ

∗
3) = (0.357,−1.678, 0.567). Similarly

for system B

̺(B) = min
φ∈Φ

〈Γ, R(Bφ)〉 = 0.374

occurring at (φ∗
1, φ

∗
2) = (−1.33,−0.07).

Table I shows Bayes cost for the fused system for each rule,

depicted as Q(i), using the independence assumption and using
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TABLE I
BAYES COST FOR INDEP AND DEPEND CASES ACROSS ALL RULES

̺(C) Q(1) Q(2) Q(3) Q(4) Q(5) Q(6)

indep 0.621 0.487 0.416 0.437 0.365 0.232

depend 0.554 0.375 0.378 0.418 0.420 0.241

the dependency terms. Thus, for the fused system (assuming

independence), the resulting Bayes cost for classifier C is

̺(C) = min
r∈Rules

θ∈Θ,φ∈Φ

̺(r (Aθ,Bφ)) = 0.232

occurring at (θ∗1 , θ
∗
2 , θ

∗
3) = (0.285,−1.966, 0.559), and

(φ∗
1, φ

∗
2) = (−9.863,−1.256) using Rule Q(6). For the fused

system (including the dependency terms), the resulting Bayes

cost for classifier C is

̺(C) = min
r∈Rules

θ∈Θ,φ∈Φ

̺(r (Aθ,Bφ)) = 0.241

occurring at (θ∗1 , θ
∗
2 , θ

∗
3) = (0.272,−2.206, 0.773), and

(φ∗
1, φ

∗
2) = (−10.762,−0.189) using Rule r∗ which corre-

sponds to permutation matrix Q(6).

This result shows that assuming independence in this case

would result in the predicted performance (in terms of Bayes

cost) of the fused system to be over-reported by almost 10

percent. That is, the predicted independent Bayes cost result

of 0.232 is almost 10 percent lower than the realistic value

of 0.241 computed using the dependency terms. Additionally,

these label-fused results show an improvement of more than 9

percent (using the dependency terms) over that of using system

A alone.

B. Dependency Results

The solution to (40) at the optimal θ∗ and φ∗ for the

dependency case is

µ̂
(1) =





1.0233 0.4066 −0.0477
0.5773 11.7620 0.9662

0.6479 9.9639 39.6790





µ̂
(2) =





1.0476 0.9515 0.9874

0.9915 1.0087 0.9297

0.9994 1.0002 2.3980





µ̂
(3) =





4.4547 0.4224 0.6317

0.8321 1.0629 0.7668

0.1703 1.1314 1.1412



 .

Notice that many of the dependency terms are close to 1, and

several are much larger than 1, which is why the performances

in Table I are different for the independent verses dependent

cases.

V. CONCLUSION

We have proposed and derived expressions for computing

the dependency relation between two classification systems

with M labels using the ROC manifold of the two individual

systems and a known measurement of a combined system

using the AND rule. With the dependency terms computed

we are able to iterate over all consistent label fusion rules

and using a cost functional to evaluate the performance of

the fused system, determine the optimal parameter settings

for the fused system. This provides not only the expected

performance of the fused system but also the best rule and

parameter settings by which to fuse the two systems. We have

demonstrated that using these techniques allows for significant

improvement in the estimation of the fused ROC manifold

over that of assuming independence of the two classification

systems.
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