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Abstract—There are numerous environments and situations
where network infrastructure is sparse, latent, or partially out
of service. There is a growing body of research on protocols,
security, information assurance and trust for use in such Re-
source Constrained Networks. A few examples of a Resource
Constrained Network include Delay Tolerant, Wireless Sensor,
and many mobile ad-hoc and ad-hoc mesh networks. Data
fusion of direct observations and recommendations from other
nodes into an aggregate trust value on a given node allows
for more efficient routing and enables information assurance
security services that support data availability, confidentiality,
integrity, authentication, and non-repudiation. Selecting proper
data metrics and fusion scheme allows nodes in a network to
quickly converge on an accurate trust value for a given node. This
minimizes security risks and provides better quality of service to
properly functioning nodes as well as quickly isolates malicious
ones. This paper discusses our current work on distributed trust
management schemes for use in Resource Constrained Networks.
Specifically, it introduces fusion methods to integrate diverse clues
into a composite trust value.

I. INTRODUCTION

There is a need for reliable network communication in
all environments; however, there are situations where this is
challenging due to a lack, destruction, cost or overwhelming of
network infrastructure. These conditions are likely to be found
in battlefield, emergency response or protest/large gathering
scenarios. A class of Resource Constrained Networks (RCN)
has been defined to help fill the void that exists when infras-
tructure or node hardware degrade, or are cost prohibitive, to
the point where the use of traditional network protocols for
routing and security are ineffective.

A RCN is any network that must function with a limited
resource or resources that cause significant modification to
traditional routing and security protocols. One example is
a Delay Tolerant Network (DTN). Due to node mobility,
spareness, and hardware constraints (an example is battery),
a DTN does not maintain end-to-end routing tables. This
constraint led to the introduction of numerous routing protocols
to ensure availability of information. These protocols run a
spectrum from endemic, sending a message to all nodes, to
schemes such as spray-and-wait that send only to a subset of
nodes [1]. A second example is Wireless Sensor Networks
where nodes must minimize battery power by making the
fewest possible broadcasts; an example routing protocol is
found in [2].

In order to provide more than availability, nodes must be
able to make routing and other decisions based on some form
of authentication. Traditionally this is done using shared keys
or certificates each of which could be validated or updated
efficiently over time across the network. Due to network
constraints, this is not efficient in most RCNs and not possible
in others. Authentication can be done in a probabilistic and
distributed manner using node trust values. There are many
definitions of trust and principles proposed for managing
trust in a resource constrain network. Cho et al. conduct a
good review of trust in various academic fields and propose
a number of principles for use in a Mobile Ad-Hoc and
DTN including that trust be dynamic, subjective, asymmetric,
context-dependent and not necessarily transitive [3].

The use of these basic principles necessitate that a dis-
tributed trust management system for a RCN include the fusion
of both a direct and indirect trust components. Computational
trust has been studied in many disciples and an overview is in
[4]. A good overview on mobile AD-Hoc network trust com-
putations and dynamics is in [5]. The direct trust component
include any metrics or clues that can be directly observed by
the node collecting trust to assist in making trust decisions.
One example is the observation of a node properly forwarding
a message. Direct trust is restricted to what a node can itself
observe, dynamic over time, and asymmetric. The indirect trust
component consists of another nodes trust information received
by the node computing its fused trust value. In some respects
this is similar to managing recommendations and reputation.
Because trust is asymmetric, and node behavior can change
over time, indirect trust in not transitive. There are a number
of models and schemes for use in multiagent systems one
example is [6], which have many of the same properties as
the trust management schemes proposed for use in RCNs.

There are a number of proposed trust management schemes
for use in a Resource Constrained Network [7]–[10]. Most of
the schemes are focused on Delay Tolerant Networks, but many
of the concepts can be generalized to the larger class of RCNs.
The basic concept for each scheme is to maintain direct and
indirect trust metrics and combine those to create an aggregate
trust as a value between (0.0, 1.0] where 0.0 is a complete lack
of trust and 1.0 is complete trust. Based on that value, routing
and security decisions can be made. Yet, none of the schemes
directly dictate to which nodes to forward a message or which
to restrict. Based on risk, a minimum value can be set and any
node above the threshold is a potential candidate, while nodes
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below are “blacklisted.” This value can differ depending on
the category or type of network traffic and is node dependent.

This paper focuses on the fusion of those trust metrics and
proposes a method for use in the trust management scheme
introduced in [10]. We will first provide background on the
trust management schemes listed in Section II. This is followed
by proposed methods to integrate trust clues described in
Section III. Section IV provides results justifying our approach.
Future work and conclusions are discussed in Section V.

II. TRUST MANAGEMENT SCHEME BACKGROUND

As in situations where people interact, trust of person A
on person B is based on observed actions of person B and
on opinions of mutual “friends” about person B. In a RCN,
traditional network trust verification methods do not function
efficiently and for some constraints do not work at all. Nodes,
in RCNs, like people, make trust decision based on direct and
indirect observations. Under this set of conditions, the ability
to trust at the proper level leads to better results.

Fusing direct and indirect metrics into an integrated trust
within a cohesive management scheme is the source of many
new research endeavors. There are multiple schemes proposed
in literature that integrate direct and indirect node observation
and use the principles listed in [3] to manage trust in DTNs.
In [7] the authors use a Bayesian approach to determine the
probability that a node is acting good. In [8] the authors creates
a bipartite graph and find outliers; the scheme removes nodes
with probables outside of a certain value in order to converge
on a coherent trust value. A third approach outlined in [9]
determines good versus bad encounters over four categories to
aggregate a trust value. In [10] path redundancy is used.

A. Bayesian Approach

Denko et al. propose a Bayesian Learning Approach to
determine the trust probability of a given node in a network
[7]. It takes into account the observed actions, positive and
negative, and updates trust levels for each node. Equation 1
[7] is used to calculate the direct trust between node A and
node B. Each node maintains two parameters about every
other node. The number of good interactions denoted as ns

and the number of negative interactions denoted as nu. The
authors assume that complete information cannot be collected.
So they compute a trust value using the beta distribution with
parameters α = ns + 1 and β = nu + 1 as shown below.

TA(B) = E(f(x;α, β)) =
α

α+ β
=

ns + 1

ns + nu + 2
(1)

Modifying for indirect trust computation is done using
Equation 2 [7]. The authors calculate indirect trust using a
combination of observed interactions and recommendations
from other nodes. Assume that a node has i recommendations
for another node from k different sources. Using recommen-
dations modifies Equation 1 and makes the updated trust value
for TA(B) defined as follows [7].

TA(B) =

ns +
i
∑

k=1

nk
s + 1

ns + nu +
i
∑

k=1

nk
s +

i
∑

j=1

nj
u + 2

(2)

Because recommendations can be false, the authors add
a threshold for excluding or judging recommendations. Since
a history of interactions and recommendations is maintained
for a time period there is a decay of weight given to each
as time progresses. So older recommendations receive a lower
weight than newer recommendations. Integrating judging and
decaying weight of recommendations and interactions over
time create a more robust scheme.

B. Iterative Trust and Reputation Management Mechanism
(ITRM)

Ayday et al. propose a Trust and Reputation Management
Mechanism (ITRM) in [8]. ITRM is a graph based iterative
algorithm with two main goals: computing the reputation of
nodes that send message (author designate Service Providers)
and determining the trustworthiness of a recommending node.

The first step for ITRM is to complete a bipartite graph
between service providers (SP) and nodes that recommend (R).
Each rater is a check vertex and each SP is a bit vertex. The
authors in [8] compute an initial value of each bit-vertex j
using the following equation.

TRj =

∑

i∈A

Ri × TRij

∑

i∈A

Ri

(3)

An inconsistency factor is computed for every check-vertex
i as follows.

Ci =

[

1

|Υ|

]

∑

j∈Υ

d(TRij, TRj) (4)

If the inconsistency is greater than τ for any check-vertex(es),
then the node with the largest discrepancy is “blacklisted” and
all its ratings are deleted. Equation 3 [8] is then recalculated
minus the “blacklisted” check-vertex while the inconsistency
is recalculated using Equation 4 [8]. The inconsistencies are
checked again. This process continues until no check-vertex
inconsistency is greater then τ .

C. Trust Thresholds - Trust Management Protocol

The authors in [9] use the terms QoS trust and social trust
to represent direct and indirect trust respectively. The former
includes two metrics “connectivity” and “energy” and the later
“unselfishness” and “healthiness.” The trust value node i has
for node j at time t is computed as follows.

Ti,j(t) =
all
∑

X

wX × TX
i,j(t) (5)

The value X is one of the four aforementioned trust proper-
ties (connectivity, energy, unselfishness, and healthiness). The
weight given each is wX and the sum of all weight is 1.
The weight values can be application or network configuration
dependent.

To compute a trust value over time for one trust property
both direct and indirect trust are used. The trust value is
calculated using the following [9]:

T
X
i,j(t+∆t) =

(

βT
direct,X

i,j + (1− β)T indirect,X

i,j

)

(t+∆t) (6)
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β selected from the range [0,1] represents the fraction of
the unit significance or weight given to direct versus indirect
observations. Each different trust property has a different β
to help ensure proper tuning of trust values. Each encounter
with another node triggers a trust update. For the encountered
node j, node i uses it direct trust and for other nodes it uses
trust that node j reports to it. If node i encounters node j and
there is not enough time for data to be transmitted there is
a small decay of the last direct trust level for j and indirect
trust based on node j’s recommendations. Each trust property
has a different method for updating trust based on the number
of encounters, willingness to forward a message for another
node, or battery power levels.

D. Path Redundancy

The authors in [10] use path redundancy. The source creates
a message M consisting of the message payload with an
appended checksum. Using erasure coding, M is broken into s
segments. The message is encoded so that kEC segments will
allow for the recreation of M and s > kEC . Each message
segment m ∈ M flows through the network from source to
destination along multiple paths. The destination maintains
a set of message segments received for each M designates
nM . Once |nM | = kEC the destination attempts to recreate
M . If successful, trust increases for all good paths and the
destination waits for additional segments m for a given time
prior to sending an acknowledgement. By checking those with
kEC − 1 known good segments additional trust information is
gathered. If the destination cannot recreate M it waits for more
segments or requests M be resent based on the utility functions
defined in [10]. The complete state diagram and the value of
full path knowledge versus only using directly connected nodes
is found in [11]. The authors show that the scheme has merit, it
is based on direct observations only and does not fuse indirect
and direct observations to make a comprehensive aggregate
trust value usable for routing and other decisions.

III. TRUST MANAGEMENT METRIC INTEGRATION

PROPOSAL

The trust management schemes listed above use different
approaches to integrate trust metrics. We integrate trust using
two components. The first is the integration of indirect and
direct trust which happens at the end of a time period ∆t
of collecting indirect trust. Depending on network conditions,
indirect trust might receive more or less weight depending on
node trust variance, time of trust collection, or last seen time.
The second integration is modification of indirect trust which
happens each time a node meets another node and receives its
trust for other nodes in the network. This trust component is
based on recommendations from other nodes and is the most
susceptible to malicious activity. Below we propose integration
of trust based on the scheme outlined above in Section II-D.

A. Direct and Indirect Trust Integration

All of the proposed trust schemes, listed above, determine
direct trust based on observation of different clues or metrics.
These are aggregated either as a count or as a modification
of trust based on the observed actions. The integration of
direct and indirect trust varies as well. The proposal in [9]

shown in Equation 5 and Equation 6 most closely resembles
the approach here.

There are three vectors of size n that node k maintains. The
first is the indirect trust vector CT k that maintains indirect
trust for all other nodes in the network based on trading
trust information (see Section III-B below). The second is
the direct trust vector DT k that maintains the trust based
on direct observations. The final vector is the aggregate trust
vector AT k that is the fusion of the previous vectors. There
are multiple different approaches outlined below to fuse the
direct and indirect trust values. The first uses a fixed weight for
the indirect observations and one minus that weight for direct
ones. The second does so variably based on the current trust
of recommending nodes. The third takes into account decay
of direct trust over time. The fourth combines approaches two
and three.

The use of fixed weights minimizes processing require-
ments and is based on the following equation for all j ∈ N ,
where N is the set of all nodes in the network.

AT k
j = (1− αa)DT k

j + αaCT k
j (7)

This is straightforward and depending on the value of αa can
give more or less weight to direct versus indirect observations.

Equation 7 is modified to take into account the current trust
of the nodes that give indirect trust information. The tracking
and fusion of that is detailed in the next section; however,
the average trust of those nodes can easily be determined and
is designated as CT k

av. Modifying Equation 7 by substituting
αaCT k

av for αa the trust of a recommending node is accounted
for. If, during a give time period ∆t, suspect nodes are met
then their recommendations are given less weight than if more
trusted nodes are met.

Slightly modifying DT k and making it an n × 2 matrix
where DT k

i = DT k
i,1 is the direct trust value and DT k

(i,ts) =

DT k
i,2 is the last time node i was met allows for the direct

trust value to decay if a given node has not been seen for an
extended period of time. The number of time periods ∆t is
found using

tki = ⌊
CT −DT k

(i,ts)

∆t
⌋ (8)

and the updated value used for trust decisions is found using
the following.

AT k
j =

(

1− α

1

λtk

i

a

)

DT k
j + α

1

λtk

i

a CT k
j (9)

Equation 9 decays the weight given the direct trust by increas-
ing the weight given the indirect trust; this decay is exponential
and based on a set value for λ.

Combining both of the approaches listed above gives the
following:

AT
k
j =

(

1−
(

αaCT
k
av

)

1

λtk

i

)

DT
k
j +

(

αaCT
k
av

)

1

λtk

i CT
k
j (10)

This takes into account the trust of the nodes that give
recommendations during ∆t and the decay of the direct trust
for a node that has not been seen in a number of time intervals.
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Fig. 1. Meeting Event Between node k and node i

B. Indirect Trust Integration

There are a number of potential methods to integrate
inferred trust as shown in Section II. We propose that when
node k meets node i the nodes trade trust vectors. These
vectors include the current trust values that each node has
for all other nodes in the network. There are two approaches
explored below. The first is that each node k maintains a more
complete history of trust and stores trust values received from
all other node i over time. The second approach is to aggregate
those values as a running average and update each time node
k meets a node i. Our expectation is that although the second
approach is an approximation of the first, it limits resource
expenditure.

1) Trust Matrix: Node k maintains multiple matrices and
vectors to manage and update indirect trust. They include a
working and current indirect trust matrix, designated W k and
Ck respectively. Both W k and Ck are n × (n + 1) matrices.
Each column is used to store trust values received from other
nodes i ∈ N , where n is the number of nodes in set N .
The value Ck

(i,j) is the trust recommendation(s) received from

node i about node j. The last time that column i was updated
in the current trust matrix is designated Ck

(i,ts) = Ck
(i,n+1)

and the number of interactions with node i is W k
(i,count) =

W k
(i,n+1). The column for node k in Ck is its inferred trust

vector. Matrix Ck holds the results for previous time periods
∆t and matrix W k holds values received during the current
time period. Both matrices are initialized with null values equal
to −1. The integration of direct trust with indirect trust is
discuss above and the method for obtaining the direct trust
value is detailed in [10].

There are two types of events for node k. The first occurs
when node k meets any node i ∈ N and it is called a meeting
event. Figure 1 show this type of event. The second event
occurs when the time ∆t expires triggering an update for node
k’s trust based on trust vectors received during the last time
interval ∆t. This is called an indirect trust update event.

The first thing that occurs during a meeting event between
node k and node i is an exchange of trust vectors. This vector
for node i is an aggregate trust based on both direct and indirect
metrics and represent node i’s current trust for all other nodes
in the network; this is represented as tvi, and tvij is node i
trust value for node j. Upon receipt of node i’s trust vector,
node k will update the column in its working trust matrix

corresponding to node i’s index for all j ∈ N as follows:

W k
(i,j) =

((

W k
(i,count) − 1

)

W k
(i,j) + tvij

)

W k
(i,count)

(11)

This is a simple average. For any given time period ∆t,
node i’s trust vector should not change much and should
only be counted once and not multiple times in the update
of the indirect trust that occurs when node k conducts an
indirect trust update. This helps to eliminate ballot stuffing
of recommendations where one person, or in this case node,
can have its values count multiple times and overwhelm other
nodes.

Once the time ∆t expires for node k, it does a trust update.
There are four steps to a trust update listed below.

1) Update the current inferred trust matrix for node k
2) Update the inferred trust vector for node k
3) Fuse the inferred and direct trust vectors to create the

aggregate trust vector
4) Reset inferred trust vector for node k

Updating the current inferred trust matrix is done by taking
the average between the current trust matrix and update trust
matrix, see Equation 12. The value Ck

(i,j) is column i row

j in node k’s current trust matrix. This corresponds to the
current indirect trust values being used by node k. It represents
historical values that node k received from node i about all
nodes j ∈ N . The value stored at Ck

i,ts = Ck
(i,n+1) is the last

time that column i was updated in the current inferred trust
matrix. This is used to compute αi ∈ [0, 1], a “freshness factor”
for the trust values. There are three cases in Equation 12 listed
below.

C
k
(i,j) =











Ck
(i,j) W k

(i,j) = −1

W k
(i,j) Ck

(i,j) = −1

α
tk
i

i Ck
(i,j) +

(

1− α
tk
i

i

)

W k
(i,j) Otherwise

(12)

1) Case one occurs when node k does not meet node i
during the current time period ∆t. There is no change
and Ck

(i,ts) remains the same.

2) Case two occurs when node k meets node i for the
first time during the current ∆t time period. This sets
the values in the current matrix to the update matrix
for column i. Ck

(i,ts) is updated to the current time.

3) Case three is when node k has previously seen node
i and has seen it during the current time period ∆t.
The average between the values in Ck

(i,j) and W k
(i,j)

is computed using the “freshness factor” αi for all
j ∈ N . Any value of αi ≥ 0.5 will initially give more
weight to the values in Ck versus W k. For them to
be equal, assuming consecutive time interval meeting
between node k and node i, αi = 0.5. Equation 13
will find the number of time intervals since the last
update. Ck

(i,ts) is updated to the current time. Figure 2

show and example of this.

tki = ⌊
CT − Ck

(i,ts)

∆t
⌋ (13)

585



Fig. 2. Node k Updates Current Trust Matrix when ∆t Expires

Once Ck is updated based on Equation 12, the indirect trust
vector Ck

k,j for all j ∈ N is updated. This is done row by row
using Equation 14. All values that are −1 are skipped in the
summations in Equation 14. When CT = Ck

(i,ts), that occurs

when node i was met during the last time period, the value
for tki = 1. In Equation 12, there is no decay. Decay of values
occurs after skipping one or more time periods. This makes
older information impact the results less then more current
information, which is what we want.

Ck
(k,j) =

n
∑

i=1

(

Ck
(i,j) × α

tk
i

i

)

n
∑

i=1

α
tk
i

i

(14)

The thirds step is to fuse direct and indirect values to create
an aggregate trust vector (see Section III-A). The final step of
the trust update is to reset W k to all −1 values. This will
ensure that a new running average is collected only for nodes
seen during the next ∆t time window.

2) Rolling Average: The previous section gave an overview
using matrices to track recommendations that node k received
from a node i ∈ N . That approach works, but in nodes
with limited hardware (battery, buffer, and processing) an
approximation that maintains much of the same information
is merited. This is done using four vectors of size n. The
current indirect trust vector is used with the direct trust vector
to create an aggregate trust vector (AT k); see Section III-A.
The vectors used for indirect trust include the following:

• Current Trust (CT k): is the current indirect trust
vector for node k

• Working Count (WCk): This vector tracks the count
used to average the received information during the
current time period ∆t for node k based on interac-
tions with node i ∈ N .

• Working Sum (WSk): This vector tracks the sum used
to average the received information during the current
time period ∆t for node k based on meetings with
node i ∈ N .

• Working Number of Interactions (WNk): This is the
number of times that node k see a node i during the
current time period ∆t.

At the start all of the indirect trust vectors are initialized
to all zeros. Similarly to using matrices there are two types of
events. The first is when node k meets node i and the second
is when the ∆t expires for node k. During a meeting event
where node k receives node i’s trust vector (tvi) the following
occurs:

1) Update the working count (WCk): This is done using
the following equation.

WCk
j = WCk

j +

(

AT k
i

)β

2WNk

i

(15)

This will add in the count for each interaction. This
is directly connected to the number of times that a
particular node i is seen during ∆t. The first time
WNk

i = 0 adding one to the count. This is reduced
exponentially such that if node i meets with k a large
number of times, in a given ∆t time, it still counts
less than twice. Additionally the current trust value
that node k has for node i is taken into account. The
β term is used to modify how much to decrease the
reported value based on current trust of node i. As β
goes to zero the numerator in Equation 15 goes to 1.

2) Update the working sum (WSk): This is done using
the following equation.

WSk
j = WSk

j +

(

AT k
i

)β

2WNk

i

∗ tvij (16)

This is similar to the previous step except that added
term is multiplied by the trust values received from
node i.

3) Update the working number of interactions: WNk
i =

WNk
i + 1

When ∆t expires for node k, it conducts a trust update.
This is done by updating the current indirect trust vector CT k,
fusing that with the direct trust vector into the aggregate trust
vector and then resetting the three working vectors to all zeros.
The following equation is used to update the current indirect
trust vector.

CT k
j = (1− γ)CT k

j + γ

(

WSk
j

WCk
j

)

(17)

Equation 17 is used to find the exponential moving or
running average. The variable γ is used to determine the weight
given to previous values; it can be thought of as the decay
of the older values. Another way to look at it is how many
previous values should be used to determine the current value.
To to use the previous 10 values set γ = 1

10 = 0.1. This can
then be multiplied by any number to include the average trust
of the nodes seen during the current time period.

IV. SIMULATIONS

To test the integration of direct and indirect trust, we
created a discrete event simulator [12]. The input for this
simulator is a complete graph of n nodes with edges encoding
moving patterns of nodes. Each edge weight is a random
number uniformly distributed between [0.0,1.0) that is the
inverse of the intermeeting time between two nodes connected
by this edge and denoted as wi,j for the edge weight between
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nodes i and j. Thus, the weights of node edges represent how
often a node is likely to meet with others. If the edge weight
is 1.0 then the two connect nodes are in constant contact but if
it is 0.0 they never meet. This simulates an arbitrary mobility
pattern in the network.

There are three main types of events. The first is a meeting
event between nodes. This occurs when two nodes are within
broadcast range of each other. During this type of event nodes
trade messages and indirect trust information with which nodes
will update their message buffers and direct trust vectors. The
second type of event is a node trust update event. This occurs
when a nodes timer expires after ∆t. A node will update first
its indirect trust information and then its aggregate trust vector
using both the indirect and direct trust vectors. The third type
of event is a message event which is a subclass of the node
event. This will either put a new message or acknowledgement
into the buffer for a given node.

At the initialization of each run, each edge is uniformly
randomly assigned a weight between [0.0,1.0). Each node has
an initialized working and current indirect trust matrix, direct
and aggregate trust vector, and message queue. The matrices
are initialized as null values and the vectors are initialized
to 0.5. All queues are empty and depending on the specified
percentage a number of the nodes are flagged as bad. Those
nodes will modify any messages they transfer along a path
from source to destination.

The simulation event queue is then populated with initial
events. For meeting events, this is done for each node pair
i, j ∈ N by sampling meeting times from Poisson distribution.
The variable mTimei,j is set to 0 and then Equation 18 is run
and a meeting event is added at that time. For node updates
the initial update occurs at ∆t ∗ [0.0, 1.0]. This will stagger
node updates. Each node will add an initial message event at
a time uniformly randomly selected between [0.0, 50.0] with a
randomly selected destination node. Once the initial events are
added to the simulation queue it is sorted by event time and
the simulation continues until all events that can occur prior
to the stop time are executed.

mTimei,j = mTimei,j −

(

1

wi,j

× ln([0, 1])

)

(18)

The simulator runs event by event and disregards node
handshakes, broadcast collisions, broadcast times, noise, and a
number of other network communication details. All of those
are important and are implemented in NS3. This simulator
is a high level approximation used to initially evaluate the
scheme. More detailed simulations used to obtain more precise
and robust results are expected to be qualitatively similar to
those presented here. As each event in the simulation occurs
new events are added. For meeting events that is done using
Equation 18. For update events that is done adding ∆t to the
current simulation time. For message events that is done by
randomly selecting a number between [0.0, 50.0] and adding
that to current time. This means on average a node will send
4 messages each 200 seconds of simulation. Once a meeting
event results in message recreation, based on erasure coding,
an acknowledgement event is added after a set time period.
This is meant to clear the buffers of all nodes storing the now
delivered message.

A. Effect of αi, Matrix Version

A number of simulations were run to see the effect of
αi. Figure 3 shows the results using the matrix method to
track indirect trust and varying the number of malicious nodes.
We ran three sets of simulations, each averaging the results
over ten runs with network size n = 40. The nodes set
to act maliciously were nodes 36 to 39 first, then nodes
30 to 39 and finally nodes 24 to 39. Subfigures 3a, 3c
and 3e show results where each of the bad nodes always act
maliciously. Subfigures 3b, 3d and 3f show results where the
adversarial nodes flip a fair coin to decide whether or not to
act maliciously.

We set αi as 0.125, 0.25, 0.5, and 0.75; lower ai values
weaken influence of older indirect trust values on the aggre-
gated trust. All of the results in Figure 3 are for αi = 0.5. The
different values of αi had minimal effect on the outcome of
the simulations. When the number of good nodes is high, such
as 90%, there is little volatility in trust and recommendations.
When the number of good nodes is reduced to 60% or 75%,
there is likely to be some change in how fast the trust values
converge; however, the construction of the simulations run did
not look at that variable. Speed of convergence due to αi, is
an avenue for future work.

1) Fraction of Good Nodes = 90%: Figure 3a shows the
results where 90% of the node are good. There is a clear
distinction between the worst simulation run for a good node
and the best for a bad; in this case the difference is 0.891.
We expected this significant difference because of the limited
number of bad nodes. Figure 3b shows the results where each
bad node flips a fair coin to decide whether or not to act
maliciously. As expected, the bad nodes have higher trust at
the end and the range of their intermediate trust values is
significantly higher then in the previous scenario, with the
difference between worst good node and best bad is 0.186
versus 0.891. All malicious nodes are still clearly identifiable.

2) Fraction of Good Nodes = 75%: Figure 3c shows the
results where 75% of the node are good. There is still a
clear difference, but smaller than above, between the worst
simulation run for a good node and the best for a bad; in
this case the difference is 0.525. We expected a significant
difference but smaller than the difference for 90%. Figure 3d
shows the results where each bad node flips a fair coin to
decide whether or not to act maliciously. As expected, the
bad nodes have higher trust at the end. What was unexpected
is that the range of their intermediate trust values is almost
identical to the case when bad nodes always act maliciously.
The difference between worst good node and best bad one is
0.525 in the first case and 0.530 in the later. All malicious
nodes are still clearly identifiable.

3) Fraction of Good Nodes = 60%: Figure 3e shows the
results where 60% of the node are good. Even when 40% of
the nodes are bad there is still a clear difference between the
worst simulation run for a good node and the best for a bad
(0.16). We expected a significant drop from the previous two
sections especially since the number of bad nodes is closing in
on 50%. Figure 3f shows the results using a fair coin to decide
whether or not to act maliciously. As with 75% (section above),
the difference between worst good and best bad increases from
0.16 to 0.496 when a node intermittently acts malicious.
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(a) Passive Modification: Percent of Good Nodes = 90%, αi = 0.5 (b) Active Modification: Percent of Good Nodes = 90%, αi = 0.5

(c) Passive Modification: Percent of Good Nodes = 75%, αi = 0.5 (d) Active Modification: Percent of Good Nodes = 75%, αi = 0.5

(e) Passive Modification: Percent of Good Nodes = 60%, αi = 0.5 (f) Active Modification: Percent of Good Nodes = 60%, αi = 0.5

Fig. 3. Simulation Results: Percent of Good Nodes = {90%, 75%, 60%}, αi = 0.5

4) Conclusions on Variation of Bad Nodes: Our decision
to include in the penalty and reward update values the cur-
rent trust of reporting nodes led to a very interesting and
encouraging phenomena. As shown in Figures 3b, 3d and 3f
intermittently bad nodes fare better when there are more good
nodes (90%) then less (75%, 60%). This is because good nodes
have higher trust and their rewards for bad nodes behaving
good is therefore higher. Fewer good nodes usually presents
a problem; however, in our scheme, this makes the good
nodes having slightly lower trust and therefore their rewards
for bad nodes acting good are weaker forcing the bad nodes
to converge to lower values. Hence, even in the network
quite strongly compromised and with bad nodes trying to
hide by behaving only intermittently bad, our scheme reliably
differentiates between bad and good nodes.

We also checked and confirmed that nodes acting bad 25%
of the time are detectable. Yet due to the distributed nature

of trust, the difference between worst good and best bad
becomes negative and the pronounce drop seen in Figure 3
is less apparent. As nodes reduce how often they cheat, the
trust difference between good and bad nodes will eventually
converge. A node hides more easily the more often it acts
good, but its negative effect on the network diminish.

B. Matrix Versus Vector Comparison

Figure 4 shows an example where a fair coin is flipped to
determine if a bad node acts maliciously. The matrix version
and the vector approximation for indirect trust converge to
similar values. As the percentage of good nodes increases,
the difference between the two approaches decreases further.
While this does not conclusively show that the vector approx-
imation, with buffer space saving, performs statistically the
same as the matrix version, it strongly suggests that it is and
merits future evaluation in a broader range of environments.
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Fig. 4. Comparison Between Vector and Matrix, Percent Good = 60% (Bad Node Flips a Fair Coin to Determine Malicious Action)

V. FUTURE WORK AND CONCLUSION

We introduce an integration of direct and indirect trust
based on the directly observing information about paths using
the trust management scheme proposed in [10]. There are
multiple approaches for the fusion described above. The results
in Section IV show the effect of αi on the ability to identify
faulty nodes. It appears to have a limited effect on the outcome
of trust over a long time period; however, it might be important
in more volatile networks or those with more robust threat
models.

We also observed that the use of trust in rewards and
penalties assigned to nodes via direct observation led to a
stable differentiation between bad and good nodes even in
cases of significantly compromised networks (in other words
in networks with a high percentage of bad nodes even if those
nodes try to hide their nature by intermittently behaving good
and bad).

Additional research into the the affect of modifying αa, αi,
β, γ, ∆t and λ will help tune the integration for indirect and
direct trust for range of attack models and network settings.
The intuition is that the size of the network and number of
malicious node will dictate their proper values. Expanding
the threat model will also effect the tunable parameters and
give insight into how the trust management scheme ports to
real networks. A comparison to the trust management schemes
proposed in [7]–[9] is merited.

The integration of direct and indirect trust is important
since it defines how quickly does the trust converges to a
state where nodes can identify bad actors helping to reduce
their effect on the network. Additional work on integrating this
scheme into a more robust routing and security scheme where,
based on risk, nodes send messages only to those above a trust
threshold is an important direction of our future work.
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