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Abstract—Information is critical in almost all decision making
processes. Therefore, it is important to get the right information
at the right time from the right sources. However, information
sources may behave differently while providing information —
i.e., they may provide unreliable, erroneous, noisy, or misleading
information deliberately or unintentionally. Motivated by this
observation, in this paper, we propose a statistical information
fusion approach based on behavior estimation. Our approach
transforms the conveyed information into more useful form by
tempering them with the estimated behaviors of sources. Through
extensive simulations, we have shown that our approach has a
lower computational complexity, and achieves significantly low
behavior estimation and fusion errors.

Keywords—Information Fusion, Subjective Logic, Dirichlet Dis-
tributions, Behavior Estimation.

I. INTRODUCTION

Effective fusion of information from diverse – at times
unreliable – sources is an important problem to be solved for
decision making domain, especially in coalition context; the
purpose of fusion is to merge information from multitude of
sources to estimate the ground truth of a specific phenomenon.
An ideal information source is the one who has the capability
to estimate the ground truth – e.g., by combining observed
evidence – and reports its true estimation. However, this may
not be the case for most of the information sources. For
example, some information sources can be competent, but not
honest — i.e., they deliberately diverge from their genuine
estimations while reporting; other sources may be incompetent
in observing phenomena, thus unable to estimate the ground
truth at all — i.e., their estimations of the ground truth may
not correlate with the ground truth and would not conduct any
useful information during fusion.

In this paper, a source’s estimation of ground truth is
represented as a subjective opinion, which is a belief assign-
ment over possible values of the ground truth. However, these
estimations may be affected by the behaviors of sources due
to the operational context. For example, in order to mislead
a decision maker – or due to incompetence in the context
– a source may share an opinion, which does not correlate
or negatively correlate with the ground truth. Moreover, an
information source may not be consistent in its behavior —
i.e., it may adopt different behavior strategies with varying
granularities.

We note that information fusion aims to approximate the
ground truth by combining opinions collected from diverse and
unreliable sources. Existing fusion approaches exploit trust es-
timation methods to determine trustworthy and untrustworthy

sources [7], [2]; opinions from untrustworthy sources are then
eliminated during fusion. However, these approaches may fail
if the sources are not always trustworthy or untrustworthy —
i.e., they adopt different behaviors with varying probabilities.
Moreover, we note that filtering misleading information may
not always be the best thing to do during fusion — i.e.,
misleading information can be useful if it is correlated with
the ground truth. For instance, let us assume a situation where
a decision maker asks a yes/no questions from a source. The
source aims to mislead the decision maker by always providing
the incorrect response. In such situations, if the decision maker
can determine the behavior of the source, the source’s answers
still could valuable as they expose features about the source;
otherwise, these answers would be highly misleading.

In this paper, we propose a novel fusion framework based
on behavior estimation of sources. Using the framework, a
decision maker can query information sources to estimate
the outcome of a binomial or multinomial propositions, e.g.,
is there any traffic jam on the road I-87 now?. As stated
earlier, we expect the answers to such queries to be subjective
opinions, which can then be interpreted using Subjective
Logic [3] or Dempster-Shaffer theory of evidence [15]. In our
framework, we adopt Subjective Logic’s interpretation of sub-
jective opinions. That is, opinions are represented using Beta or
Dirichlet distributions and they are fused by aggregating these
distributions. Our system is flexible enough to accommodate
various source behaviors, and for each source, we calculate the
behavior probabilities using maximum likelihood estimation.
During the fusion, we efficiently determine the most likely
behavior of sources using a similarity-based clustering of
shared opinions influenced by the estimated source behavior
probabilities. We then apply specific transformations to the
shared opinions based on the behaviors of their sources, and
combine them to estimate the ground truth. Through extensive
simulations, we show that our approach can successfully
estimate behaviors of information sources and approximate the
ground truth.

The rest of the paper is organized as follows: Section II
provides preliminary information on Dirichlet distributions and
Subjective Logic. Section III introduces behaviors of informa-
tion sources and Section IV describes how these behaviors are
modeled. Section V proposes our fusion approach based on be-
havior estimation. Section VI evaluates our approach through
simulations using various configurations. Section VII discusses
the proposed approach with respect to the related work, and
we conclude the paper in Section VIII by summarizing main
contributions and drawing the future directions of the work.
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II. PRELIMINARIES

In this section, we introduce the basics of Dirichlet distri-
butions and Subjective Logic. Let us note that all vectors in
this paper are column vectors and are represented in boldface
such as x where the k-th element is given by xk; the transpose
of a vector x is denoted by xT .

A. Dirichlet Distributions

The Dirichlet distribution is a probability density function
(pdf) for the possible values of a probability mass function
(pmf) p that describes the probability for the manifestation of
the particular state from the K attribute states. It is character-
ized by K parameters α and is given by

fβ(p|α) =

⇢

1
B(α)

QK

i=1 p
αi−1
i for p 2 SK ,

0 otherwise,
(1)

where SK is the K-dimensional unit simplex,
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is the K-dimensional multinomial beta function [8]. The β
in the subscript of f — i.e., fβ(·) — is used to signify that
the pdf is Dirichlet. Furthermore, when K = 2, the Dirichlet
distribution simplifies to a beta distribution.

B. Subjective Logic

Subjective Logic (SL) is a probabilistic logic where propo-
sitions such as the location of a crime in a city can take on one
of K mutually exclusive attributes, e.g, city districts, at any
observation time [3], [5]. A subjective opinion characterizes
the belief – in probabilities – that any of the K attributes will
appear at a given observation time; furthermore, it also captures
the uncertainty related to these beliefs explicitly. Formally,
SL considers a frame of K mutually exclusive singletons by
providing a belief mass bk for each singleton k = 1, . . . ,K
and providing an overall uncertainty mass of u. These K + 1
mass values are all non-negative and sum up to one, i.e.,

u+

K
X

k=1

bk = 1, (4)

where u ≥ 0 and bk ≥ 0 for k = 1, . . . ,K.

SL also includes a base rate probability ak for each sin-
gleton and a non-informative prior weight W , which are
same for all opinions about the same proposition. The col-
lection of all the parameters for agent s about proposition
x forms agent s’s subjective multinomial opinion ωs:x =
[ (bs:x)T us:x (ax)T W ]T . In this paper, when the
proposition and agent are implicit, the superscripts and sub-
scripts are not used. The base rate values represent initial
(or a priori) information about the probability of a singleton
emerging for any given observation. The inclusion of the

belief and uncertainty values along with the base rates and
non-informative prior weight represent the accrued evidence
regarding the probability of any singleton appearing in an
observation. For each singleton, we can compute the amount
of evidence observed using the multinomial opinion values:

ek =
Wbk
u

. (5)

The computed evidence vector e can then be used to compute
the parameter vector α for a Dirichlet distribution via

αk = ek +Wak. (6)

Thus, we have α = e + Wa. The Dirichlet distribution
represented by this parameter vector represents a possible pmf
which controls the appearance of singletons in observations.
Likewise, using (4), solving for bk and u in (5) for k =
1, . . . ,K, leads to the mapping of evidence vector e – and
α – to the multinomial opinions

u =
W

P

i ei +W
, (7a)

bk =
ek

P

i ei +W
. (7b)

As described above, there is a mapping between an opinion
ω and Dirichlet distribution parameters α. In the rest of
this paper, we mostly use corresponding Dirichlet distribution
parameters to refer opinions. However, in order to explain
how SL combines opinions, we use the mapping function
ψ(ω) = α and its inverse ψ−1(α) = ω. Given a set of
opinions Sx = {ω1

x, . . . ,ω
n
x} about a proposition x, SL defines

consensus fusion operator ⊕ to combine these opinions as
follows [4]:

⊕(Sx) = ψ−1(Wax +
X

ω2Sx

(ψ(ω)−Wax)) (8)

That is, evidence vectors provided by opinions are summed-up
to generate the evidence vector for the fused opinion.

III. BEHAVIORS OF INFORMATION SOURCES

In order to estimate the ground truth of a specific propo-
sition, a decision-maker retrieves subjective opinions from
diverse information sources. These opinions are then fused in
an intelligent way to approximate the ground truth. However,
as noted before, these information sources may not always be
truthful — i.e., some of these sources could be maliciously
providing misleading opinions and the others may be incom-
petent in providing useful information. We can utilize such
knowledge, if observable, to discard erroneous opinions during
the fusion for a better estimate of the ground truth.

Let us assume that a decision maker want to know if
the road I-87 is blocked. For this purpose, it queries a set
of information sources, where the query includes the binary
proposition is I-87 blocked?. In response, sources provide their
opinions in the form of Dirichlet parameters, which represents
a distribution for the probability that the road is blocked.
However, unknown to the decision maker, two of the sources
are malicious in nature: Alice and John, each of which have a
different behavior while sharing their opinions.
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Alice does not have any knowledge about the state of
the road, but she provides a random opinion to mislead
the decision maker. For instance, she provides the Dirichlet
parameters α = h12, 88i, which corresponds to the binomial
opinion [0.12, 0.86, 0.02, 0.5, 0.5, 2], where 0.12 is the
belief that the proposition is true; 0.86 is the probability
that the proposition is false; 0.02 is the uncertainty; and
the remaining parameters 0.5 and 2 correspond to the base
rate and non-informative prior weight, respectively. Unlike
Alice, John is knowledgeable about the state of the road
and his genuine opinion is represented by the Dirichlet pa-
rameters h198, 4i, which corresponds to the binomial opinion
[0.98, 0.01, 0.01, 0.5, 0.5, 2]. However, he provides a
misleading opinion represented by parameters h3, 197i by
flipping the parameters within his genuine opinion. If the
decision maker knows the behavior of these sources, it may
map Alice’s opinion to a Dirichlet with parameters h1, 1i,
which corresponds to uniform distribution and implies that the
opinion of Alice is uninformative. Similarly, John’s opinion
should be mapped to a Dirichlet with parameters h197, 3i.
With these mapping, the decision maker can compute a fused
opinion close to the ground truth.

IV. MODELLING INFORMATION SOURCES

Given a proposition, we assume that an information source
may provide its opinions that may or may not correlate with the
ground truth. For instance, a trustworthy source may provide
opinions close to the ground truth; however, an untrustworthy
source may provide uninformative or misleading opinions. We
class an opinion to be uninformative (e.g., the opinion is
randomly generated from a uniform distribution), if there is no
correlation between the ground truth and the provided opinion;
such opinions are discarded during fusion.

We assume that information sources adopt specific behav-
iors with certain probability while sharing their opinions. Each
type of behavior i is internally mapped to a transformation
function ϕi(·) that converts a genuine opinion of an informa-
tion source to a shareable opinion. For instance, let us consider
binomial opinion αs:x = hα1, α2i of a source s regarding the
binary proposition x. If the source is honest and competent,
it shares its opinion as it is — i.e., ϕh(α

s:x) = hα1, α2i. If
the source is dishonest, it may not share its genuine opinion;
instead, it may provide a random opinion (or an opinion un-
correlated with the ground truth) — e.g., ϕr(α

s:x) = rand(),
where rand() returns random Dirichlet parameters. It is also
possible that malicious sources may provide negations of their
genuine opinions to confuse the fusion process. If the source
behaves in this way, the provided opinion would be flipped —
e.g., ϕf (α

s:x) = hα2, α1i. We note that the list of possible
behaviors can be extended through correlation analysis and
expert knowledge. For the sake of clarity and simplicity, in
our examples and evaluations, we only consider the three basic
behaviors mentioned above over binomial opinions.

When a decision-maker agent receives opinions from in-
formation sources, it may transform the opinions into more
useful ones by tempering them with the expected behavior of
the respective sources. For this purpose, the agent uses the
mapping function mi(·) for each behavior i to transform the
shared opinion α0s:x = hα0

1, α
0
2i of a source s as follows: If

the agent believes that the source is honest, the transformation

would be mh(α
0s:x) = α0s:x. If the agent believes that

the source provides an opinion uncorrelated with the ground
truth (e.g., a random opinion), the transformation would be
mr(α

0s:x) = h1, 1i, which corresponds to a uniform beta
distribution. If the agent believes that the source flips its
genuine opinion before sharing, the transformation would be
mf (α

0s:x) = hα0
2, α

0
1i.

In such environments, to make the necessary transforma-
tions before fusion, the agent may need to estimate the behav-
ior profile of each information source. Given k behavior types,
the behavior profile for a specific source s is a vector ts of
k elements, where each element tsi is the expected probability

that the source has the behavior i such that
Pk

i=1 t
s
i = 1.

The agent computes the behavior profile of a source s using
maximum likelihood method [9]. For this purpose, the agent
uses its own opinion and the opinions of the sources about
the common propositions. By common propositions, we refer
to the propositions that both the agent and the sources have
opinions about. Let us assume that the agent and a source
have opinions for n common propositions. The agent then
uses the likelihood function in Equation 9 to estimate the
behavior profile ts of the source, where αa:x corresponds
to the opinion of the agent about the proposition x while
mi(α

s:x) corresponds to the transformation of the source’s
opinion for the proposition given that it adopts behavior i.

L(ts|αa:1,αs:1, . . . ,αa:n,αs:n) =
n
Y

x=1

Z

p

 

f(p|αa:x)⇥
k
X

i=1

tsi ⇥ f(p|mi(α
s:x))

!

dp
(9)

The agent computes the behavior profile ts which max-
imizes the likelihood function in Equation 9 — i.e., obtains
ts for the source s such that the source’s expected transform
opinions comply with the agent’s personal opinion for the
same propositions. The logarithm of this function is concave,
thus well-known methods such as gradient ascent can be used
to efficiently compute the profile using the log likelihood. If
there is no common proposition — i.e., n = 0 — the agent
cannot compose a likelihood function. In this case, the agent
may use a priori probabilities to compose a default behavior
profile for the source — e.g., a uniform behavior profile where
tsi = 1/k. Furthermore, since the agent has personal opinions
about propositions that the source have opinions for, it may
recompute the behavior profile of the source as described
above.

V. FUSION OF OPINIONS

In the previous section, we described how an agent uses
its own opinions about common propositions to estimate the
behavior profiles of information sources; given these behavior
profiles, in this section, we describe how an agent could fuse
opinions from sources when new propositions are presented.

A. Estimating Source Behavior

For a new proposition y such as is there any traffic jam on
the road I-87 now?, the agent queries a number of information
sources for their opinions. When queried, each information
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Fig. 1. Opinion triangle for binomial opinions with an example opinion [5].

source picks one behavior based on some probabilities intrinsic
to the source and provides its opinion for the proposition
after applying the corresponding transformation function. The
behavior profile of a source represents the expectation prob-
abilities for each behavior type. However, the querent may
estimate which specific behavior type the source has adopted
while sharing its opinion about the proposition. According to
the querent’s profile, a source may usually provide a random
opinion and occasionally provides truthful opinions. However,
for this specific case, it may provide a truthful opinion. Thus,
in order to estimate which specific behavior type the source
has adopted, the agent may exploit behavior profiles of sources
and their opinions about the current proposition. That is, if
an untrustworthy source provides an opinion that complies
with the opinions of trustworthy sources, it is more likely that
the untrustworthy source provides a truthful opinion for this
specific case.

For each source s, the agent aims to find an elementary
vector zs whose length is equivalent to the number of behavior
types. This is a vector that has only one element equivalent to
one and all others are zero, i.e., if zsi = 1, then zsj = 0 for
all j 6= i. This vector indicates which behavior the source
s adopted while proving its opinion for the proposition y.
In order to estimate behaviors of information sources while
providing their opinions for this proposition, the agent may
find z vectors that maximizes the likelihood function in
Equation 10.

L(z1, . . . , zn|α1:y, . . . ,αn:y, t1, . . . , tn) =
Z

p

n
Y

s=1

k
Y

i=1

(tsi ⇥ f(p|mi(α
s:y)))

zs
i dp

(10)

Finding the z vectors that maximizes the likelihood in Equa-
tion 10 is NP-complete [1]. The complexity of testing all
possible z vectors is O(kn), where k is the number of behavior
types and n is the number of information sources.

As described in Section II-B, an opinion is represented
as a combination of belief vector, base rate vector, and unin-
formative weight. Opinions about the same proposition may
have the same base rate vector, and uninformative weight.
Therefore, we can neglect these and project each opinion
onto belief space. While the Dirichlet parameters do not
have an upper bound, sum of beliefs for an opinion cannot

exceed one. Figure 1 shows a triangular space that con-
fines all binomial opinions and an example binomial opin-
ion. Two opinions may be close in belief space while their
Dirichlet parameters are very different. For instance, consider
the binomial opinions: [0.98, 0.01, 0.01, 0.5, 0.5, 2] and
[0.93, 0.02, 0.05, 0.5, 0.5, 2], which correspond to Dirich-
let parameters h197, 3i and h38.2, 1.8i, respectively. These
opinions are very close in belief space, while their Dirichlet
parameters are very different.

In order to estimate z vectors efficiently, we propose to
exploit the closeness of similar opinions in belief space. There
is only one ground truth for a proposition, therefore, the same
or similar opinions about this proposition may imply same
or similar source behaviour. If two opinions about the same
proposition are similar enough, the z vectors for these opinions
may be the same. In order to estimate z vectors efficiently, the
agent may first determine similar opinions by clustering them
in belief space, then it assigns the same z vectors to the similar
opinions in the same clusters. For this purpose, we propose to
use hierarchical clustering [13], which is based on euclidean
distance and a similarity threshold δ.

Once the agent determines clusters {c1, . . . , cm} of similar
opinions, it determines z vectors for these clusters such that
the likelihood function in Equation 11 is maximized. The
complexity of clustering is O(n2) and that of testing all
possible z vectors is O(km). The general upper bound for
m is fixed and depends only on the similarity threshold δ; it
is independent of the number of opinions.

L(z1, . . . , zm|c1, . . . , cm, t1, . . . , tn) =

Z

p

m
Y

j=1

0

@

Y

ωs:y2cj

k
Y

i=1

(tsi ⇥ f(p|mi(α
s:y)))

z
j

i

1

A dp
(11)

If an opinion ωs:y is in cluster cj , the estimated z vector
for cj is taken as the z vector for the source s; it determines
the estimated behavior of s while sharing the opinion.

B. Estimating Ground Truth

In this section, we describe how the shared opinions are
fused by the agent using the estimated source behaviors.
The equation below formalizes the likelihood function for
p, given the shared opinions and the estimated behaviors of
the sources for the proposition y. This likelihood function
is not a distribution, but multiplication of multiple Dirichlet
distributions.

L(p|α1:y, . . . ,αn:y, z1, . . . , zn) =

n
Y

s=1

k
Y

i=1

f(p|mi(α
s:y))z

s
i

Estimation of the fused opinion to approximate the ground
truth mounts to finding a single Dirichlet distribution f(p|α+)
approximating this likelihood function. The Dirichlet param-
eters α+ of the fused opinion can be easily calculated by
summing the evidence from the individual Dirichlet distribu-
tions involved in the multiplication, as in the consensus fusion
operator of Subjective Logic [4]. Equation 12 formalizes the
computation as follows.
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α+ = Way +
n
X

s=1

k
X

i=1

zsi ⇥ (mi(α
s:y)−Way) (12)

VI. EVALUATION

In this section, we extensively evaluate our approach
utilizing simulations. In order to perform these evaluations,
we have implemented a multiagent system composed of a
decision-making agent—i.e., the querent—and multiple infor-
mation sources. At each simulation, the decision maker queries
information sources to find the ground truth about a binary
proposition. Competent sources can observe the evidence about
the proposition and combine it to generate an opinion close
to the ground truth. However, the opinions shared with the
decision maker are determined by the behavior of sources. The
collected opinions are binomial; each opinion corresponds to
a Beta distribution—a univariate Dirichlet distribution. Let us
note that this simplification is not a limitation and our approach
is applicable for any type of propositions.

A. Simulated Behaviors

We define three types of behaviors for information sources:
1) Honest Competent—i.e., a competent source displays honest
behavior by sharing its opinion as it is which is close to
the ground truth; 2) Flipping Competent—i.e., a competent
source displays flipping behavior by sharing an opinion which
is produced by flipping the Dirichlet parameters of its genuine
opinion; and 3) Random—i.e., a source displays a random
behavior by sharing a randomly generated opinion which is not
correlated with the ground truth. Random behavior corresponds
to the behaviors of both incompetent sources and competent
sources who deliberately produce random opinions.

We randomly determine behavior probability vector ps for
each source s; the vector contains psh, psf , and psr, which
refer to the individual probabilities for honest, flipping, and
random behaviors for the source such that psh + psf + psr = 1.
We formalized our simulations in such a way that each
information source adopts each type of three behaviors with
some probability. However, one of these three behaviors is
more likely for each source, i.e., have higher probability. If
a source adopts honest behaviour more likely, it is called h-
dominated. We have similar terminology for the flipping and
random behavior types, i.e., f -dominated and r-dominated. If
a source s is i-dominated, we set psi = 1 − 2φ and psj = φ
for any j 2 {h, f, r} \ i, where φ is a parameter such that
0  φ < 1/3.

In our simulations, ratios of sources are fixed as Rh = 0.2,
Rf = 0.3, and Rr = 0.5, which correspond to the ratios of h,
f , and r-dominated information sources, respectively.

All simulations are run in a standard PC with 4 RAM and
2.13 GHz Intel Core 2 Duo processor.

B. Benchmarking Fusion Methods

We compare our fusion approach with two fusion meth-
ods based on the consensus fusion operator and discounting
operator of Subjective Logic [5].

Let ωs
x = [b, d, u,a,W ] be the opinion of a source s about

a binary proposition x and ts be the trustworthiness of s for
the decision-maker agent. Then, the discounting operator ⌦ is
defined as

ws
x ⌦ ts = [b⇥ ts, d⇥ ts, u+ (1− t)⇥ (b+ d),a,W ]

That is, using discounting operator, the uncertainty of the
opinion is increased inversely proportional to the trustworthi-
ness of its source. In the literature the trust value ts usually
corresponds to the probability that the source s is honest and
competent. i.e., ts = psh.

The first fusion method we use for benchmarking is called
Discounted Consensus (DC) and based on applying discount-
ing before consensus operator. Given behavior probabilities of
sources, this fusion method is defined as follows:

DC(ωs1
x , . . . ,ωsn

x |ps1 , . . . ,psn) =

⊕ (ωs1
x ⌦ ps1h , . . . ,ωsn

x ⌦ psnh )

The discounted consensus method makes use of only
the opinions from trustworthy sources – ones with honest
behavior. However, opinions from the flipping agents may be
useful as well. Therefore, we introduce Behavioral Discounted
Consensus (BDC), which extends the discounted consensus
fusion by considering other behaviors, i.e., flipping behavior
in this specific case:

BDC(ωs1
x , . . . ,ωsn

x |ps1 , . . . ,psn) = ⊕(H,F ), where

H = ⊕(ωs1
x ⌦ ps1h , . . . ,ωsn

x ⌦ psnh ),

F = ⊕(mf (ω
s1
x )⌦ ps1f , . . . ,mf (ω

sn
x )⌦ psnf ).

C. Simulation Results

We evaluated our approach in two steps. In the first step, we
analyzed how successful our approach is while estimating be-
havior probabilities of information sources. In the second step,
given the behavior probabilities of the sources, we analyzed
how successful our approach in fusing opinions compared to
the benchmarking methods.

Each experiment is repeated at least 10 times and their
means are demonstrated in the figures. The presented results
are significant with respect to the paired student-t test with
95% confidence interval.

1) Behavior Estimation Results: The decision-maker agent
estimates behavior probabilities for each information source as
described in Section IV. That is, for each source s, the agent
computes the probability vector ts that maximizes the likeli-
hood function in Equation 9 using n opinions about common
propositions. While doing so, the agent uses gradient ascent
algorithm with blocking for constraints [1]. We compute the
estimation error for ts given the actual behavior probabilities
ps. The error is between zero and

p
2, and computed as:

error(ts|ps) =
q

(tsh − psh)
2 + (tsf − psf )

2 + (tsr − psr)
2

Figure 2 demonstrates the average estimation error as the
number of opinions is varied. Our experiments indicate that the
estimation error is around 0.225 when n = 5; however, it goes
below 0.1 when 10 or more opinions are used. As the number
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Fig. 3. Average time used for behavior estimation.

of opinions are increased, the error does not change much.
Therefore, we can conclude that our approach for behavior
estimation is successful even if the number of used opinions
are as low as 10.

Figure 3 demonstrates the average time consumed for be-
havior estimation. It takes less than 50 milliseconds to estimate
the behavior probabilities when 10 opinions are used; when
the number of opinions are increased to 100, the estimation
time was only creased by 37 milliseconds. Furthermore, the
behavior estimation does not increase rapidly for much larger
number of opinions—e.g., it only takes about 95 milliseconds
for 500 opinions. Therefore, our approach successfully esti-
mates behavior probabilities at a low complexity.

2) Fusion Results: In this section, we evaluate our fusion
approach with respect to the benchmarking fusion methods,
given the behavior probabilities of information sources.

At each experiment, we create a binary proposition x
with a ground truth gtx – the probability that the propo-
sition is true. Information sources observe evidence about
the ground truth, and compose their genuine opinions. When
queried by the decision-making agent, the sources share their
opinions for the proposition based on specific behaviors they
adopted. After receiving opinions from a number of sources,
the agent fuses these opinions using the proposed approach
FUSE-BEE or a benchmarking method: DC or BDC. Let
ωx = [bx, dx, ux,a

x,W ] be the fused opinion. We compute
the fusion error given the ground truth gtx as follows:

error(ωx|gtx) =
p

(bx − gtx)2 + (dx + gtx − 1)2 + u2
x.

When queried for an opinion, each source randomly adopts

a behavior based on its behavior probability vector px, which
is generated using the parameter φ. In the first set of our sim-
ulations, we set φ = 0.15. In this setting, a source dominated
by i 2 {h, f, r} adopts the behavior i with probability 0.7,
and adopts each of other two behaviors with probability 0.15.
That is, there is no source which consistently adopts the same
behavior, but sources may switch between different behaviors.
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Fig. 4. Average fusion error for φ = 0.15.

Figure 4 demonstrates the average fusion error for different
approaches when the number of sources is varied between
five and one million; for clarity, logarithm of the number of
sources are shown in the x-axis. Our results indicate that the
proposed approach achieves very low error rate around 0.01
when more than 80 sources are queried. For lower number of
source, the fusion error is also much lower than error rates of
benchmarking approaches. For instance, with only five sources,
the error of FUSE-BEE is around 0.23 and decreases to 0.1
when the number of sources increased to 10. On the other
hand, the fusion error of the benchmarking methods oscillate
between 0.4 and 0.5 when 10 or more sources are queried.
The performance of DC is lower when the number of sources
are low, because DC does not consider flipping behavior, i.e.,
opinions from f -dominated sources are mostly omitted.
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Figure 5 demonstrates time used for clustering and total
fusion time for the proposed approach in seconds. The figure
indicates that the most of the fusion time is used for clustering.
While clustering, we use hierarchical clustering in opinion
space with similarity threshold 0.15. Using this threshold, our
approach produced around eight clusters on the average during
fusion process. The number of clusters does not depend on the
number of opinions for large number of opinions. Fusion of
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opinions from one million information sources takes around
900 seconds (15 minutes) on the average while it is reduced
to around 15 seconds for 10, 000 sources.

We also examine how successful our approach in estimat-
ing source behaviors (i.e., z vectors) during fusion process.
Figure 6 demonstrates that our approach fails in estimating
behaviors of less than 5% of sources when number of sources
are 50 or more.
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Lastly, we analyzed the performance of the fusion methods
when information sources behave consistently. That is, we have
another setting where φ is set to 0.001. Therefore, in this
setting, the sources almost always adopt the same behavior.
Figure 7 demonstrates average fusion error in this setting. As
expected, in this trivial setting, all fusion methods achieve a
low error rate, while the error of DC is higher for low number
of sources, since it omits useful information from flipping
sources while the number of sources are already low.
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VII. DISCUSSION

Information fusion suppose to create a product which is
better at assisting decision-makers than the individual infor-
mation pieces in isolation. However, as stated earlier in this
document, information fusion is made complicated due to
the uncertainties associated with the information. There are
multitude of ways to fuse and reason about such uncertain
information. In this regard, evidence theory is a well-known
mathematical framework to represent and fuse information
with uncertainty—Dempster Shafer theory (DST) and Subjec-
tive Logic (SL) are examples for such evidential reasoning

frameworks. There are numerous operators to fuse informa-
tion within these frameworks—e.g., in DST, there are fusion
operators such as Dempster’s rule, Yager’s rule, and Inagaki’s
combination operator, and so forth [15], and in SL the most
popular fusion operator is the consensus (or cumulative fu-
sion) operator. However, an important property to observe in
DST is that information is assumed to be independent; this
assumption is, however, not a desired property for real-world
applications as some information could have been influenced—
or inferred—by other information.

The uncertainty in information also affects its reliability,
accuracy, and so forth, thus, yielding the need to model trust
in information whilst fusing. There is a wealth of literature
on models for computing trust and reputation—especially in
multiagent systems literature. These models use direct and
indirect evidence to model trust in agents. Direct evidence
is based on personal observations whilst indirect evidence is
obtained from third-party agents who serve as sources for
evidence.

Jøsang and Ismail have proposed the beta reputation system
(BRS) to estimate the likelihood of a proposition using beta
probability density functions [6]. For this purpose, they have
used a mechanism which considers a beta distribution with
aggregated ratings of sources as its input parameters. We note
that the evidence shared by sources are equivalent to binary
opinions in Subjective Logic [5]. Whitby et al. extended BRS
to handle misleading opinions from malicious sources using a
majority-based algorithm [14], whereas Teacy et al. have pro-
posed TRAVOS [12], which uses personal observations about
information sources to estimate their trustworthiness as we do
in this paper. All of these approaches model the trustworthiness
of information sources and use the estimated trust to discount
opinions during fusion. They, however, do not consider various
behaviors of information sources. Thus, these approaches
are similar to the discounted consensus method used in our
evaluations. There are other trust-based fusion approaches that
consider different behaviors of malicious sources and exploits
these behaviors during fusion. For instance, BLADE [10] and
HABIT [11] can exploit the flipping behavior of sources—
i.e., sources deliberately flip their opinions before sharing—
whilst fusing. However, these approaches considers only the
expectation probabilities of behaviors during the fusion as
behavioral discounted consensus does.

On the other hand, our approach can estimate which
specific behavior an information source may adopt while
providing a specific opinion as described in Section V-A. Our
approach is flexible enough to accommodate various behavior
models within a statistical fusion framework. It not only
estimates the expected probabilities of source behaviors, but
also estimates which specific behavior an information source
may adopt while providing its opinion—i.e., our approach
can accommodate the fact that an information source may
provide useful information in a specific case, although it
usually provides misleading information. This is an important
contribution that differentiates our work from other work in
which they only use the expected behavior probabilities during
fusion. Furthermore, through clustering, our approach not only
improves computational complexity of fusion, but also assists
in exploiting the fact that similar opinions may originate from
same or similar behaviors.

564



VIII. CONCLUSIONS

In this paper, we have proposed a novel approach for
behavior estimation and information fusion for subjective
opinions. Through extensive simulations, we have shown that
it efficiently and successfully estimates the behavior probabil-
ities of information sources. During the fusion, behaviors of
sources are determined using maximum likelihood principle.
To compare our approach with other fusion approaches, we
have used the discounted consensus and behavioral discounted
consensus methods in our evaluations. These methods are
chosen, because they reflect common attributes of existing
fusion approaches. We have shown that when information
sources do not consistently adopt the same behavior, those
said approaches have a high fusion error; we note that this
error in fusion is minimal if the sources become consistent in
their behaviors. However, the proposed approach of this paper
always results in a minimal fusion error in a variety of settings
whether the behavior of sources are consistent or not.

In this work, we have assumed that the behavior types are
known and manually incorporated into the proposed frame-
work. In future, we want to extend our approach to learn
source behavior types automatically so that it can capture
new behavior models and incorporates those models into the
framework. Furthermore, the behavior of an information source
may depend on its context, thus we envisage an extension to
our work where it accommodates a context-aware behavior
estimation model.
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