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Abstract—Sensors and information sources can produce con-
flicting evidence for various reasons, including errors and decep-
tion. When conflicting evidence is received, some sources produce
more accurate evidence than others with regard to the ground
truth. The reliability of sources can be expressed by assigning
a level of trust to each source. In this situation, multiple fusion
strategies can be applied: one strategy is to directly fuse the
evidence based on a priori trust in each source, another strategy
is to first revise a priori trust assignments as a function of the
degree of conflict, before the evidence is fused. This paper focuses
on the latter approach, and describes a method for applying trust
revision in case of highly conflicting evidence. The trust revision
method is expressed in the formalism of subjective logic.

I. INTRODUCTION

Trust in an information source determines how information

from the source is interpreted. Assume, for example, that Alice

has trouble with her car and gets advice from her neighbour

Bob about the issue. If she trusts Bob in matters of car

mechanics, then she can take Bob’s advice, as illustrated in

Figure 1. If not she wold be reluctant to take Bob’s advice.

The general principle is that the relying party discounts the

received advice as a function of the level of trust in the advisor.
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Figure 1. Deriving knowledge based on trust

A relying party may receive information about the same

variable from multiple sources, where received information

can be conflicting. The relying party then needs to fuse the

different information elements and try to form a single opinion

about the target variable. For example, if Alice has doubts

about Bob’s advice about car mechanics she might also ask

her other neighbour Clark for a second opinion. In case the

pieces of advice from Bob and Clark are highly conflicting,

Alice might deduce that at least one of them is not to be

trusted. As a result, Alice might revise her opinion about one

or both of her neighbours, and consequently, derive a different

conclusion from their advice. Humans handle this type of trust

reasoning routinely.

It is also possible for advisors to give deceptive advice on

purpose in order to gain some advantage, so that relying parties

need to beware and discount the advice they receive if there is

a reason to believe that the source is not trustworthy. Trust is

the compass that guides relying parties about whether advice

from a specific source should be accepted or rejected. Trust

is a phenomenon that emerges naturally among living species

equipped with advanced cognitive faculties. Discounting of a

received information or signal based on trust and trust revision

happen almost instinctively and simultaneously. When assum-

ing that software agents can be equipped with capabilities

to reason about trust and risk, and to make decisions based

on that, one talks about computational trust, as described by

rapidly growing literature [1]–[5].

In the computational trust literature many formal models

have been proposed for trust reasoning, such as the ones

described in [6] and [7]. A distinction can be made between

interpreting trust as 1) a belief about the reliability of the

information source, and as 2) a decision to depend on the

source [8]. In this paper, trust is interpreted as a belief about

the reliability of the information source. A definition of this

type of trust interpretation is provided by Gambetta [9]:

Trust is the subjective probability by which an individual A

expects that another individual B performs a given action on

which its welfare depends.

A fundamental problem for modelling trust discounting is

the lack of benchmark for comparison and validation of mod-

els, since practical trust transitivity seems to be idiosyncratic

for humans and animals, with no true analogue among non-

living forms (and in the physical world for that matter). The

efficacy of long chains of transitive trust in these circumstances

is debatable, but nonetheless chains of trust can be observed in

human trust. Human subjective trust is in reality a state of mind

that results from the cognitive and affective predispositions of

an entity to perceive and respond to external stimuli, and to

combine them with the internal states and stimuli.

In this paper we present a model for fusing conflicting

opinions coming from different information sources. In the

model, the analyst assigns a trust opinion to each of the

information sources, where a source considered reliable is

assigned high trust level and vice versa. The respective trust

opinions are considered to depend on the degree of conflict in

the information provided by the information sources, and is

updated based on that.
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II. SUBJECTIVE LOGIC

Subjective logic is a formalism that represents uncertain

probabilistic information in the form of subjective opinions,

and that defines a variety of operations for subjective opinions.

In this section we present in detail the concept of subjective

opinion, and, in particular, binomial opinion, which is used

in the subsequent sections for representing agent’s opinion

arguments and, in particular, for representing trust.

A. Opinion Representations

In any modeled scenario, the objects of interest like the

condition of the car, or the trustworthiness of a person or in-

formation source, can be represented as variables taking values

from a certain domain. The condition of the car can be good or

bad, a person can be trusted or not, etc. Domains are typically

specified to reflect realistic situations for the purpose of being

practically analysed in some way. The different values of the

domain are assumed to be mutually exclusive and exhaustive,

which means that the variable can take only one value at any

time, and that all possible values of interest are included in the

domain. For example, if the variable is the WEATHER, we can

assume its domain to be the set {rainy, sunny, overcast}. The

available information about the particular value of the variable

is very often of a probabilistic type, in the sense that we don’t

now the particular value, but we might know its probability.

Probabilities express likelihoods with which the variable takes

the specific values and their sum over the whole domain is 1.

A variable together with a probability distribution defined on

its domain is a random variable.

For a given variable of interest, the values of its domain

are assumed to be the real possible states the variable can

take in the situation to be analysed. In some cases, certain

observations may indicate that the variable takes one of several

possible states, but it is not clear which one in particular.

For example, we might know for sure that the weather is

either rainy or sunny, but do not know its exact state. For

this reason it is very often more practical to consider subsets

of the domain as possible values of the variable, i.e. instead of

the original domain to consider a hyperdomain, which would

contain all the singletons like {rainy}, but also composites like

{rainy, sunny}; and assign beliefs to these values according

to the available information, instead of providing a probability

distributions on the original domain. In this case we are talking

about a hypervariable in contrast to a random variable.

In the case of the WEATHER seen as a hypervariable, a

possible value can be {rainy, sunny} which means that the

actual weather is either rainy or sunny, but not both at the same

time. Composites are only used as an artifact for assigning

belief mass when the observer believes that one of several

values is the case, but is confused about which one in particular

is true. If the analyst wants to include the realistic possibility

that there can be rain and sunshine simultaneously, then the

domain would need to include a corresponding singleton value

such as {rainy&sunny}. It is thus a question of interpretation

how the analyst wants to separate between different types of

weather, and thereby define the relevant domain.

A subjective opinion distributes a belief mass over the values

of the hyperdomain. The sum of the belief masses is less than

or equal to 1, and is complemented with an uncertainty mass.

In addition to belief and uncertainty mass, a subjective opinion

contains a base rate probability distribution expressing prior

knowledge about the specific class of random variables, so that

in case of significant uncertainty about a specific variable, the

base rates provide a basis for default likelihoods. We give

formal definitions of these concepts in what follows.

Let X be a variable over a domain �= {x1,x2, . . . ,xk} with

cardinality k, where xi (1 ≤ i ≤ k) represents a specific value

from the domain. The hyperdomain is a reduced powerset of

�, denoted by R(�), and defined as follows:

R(�) = P(�)∖{�, /0}. (1)

All proper subsets of � are elements of R(�), but � and /0

are not, since they are not considered possible observations to

which we can assign beliefs. The hyperdomain has cardinality

2k − 2. We use the same notation for the elements of the

domain and the hyperdomain, and consider X a hypervariable

when it takes values from the hyperdomain.

Let A denote an agent which can be an individual, source,

sensor, etc. A subjective opinion of the agent A on the variable

X , ωA
X , is a tuple

ωA
X = (bA

X ,u
A
X ,a

A
X ), (2)

where bA
X : R(�) → [0,1] is a belief mass distribution, the

parameter uA
X ∈ [0,1] is an uncertainty mass, and aA

X :�→ [0,1]
is a base rate probability distribution satisfying the following

additivity constrains:

uA
X +∑

x∈R(�)

bA
X (x) = 1, (3)

∑
x∈�

aA
X (x) = 1 . (4)

In the notation of the subjective opinion ωA
X , the subscript

is the target variable X , the object of the opinion while the

superscript is the opinion owner A, the subject of the opinion.

Explicitly expressing subjective ownership of opinions makes

is possible to express that different agents have different opin-

ions on the same variable. Indication of opinion ownership can

be omitted when the subject is clear or irrelevant, for example,

when there is only one agent in the modelled scenario.

The belief mass distribution bA
X has 2k − 2 parameters,

whereas the base rate distribution aA
X only has k parameters.

The uncertainty parameter uA
X is a simple scalar. A general

opinion thus contains 2k + k− 1 parameters. However, given

that Eq.(3) and Eq.(4) remove one degree of freedom each,

opinions over a domain of cardinality k only have 2k + k−3

degrees of freedom.

A subjective opinion in which uX = 0, i.e. an opinion

without uncertainty, is called a dogmatic opinion. A dogmatic

opinion for which bX (x) = 1, for some x, is called an absolute

opinion. In contrast, an opinion for which uX = 1, and conse-

quently, bX (x) = 0, for every x ∈ R(�), i.e. an opinion with

complete uncertainty, is called a vacuous opinion.
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Every subjective opinion “projects” to a probability distri-

bution PX over � defined through the following function:

PX (xi) = ∑
x j∈R(�)

aX (xi/x j) bX (x j)+aX (xi) uX , (5)

where aX (xi/x j) is the relative base rate of xi ∈� with respect

to x j ∈ R(�) defined as follows:

aX (xi/x j) =
aX (xi ∩ x j)

aX (x j)
, (6)

where aX is extended on R(�) additively. For the relative base

rate to be always defined, it is enough to assume aA
X (xi)> 0,

for every xi ∈�. This means that everything we include in the

domain has a non-zero probability of occurrence in general.

Binomial opinions apply to binary random variables where

the belief mass is distributed over two elements. Multinomial

opinions apply to random variables in n-ary domains, and

where the belief mass is distributed over the elements of the

domain. General opinions, also called hyper-opinions, apply to

hypervariables where belief mass is distributed over elements

in hyperdomains obtained from n-ary domains. A binomial

opinion is equivalent to a Beta probability density function,

a multinomial opinion is equivalent to a Dirichlet probabil-

ity density function, and a hyper-opinion is equivalent to a

Dirichlet hyper-probability density function [10]. Binomial

opinions thus represent the simplest opinion type, which can

be generalised to multinomial opinions, which in turn can

be generalised to hyper-opinions. Simple visualisations for

binomial and trinomial opinions are based on barycentric

coordinate systems as illustrated in Figures 2 & 3 below.

B. Binomial Opinions

Binomial opinions have a special notation that is used for

modelling trust in the subsequent sections.

Let X be a random variable on domain � = {x,x}. The

binomial opinion of agent A about variable X can be seen as

an opinion about the truth of the statement “X is x” (denoted

by X = x, or just x) and given as an ordered quadruple:

ωA
x = (bA

x ,d
A
x ,u

A
x ,a

A
x ) , (7)

bA
x (belief) belief mass in support of x,

dA
x (disbelief) belief mass in support of x (NOT x),

uA
x (uncertainty) uncertainty about probability of x,

aA
x (base rate) non-informative prior probability of x.

In case of binomial opinions Eq.(3) is simplified to Eq.(8).

bA
x +dA

x +uA
x = 1 . (8)

Similarly, in the special case of binomial opinions the

projected probability of Eq.(5) is simplified to:

PA
x = bA

x +aA
x uA

x . (9)

A binomial opinion can be represented as a point inside an

equilateral triangle, which is a 3-axis barycentric coordinate

system representing belief, disbelief, and uncertainty masses,

with a point on the baseline representing base rate probabil-

ity, as shown in Fig. 2. The axes run through the vertices

along the altitudes of the triangle. The belief, disbelief, and

uncertainty axes run through the vertices denoted by x, x̄,

and u, correspondingly, which have coordinates coordinates

(1,0,0), (0,1,0), and (0,0,1), correspondingly. In Fig. 2,

ωx = (0.20, 0.40, 0.40, 0.75), with projected probability Px =
0.50, is shown as an example. A strong positive opinion, for

example, would be represented by a point towards the bottom

right belief vertex.

x

Px ax

dxbx

u
X

x vertexx vertex
(belief)(disbelief)

u vertex  (uncertainty)

Figure 2. Visualisation of a binomial opinion

In case the opinion point is located at the left or right

vertex of the triangle, i.e. has dx = 1 or bx = 1 (and ux = 0),

the opinion is equivalent to boolean TRUE or FALSE, in

which case subjective logic is reduced to binary logic. In

case the opinion point is located on the base line of the

triangle, i.e. has ux = 0, then the opinion is equivalent to

a probability distribution, in which case subjective logic is

reduced to probability calculus.

In general, a multinomial opinion can be represented as

a point inside a regular simplex. In particular, a trinomial

opinion can be represented inside a tetrahedron (a 4-axis

barycentric system), as shown in Figure 3.

X

PX aX

x3 vertex
x1 vertex

u
X x2 vertex

u vertex  (uncertainty)

Figure 3. Visualisation of a trinomial opinion

Assume the random variable X on domain �= {x1, x2, x3}.

Figure 3 shows multinomial opinion ωX with belief mass dis-

tribution bX = (0.20, 0.20, 0.20), uncertainty mass uX = 0.40

and base rate distribution aX = (0.750, 0.125, 0.125).
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III. SUBJECTIVE OPINION FUSION

In many cases subjective opinions from multiple sources are

available and one needs to fuse them in some way and produce

a single opinion. The purpose of opinion fusion is to produce

a new opinion that would be a relevant representative of the

original opinions in the given context. It can be challenging to

determine the most appropriate fusion operator for a specific

setting. A discussion on this topic is provided in [11]. Here

we use the averaging fusion operator as an example.

Averaging fusion of opinions takes as input arguments

two or more subjective opinions about the same variable, as

illustrated in Figure 4, where agents B and C have separate

opinions about the variable X . The resulting opinion obtained

by merging the input ones is held by an imaginary combined

agent, which in case of averaging fusion is denoted by B⋄C.

X B C X 

B 

C 

CB

X

B

X

C

X

Figure 4. Averaging fusion of opinions

Averaging opinion fusion is used when the fused opinions

are assumed to be dependent. In this case, including more

opinions does not necessarily mean that more evidence is

supporting the conclusion. An example of this type of situation

is when a jury tries to reach a verdict after having observed

the court proceedings. Because the evidence is limited to what

was presented in court, the certainty about the verdict does not

increase by having more jury members expressing their beliefs,

since they all received the same evidence.

More formally, we assume a variable X with a domain � of

cardinality k and corresponding hyperdomain R(�). Let the

opinions ωB
X and ωC

X apply to the hypervariable X which takes

its values from the hyperdomain. The superscripts B and C

identify the respective opinion sources or opinion owners. The

expression for averaging belief fusion of these two opinions

is the following:

ωB⋄C
X = ωB

X⊕ωC
X . (10)

In the above expression, the averaging combination of

agents denoted by the symbol ‘⋄’, corresponds to averaging

opinion fusion operator denoted by ‘⊕’.

The definition of averaging belief fusion operator is obtained

from averaging opinions represented as evidence through the

bijective mapping between evidence and belief in subjective

logic [10]. The expressions for the beliefs and uncertainty of

the resulting opinion ωB⋄C
X are provided separately for the two

different cases given below.

Case I: For uB
X ∕= 0 ∨ uC

X ∕= 0 :

⎧





⎨





⎩

b
B⋄C
X (x) =

bB
X (x)u

C
X+bC

X (x)u
B
X

uB
X+uC

X

u
B⋄C
X =

2uB
X uC

X

uB
X+uC

X

(11)

Case II: For uB
X = 0 ∧ uC

X = 0 :

⎧

⎨

⎩

b
B⋄C
X (x) = γB

X bB
X (x)+ γC

X bC
X (x)

u
B⋄C
X = 0

(12)

where

⎧















⎨















⎩

γB
X = lim

uB
X→0

uC
X→0

uC
X

uB
X+uC

X

γC
X = lim

uB
X→0

uC
X→0

uB
X

uB
X+uC

X

It is usually assumed that the two opinions to be fused have

equal base rates, which leads to the same base rate for the

resulting opinion as well. In the case when aB
X ∕= aC

X , the base

rate of the fused opinion, a
B⋄C
X , is defined simply as an average

of the functions aB
X and aC

X .

It can be verified that the averaging fusion rule is commu-

tative and idempotent; but it is not associative.

IV. TRUST DISCOUNTING

The general idea behind trust discounting is to express

degrees of trust in an information source and then to discount

information provided by the source as a function of the trust

in the source. We represent both the trust and the provided

information in the form of subjective opinions, and then define

an appropriate operation on these opinions to find the trust

discounted opinion.

Let agent A denote the relying party and agent B denote an

information source. Assume that agent B provides information

to agent A about the state of a variable X expressed as a

subjective opinion on X . Assume further that agent A has an

opinion on the trustworthiness of B with regard to providing

information about X . Based on the combination of A’s trust

in B and on B’s opinion about X given as an advice to A, it

is possible for A to derive an opinion about X . This process

is illustrated in Figure 6.

X A X B 

B

X
A 

A

B

BA

X

:

Figure 6. Trust discounting of opinions
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Figure 5. Uncertainty-favouring trust discounting

Several trust discounting operators for subjective logic are

described in the literature [4], [7]. The general representation

of trust discounting is through conditionals [4], while special

cases can be expressed with specific trust discounting oper-

ators. In this paper we use the specific case of uncertainty-

favouring trust discounting which enables the uncertainty in

A’s derived opinion about X to increase as a function of the

projected distrust in the recommender B. The uncertainty-

favouring trust discounting operator is described below.

Agent A’s trust in B is formally expressed as a binomial

opinion on domain �= {t, t} where the values t and t denote

trusted and distrusted respectively. We denote this opinion by

ωA
B =(bA

B,d
A
B ,u

A
B,a

A
B)

1. The values bA
B, dA

B , and uA
B represent the

degrees to which A trusts, does not trust, or is uncertain about

the trustworthiness of B in the current situation, while aA
B is a

base rate probability that A would assign to the trustworthiness

of B a priori, before receiving the advice.

Assume variable X on domain �, and let ωB
X = (bB

X ,u
B
X ,a

B
X )

be B’s general opinion on X as recommended to A. Trust

discounting is expressed with the following notation:

ωA:B
X = ωA

B ⊗ωB
X . (13)

Trust discounted agent obtained by discounting agent B by

the trust of agent A to it, denoted by A : B, corresponds to

transitive discounting of opinions with the operator denoted

by ⊗. ωA:B
X denotes A’s subjective opinion on X derived as

a function of A’s trust in B and B’s recommended opinion

about X . There are multiple variants of this operator given

in [4], where the specific case of uncertainty-favouring trust

discounting is defined in the following way:

ωA:B
X :

⎧





⎨





⎩

bA:B
X (x) = PA

B bB
X (x)

uA:B
X = 1−PA

B ∑
x∈R(�)

bB
X (x)

aA:B
X (x) = aB

X (x)

(14)

1According to the notation introduced in Section II-B, a more correct
notation for this opinion would be ωA

�B
= (bA

t ,d
A
t ,u

A
t ,a

A
t ). For practical

reasons, especially for the case where there can be more different agents
in the role of B, we choose to use this modified notation here.

The effect of this operator is illustrated in Figure 5 with the

following example. Let ωA
B = (0.20, 0.40, 0.40, 0.75) be A’s

trust opinion on B, with projected probability PA
B = 0.50. Let

further ωB
x = (0.45, 0.35, 0.20, 0.25) be B’s opinion about the

state of variable X , with projected probability PB
x = 0.50. Ac-

cording to Eq.(14) we can compute A’s derived opinion about

X as ωA:B
x = (0.225, 0.175, 0.60, 0.25) which has projected

probability PA:B
x = 0.375. The trust-discounted opinion ωA:B

x

typically has increased uncertainty, compared to the original

opinion given by B, where the decree of discounting is dictated

by the projected probability of the trust opinion.

Figure 5 illustrates the general behaviour of the uncertainty-

favouring trust discounting operator, where the derived opinion

is constrained to the shaded sub-triangle at the top of the right-

most triangle. The size of the shaded sub-triangle corresponds

to the projected probability of trust in the trust opinion. The

effect of this is that the barycentric representation of ωB
x is

shrunk proportionally to PA
B to become a barycentric opinion

representation inside the shaded sub-triangle.

Some special cases are worth mentioning. In case the

projected trust probability equals one, which means complete

trust, the relying party accepts the recommended opinion as it

is. In case the projected trust probability equals zero, which

means complete distrust, the recommended opinion is reduced

to a vacuous opinion, meaning that the recommended opinion

is completely discarded.

The following example illustrates how this kind of trust

discounting is applied intuitively in real situations. While

visiting a foreign country Alice is looking for a restaurant

where the locals go, because she would like to avoid places

overrun by tourists. She meets a local called Bob who tells her

that restaurant Xylo is the favourite place for locals. Assume

that Bob is a stranger to Alice. Then a priori her trust in Bob is

affected by high uncertainty. However, it is enough for Alice to

assume that locals in general give good advice, which results

in a high base rate for her trust. Even if her trust in Bob is

vacuous, a high base rate will result in a projected probability

of trust close to one, so that Alice will derive a strong opinion

about the restaurant Xylo based on Bob’s advice.
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V. TRUST REVISION

We continue the example from the previous section by

assuming that Alice stays in a hostel where she meets another

traveler named Clark who tells her that he already tried the

Xylo restaurant, and that it actually was very bad, and that

there were no locals there. Even if Clark is also a stranger

to Alice which means that she is uncertain about his trust-

worthiness, she assumes that fellow travelers are trustworthy

in general which translates into a high base rate trust for

Clark. Now Alice has a second advice which gives her reason

to revise her initial trust in Bob, which could translate into

distrusting Bob.

Trust discounting and fusion can be combined for fusing

information from different sources with different trust levels,

as illustrated in Figure 7.

X A X 

B 

C 

B

X

C

X

A 

A

B

A

C

):():( CABA

X

Figure 7. Fusion of trust-discounted opinions

A complicating element in this scenario is when multiple

sources provide highly conflicting advice, which might indi-

cate that one or both sources are unreliable. In this case a

strategy is needed for dealing with the conflict. The chosen

strategy must be suitable for the specific situation.

The most straightforward strategy would be to consider the

trust opinions as static, and not to revise trust at all. With

this strategy the relying party only needs to determine the

most suitable fusion operator for the situation to be analysed.

For example, if averaging fusion is considered suitable, then

a simple model would be to derive A’s opinion about X as

follows:

ω
(A:B)⋄(A:C)
X = (ωA

B ⊗ωB
X )⊕(ωA

C ⊗ωC
X ) (15)

However, there are several situations where simple fusion

might be considered inadequate, and where it would be natural

to revise one or both trust opinions.

One such situation is when the respective opinions pro-

vided by B and C are highly conflicting in terms of their

projected probability distributions on X . Note here that in

some situations this might be natural, such as in case of

short samples of random processes where a specific type of

events might be observed in clusters. Another situation where

highly conflicting beliefs might occur naturally is when the

observed system can change characteristics over time and the

observed projected probability distributions refer to different

time periods. However, if the sources A and B observe exactly

the same situation or event at the same time, but still produce

different opinions, then trust revision should be considered.

Another situation that calls for a trust revision is when the

relying party A learns that the ground truth about X is radically

different from the recommended opinions.

The most basic measure of conflict is the projected distance,

denoted PD, between the projected probability distributions of

two trust discounted opinions.

PD(ωA:B
X ,ωA:C

X ) =

∑
x∈�

∣PA:B
X (x)−PA:C

X (x)∣

2
(16)

Obviously PD ≥ 0. Using basic absolute value inequalities,

it can be proven that the numerator in Eq.(16) is not greater

than 2, independently of the cardinality of �, so PD ∈ [0,1].
We obtain PD= 0 when the two opinions have equal projected

probability distributions, in which case the opinions are non-

conflicting (even though they might be different). The maxi-

mum value PD= 1 occurs e.g. in case of two absolute binomial

opinions with opposite projected probability values.

A large PD does not necessarily indicate a problem, because

conflict is diffused in case one (or both) opinions have high

uncertainty. The more uncertain the opinions, the more a large

PD should be tolerated. This corresponds to the fact that

uncertain opinions carry little weight in the fusion process.

A natural measure of simultaneous certainty of two opinions

is the conjunctive certainty denoted by CC:

CC(ωA:B
X ,ωA:C

X ) = (1−uA:B
X )(1−uA:C

X ) (17)

It can be seen that CC ∈ [0,1] where CC = 0 means that

one or both opinions are vacuous, and CC = 1 means that

both opinions are dogmatic, i.e. have zero uncertainty mass.

The degree of conflict (DC) is the product of PD and CC.

DC(ωA:B
X ,ωA:C

X ) = PD ⋅CC (18)

It is natural to let the degree of trust revision be a function

of DC, but the most uncertain opinion should be revised the

most. We define uncertainty difference (UD) to be a measure

for comparing uncertainty between two opinions:

UD(ωA:B
X ,ωA:C

X ) =
uA:B

X −uA:C
X

uA:B
X +uA:C

X

(19)

It can be seen that UD ∈ [−1,1], where UD = 0 means that

both opinions have equal uncertainty, UD = 1 means that the

trust opinion ωA:B
X is infinitely more uncertain than the other

opinion, and UD = −1 means that the trust opinion ωA:C
X is

infinitely more uncertain than the other opinion.

We can use UD to define how much revision each opinion

needs. The revision factors are denoted RFB and RFC.

RFB =
1+UD

2
, RFC =

1−UD

2
. (20)

It can be seen that RF ∈ [0,1], where RFB +RFC = 1. The

case when RFB = 1 means that only ωA:B
X is revised, the case

RFB = RFC = 0.5 means that both opinion are equally revised,

and the case RFC = 1 means that only ωA:C
X is revised.

Trust revision consists of increasing distrust at the cost of

trust and uncertainty. The idea is that sources found to be

unreliable should be distrusted more. A source found to be

completely unreliable should be absolutely distrusted.
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In terms of the opinion triangle, trust revision consists of

moving the opinion point towards the t vertex, as shown

in Figure 8. Given a trust opinion ωA
B = (bA

B,d
A
B ,u

A
B,a

A
B) the

revised trust opinion denoted ω̃A
B = (b̃A

B, d̃
A
B , ũ

A
B, ã

A
B) is :

ω̃A
B :

⎧

















⎨

















⎩

b̃A
B = bA

B −bA
B ⋅RFB ⋅DC

d̃A
B = dA

B +(1−dA
B) ⋅RFB ⋅DC

ũA
B = uA

B −uA
B ⋅RFB ⋅DC

ãA
B = aA

B

(21)

Figure 8 illustrates the effect of trust revision which consists

of making a trust opinion more distrusting.

t vertext vertex
(trust)(distrust)

u vertex  (uncertainty)

A

B

A

B
b

A

B
d

A

B
u

A

B

~

Figure 8. Revision of trust opinion ωA
B

After trust revision has been applied, the opinion fusion

according to Eq.(15) can be repeated, with reduced conflict.

VI. EXAMPLE

As an example we apply the method to a scenario where

advisors provide conflicting recommendations.

The target domain � is binary, i.e. we assume, for example,

that the two advisors express their opinion about X being

good or bad. Furthermore, we assume that the base rate for

trustworthiness and for the variable X are both 0.5.

Assume two advisors B and C, each with their own hidden

integrity parameter. The integrities of the advisors are the

parameters of the model. User A forms opinions ωA
B and ωA

C

about the trustworthiness of the two advisors, as an estimate

of their integrity. The two advisors provide recommendations

about X in the form of opinions ωB
X and ωC

X .

The integrity of a recommender is represented by the

probability that its recommendation reflects the truth of X .

Unreliability is represented by the complement probability, i.e.

by the probability that its recommendation is misleading.

User A derives opinions ωA:B
X , ωA:C

X based on the advisors’

recommendations ωB
X and ωC

X , and the trust opinions ωA
B , ωA

C ,

applying trust discounting and averaging fusion.

User A can revise the trust in the advisors, based on the

obtained opinions ωA:B
X , ωA:C

X , and their degree of conflict. The

graphs below displays the different aspects of trust revision

introduced in Section V, parametrized with advisors.
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Figures 9–12 show three plots each. On the x-axis, we have

the integrity of the advisor C. The integrity of the advisor

B is constant for each graph (the shown curves correspond

to values 0.1, 0.5, and 0.9). In each of the four figures, we

measure a different aspect of trust evaluation.

In Figure 9, we measure projected distance (PD). The PD

correlates negatively with uncertainty. This may be somewhat

counter-intuitive, since opinions with high uncertainty should

be less accurate. However, the PD is not measuring accuracy.

An opinion with high uncertainty will provide a projected

probability for belief close to 0.5. The absolute distance to

a central value, such as 0.5, tends to be small.

In Figure 10, we measure the degree of conflict (DC). The

DC correlates much stronger negatively with uncertainty. This

is an obvious consequence of the fact that DC = CC ⋅PD, and

CC correlates negatively with uncertainty too (by definition).

In Figures 11 and 12, we measure the actual revision for

the first (fixed) and the second (variable) advisor, respectively.

The former graph is increasing, since the total uncertainty

decreases (making DC increase), whereas the relative uncer-

tainty of the fixed advisor increases. The latter graph is first

increases, then decreases. The initial increase is caused by the

total decrease of uncertainty, and the final decline is caused

by the relative decrease of uncertainty.

Table I
CORRELATION BETWEEN ERROR AND REVISION OF B

B∖C Random 0.1 0.5 0.9
Random 0.3259 0.4100 0.3474 0.2208

0.1 0.1885 0.2955 0.1677 −0.0475
0.5 0.2945 0.4509 0.3234 0.1060
0.9 0.6415 0.7681 0.6621 0.4594

Table I uses the same set-up as the graphs. We measure

the correlation between the error in the opinion resulting

from C’s recommendation and the amount of revision that C

receives. There are four types of advisors: random advisors,

bad advisors (10% of recommendations are true), average

advisors (50%) and good advisors (90%). The top-left cell

value shows the overall correlation (for a pair of random

advisors), which is strongly positive. This means that revisions

tend to be provided when the opinions tend to be bad. We see

a general trend that if the quality of the advisors goes up,

they tend to get less useful revisions. In one extreme case,

the revisions are even slightly counterproductive. The best

revisions are revisions of opinions given by a bad advisor,

with a good other advisor to compare to.

VII. CONCLUSIONS

We have described a model for trust revision based on the

degree of conflict in the fusion between opinions. The model

is formalised in terms of subjective logic which explicitly han-

dles uncertainty in a probabilistic information, which is neces-

sary to adequately model trust. Our model closely corresponds

to intuitive human reasoning which includes uncertainty in the

beliefs and default assumptions through base rates. This model

provides the basis for a sound analysis of situations where the

analyst receives information from sources that are considered

to have varying levels of trustworthiness. Application areas

are for example intelligence analysis, sensor network pruning,

and social networks trust management.
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