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Abstract—Joint object detection and tracking is a powerful
approach to significantly improve the detection of extremely weak
targets or phenomena in surveillance systems. Since the Kalman
filter is an optimal estimator for object tracking problems under
certain conditions and the Wald’s sequential probability ratio
test (SPRT) requires fewer samples in average than the fixed-
sample-size procedure when solving object detection problems, it
is beneficial to apply the Kalman filter and the Wald’s SPRT to
design joint object detection and tracking algorithm. However, the
Wald’s SPRT cannot be rigorously proved to eventually terminate
if the observations are dependent. In this paper, a terminative
joint sequential detection and tracking approach is proposed by
fusing two test statistics: one is derived in our previous work,
and the other is based on independent observations obtained
by linearly combining a group of adjacent measurements. The
proposed approach takes advantage of both statistics in that
it is guaranteed to terminate and it requires on the average
a small number of measurements. Numerical results show that
the average sample number required by the proposed approach
is very small under low signal-to-noise ratio conditions and
the actual probabilities of errors are smaller than the nominal
probabilities of errors.

I. INTRODUCTION

For most surveillance systems, object detection and track-
ing are two important problems that need to be solved. The
goal of object detection is to determine the presence or absence
of a target under uncertainty. In detection algorithms, the
presence and absence of targets are usually represented by
two hypotheses respectively, under which the knowledge of
distributions of measurements are required. Object tracking
is to estimate the states of moving targets, which typically
consist of their positions and velocities over time. The tracking
algorithms usually assume the presence of the target(s). Based
on the assumptions of the detection and tracking algorithms,
the object detection and tracking are typically implemented
separately and object tracking is performed after the target is
detected. This two-stage approach works well when the target
has a relatively high signal-to-noise ratio (SNR), and it can be
reliably detected. But this approach may not detect the weak
target reliably with acceptable detection performance using
a single sample. This motivates the research on joint object
detection and tracking, which has the potential to significantly
improve the detection of extremely weak targets or phenomena,
such as a weak target that is far away from the radar or the
chemical/biological plumes with very low concentration.

There are only a very limited number of publications on
joint detection and tracking. One joint detection and tracking

approach is along-track integration. The multiple multistage
hypothesis test tracking algorithm [1] detects targets by eval-
uating candidate track hypotheses by using the test statistic in
the multistage hypothesis testing algorithm [2]. The premise of
along-track integration is that the possible target trajectories are
known. Another joint detection and tracking approach is track-
before-detect [3], [4], which utilizes a dynamic programming
algorithm to evaluate possible target trajectories. Note that
these methods work only in discrete state space. In [5], joint
detection and tracking of a target was solved by the Bernoulli
filter, which models the presence and the state of target as a
random set: the posterior probability density function (PDF)
of the set’s cardinality corresponds to the target’s presence,
and the posterior PDF of the element in the set corresponds to
the target’s state given the target’s presence. The two posterior
PDFs of the random set are updated recursively in a Bayesian
framework.

Different from all the joint detection and tracking ap-
proaches discussed above, a joint object detection and tracking
approach based on the likelihood ratio test (LRT) and the
extended Kalman filter (EKF) has been proposed in our
previous work [6], which works in continuous state space.
However, this approach is a fixed-sample-size (FSS) procedure,
where the number of samples has been pre-specified. It is
well known that sequential detection on the average requires
a smaller number of observations than a detection procedure
with a fixed sample size [7]. Therefore, we proposed the
joint sequential object detection and tracking approach based
on Wald’s sequential probability ratio test (SPRT) and the
Kalman filter in [8]. However, it is very difficult to rigorously
prove that the Wald’s SPRT will eventually terminate in this
approach as the successive measurements are dependent under
hypothesis H1 which means the existence of a target. Since
it was proved in [7] that the SPRT procedure will terminate
with probability one if the observations are independent, we
propose a terminative joint sequential object detection and
tracking algorithm in this paper by constructing a sequence of
independent observations based on the sensor measurements.
In this new approach, two hypothesis testing statistics are fused
to guarantee that the sequential test will not only eventually
terminate but also keep the power of our previous approach.

The paper is organized as follows. The joint sequential
object detection and tracking algorithm proposed in [8] is
summarized in Section II. In Section III, the terminative
joint sequential object detection and tracking algorithm is
proposed. The simulation results provided in Section IV show
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the performance of proposed algorithm. Finally, the paper is
concluded in Section V.

II. PROBLEM FORMULATION

The joint sequential detection and tracking approach pro-
posed in [8] is summarized in this section. Let us assume that
under hypothesis H1, an object exists and its motion could
be modeled by the following discrete-time linear system state
equation [9]

xk+1 = Fxk + Γvk (1)

where xk is nx × 1 state vector at time k, F is nx × nx state
transition matrix, vk is the process noise at time k, and Γ is the
gain matrix for vk. Furthermore, {vk} is a sequence of white
Gaussian process noise with E(vk) = 0 and E(vkv

T
k ) = Q

for all k = 1, 2, · · · .

The measurement equation is

zk = Hxk +wk (2)

where zk is the nz × 1 measurement vector at time k, H is
the nz ×nx measurement matrix, and wk is the measurement
noise at time k. Also, {wk} is a sequence of white Gaussian
measurement noise with E(wk) = 0 and E(wkw

T
k ) = Rw

for k = 1, 2, · · · .

Let us assume that under hypothesis H0, no object exists
and the measurement is purely noise

zk = uk (3)

where uks are independent and identically distributed (i.i.d.)
and follow Gaussian distribution with mean µ and covariance
Ru. The sequences {vk}, {wk}, and {uk} are independent
with each other.

Since the measurements are independent over time under
hypothesis H0 and the likelihood function p(z1:K |H1) can
be calculated using chain rule under hypothesis H1, the log-
likelihood ratio for the measurements accumulated up to the
Kth step can be written in the following summation form

logΛ(z1:K) = log
p(z1:K |H1)

p(z1:K |H0)

= log
p(z1|H1)

∏K−1
k=1 p(zk+1|z1:k, H1)

∏K
k=1 p(zk|H0)

=
K
∑

k=1

log
p(zk|z1:k−1, H1)

p(zk|H0)
=

K
∑

k=1

Θk

(4)

in which

Θk , log
p(zk|z1:k−1, H1)

p(zk|H0)
(5)

and z1:0 is an empty set.

By using the Kalman filter, we can obtain p(zk|z1:k−1, H1)
as follows

p(zk|z1:k−1, H1)

= |2πSk|
− 1

2 e−
(zk−Hx̂

k|k−1)T S
−1
k

(zk−Hx̂
k|k−1)

2

(6)

where Sk is the measurement residual covariance, and x̂k|k−1

is the predicted state given the accumulated measurements
z1:k−1. Under hypothesis H0, it is easy to show that

p(zk|H0) = |2πRu|
− 1

2 e−
(zk−µ)T R

−1
u

(zk−µ)

2 (7)

Substituting (6) and (7) in (5), we have

Θk =
1

2
log

|Ru|

|Sk|
+

1

2
(zk − µ)TR−1

u (zk − µ)

−
1

2
(zk −Hx̂k|k−1)

TS−1
k (zk −Hx̂k|k−1)

(8)

Let ta(z1:K) = 2
∑K

k=1 Θk be the hypothesis testing
statistic. According to (4) and (8), we have

ta(z1:K) = 2logΛ(z1:K)

=
K
∑

k=1

{

log
|Ru|

|Sk|
+ (zk − µ)TR−1

u (zk − µ)

− (zk −Hx̂k|k−1)
TS−1

k (zk −Hx̂k|k−1)
}

(9)

Since the measurements are dependent over time under
hypothesis H1, in this case the optimum detector is in the form
of a generalized sequential probability ratio test (GSPRT) [10],
[11]. However, the thresholds used in GSPRT are functions of
K and the determination of them is still an open problem.
Due to the difficulty of implementing the optimal GSPRT,
a new joint sequential detection and tracking algorithm by
using Wald’s SPRT was proposed in [8] and is summarized
as follows

ta(z1:K)

{

> 2logA stop and accept H1

6 2logB stop and accept H0

otherwise continue
(10)

where A and B are two thresholds which can be determined by
pre-specified probabilities of false alarm and missed detection.

III. TERMINATIVE JOINT DETECTION AND TRACKING

A. Independent Observations

The Wald’s SPRT terminates with probability one on the
premise of the observations are independent [7]. Therefore, we
construct a sequence of independent observations {yk} based
on the measurements {zk} to make sure that the Wald’s SPRT
will eventually terminate.

To construct independent observations {yk}, we only need
to consider the measurements under hypothesis H1. Because
the measurements under hypothesis H0 are independent and
identically distributed, and the linear combination of them are
still independent and identically distributed. Under hypothesis
H1, we know that the process noise sequence {vk} and
measurement noise sequence {wk} are independent of each
other. So, the measurements zi and zj are correlated only
because they depend on the correlated states xi and xj respec-
tively. Since the measurements are linear functions of states,
the independent observations can be constructed by linear
combination of zks in which the coefficient corresponding to
xk should be zero.
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Since zk+m is a linear function of Fmxk for any m =
0, 1, 2, ..., we can generate the independent observations {yk}
in the form of linear combination of {zk} as long as we
find a polynomial equation of F. Let us take a look at the
characteristic equation of F.

κ(λ) = |λI− F|

= λnx + p1λ
nx−1 + · · ·+ pnx−1λ+ pnx

= 0

(11)

where the pis determined by the eigenvalues of F. Let us
denote the ith eigenvalue of F as λi. The characteristic
equation of F can be rewritten as

κ(λ) =

nx
∏

i=1

(λ− λi) = 0 (12)

According to Cayley-Hamilton theorem, we know that
the square matrix F satisfies its own characteristic equation.
Therefore, we have

κ(F) = Fnx + p1F
nx−1 + · · ·+ pnx−1F+ pnx

I

=

nx
∏

i=1

(F− λiI) = 0
(13)

According to (13), the independent observations {yk} is
constructed as follows

yk =z(nx+1)k + p1z(nx+1)k−1 + · · ·

+ pnx−1z(nx+1)k−(nx−1) + pnx
z(nx+1)k−nx

(14)

By linearly combining zks in this way, it can be shown that
the terms containing xks will be canceled out. This is the
general way to construct yk for any nx. To show that {yk}
is a sequence of independent observations clearly and find the
distribution of yk, let us take nx = 2 as an example. In this
case, F is a 2× 2 matrix, and the characteristic equation of F
becomes

κ(F) = F2 + p1F+ p2I

= (F− λ1I)(F− λ2I)

= F2 − (λ1 + λ2)F+ λ1λ2I = 0

(15)

where p1 = −(λ1 + λ2) and p2 = λ1λ2.

According to (15), the observation yk in (14) becomes

yk = z3k + p1z3k−1 + p2z3k−2

= z3k − (λ1 + λ2)z3k−1 + λ1λ2z3k−2
(16)

z3k, z3k−1, and z3k−2 are expanded as functions of x3k−2

as follows

z3k = Hx3k +w3k

= H(Fx3k−1 + Γv3k−1) +w3k

= H(F2x3k−2 + FΓv3k−2 + Γv3k−1) +w3k

(17)

z3k−1 = Hx3k−1 +w3k−1

= H(Fx3k−2 + Γv3k−2) +w3k−1
(18)

and

z3k−2 = Hx3k−2 +w3k−2 (19)

Substituting (17), (18), and (19) in (16), we have

yk = z3k − (λ1 + λ2)z3k−1 + λ1λ2z3k−2

= H
{[

F2 − (λ1 + λ2)F+ λ1λ2I
]

x3k−2

+ [F− (λ1 + λ2)I]Γv3k−2 + Γv3k−1}

+w3k − (λ1 + λ2)w3k−1 + λ1λ2w3k−2

(20)

where the coefficient of x3k−2 is equal to zero as shown in
(15). So, the observation yk is as follows

yk = H {[F− (λ1 + λ2)I]Γv3k−2 + Γv3k−1}

+w3k − (λ1 + λ2)w3k−1 + λ1λ2w3k−2
(21)

Obviously, {yk} follow i.i.d. Gaussian distribution under
H1, because the observation yk is linear combination of Gaus-
sian distributed {vk} and {wk}, and the adjacent observation
yk+1 is as follows which has no common items with yk.

yk+1 = z3k+3 − (λ1 + λ2)z3k+2 + λ1λ2z3k+1

= H {[F− (λ1 + λ2)I]Γv3k+1 + Γv3k+2}

+w3k+3 − (λ1 + λ2)w3k+2 + λ1λ2w3k+1

(22)

Now, we derive the distribution of i.i.d. observations yk

under H1 and H0, respectively. Let PH1
and PH0

denote the
covariance matrice under H1 and H0, respectively. According
to (21), we get PH1

as follows

PH1 = H
{

[F− (λ1 + λ2)I]ΓQΓT [F− (λ1 + λ2)I]
T

+ΓQΓT
}

HT +
[

λ2
1λ

2
2 + (λ1 + λ2)

2 + 1
]

Rw

(23)

Obviously, the mean of yk under H1 is zero. Therefore,
yk|H1 ∼ i.i.d.N (0, PH1).

yk under H0 is obtained in the same way as (16) and we
have

yk|H0 = z3k − (λ1 + λ2)z3k−1 + λ1λ2z3k−2

= u3k − (λ1 + λ2)u3k−1 + λ1λ2u3k−2
(24)

It’s easy to show that yk|H0 ∼ i.i.d.N (0, PH0
) where

PH0
=

[

λ2
1λ

2
2 + (λ1 + λ2)

2 + 1
]

Ru (25)

From (23) and (25), we know that the covariance matrices
PH1 and PH0 are time invariant. So, they can be calculated
offline.

B. Fused Hypothesis Testing Statistic

Since we know the distributions of yk under both hy-
potheses, the log-likelihood ratio is adopted to generate the
hypothesis testing statistic. For the convenience of description,
we still take nx = 2 for example. The hypothesis testing
statistic for the observations accumulated up to the Lth step
based on the independent observations {yk} is

tb(y1:L) = 2log
p(y1:L|H1)

p(y1:L|H0)
= 2log

∏L
k=1 p(yk|H1)

∏L
k=1 p(yk|H0)

= 2
L
∑

k=1

log
p(yk|H1)

p(yk|H0)

=
L
∑

k=1

[

log
PH0

PH1

+ yT
k P

−1
H0

yk − yT
k P

−1
H1

yk

]

(26)
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where L = 1, 2, · · · .

To guarantee that the joint sequential object detection and
tracking approach in [8] will eventually terminate with proba-
bility one, a terminative approach is constructed as follows by
applying a fused hypothesis testing statistic.

1) Hypothesis H1 will be accepted and the sequential
test will terminate if

UK > 2logA (27)

where

UK = max{ta(z1:K), tb(y1:⌊K/3⌋)} (28)

2) Hypothesis H0 will be accepted and the sequential
test will terminate if

LK 6 2logB (29)

where

LK = min{ta(z1:K), tb(y1:⌊K/3⌋)} (30)

3) Otherwise, the sequential test will continue to take
the next sample.

In this procedure, ta(z1:K) is calculated for each positive
integer K, and tb(y1:K/3) is fused together with ta(z1:K)
when K = 3r, r = 1, 2, · · · . This procedure will terminate
if either the larger one between ta(z1:K) and tb(y1:K/3) is
greater than or equal to 2logA or the smaller one is less than
or equal to 2logB when K = 3r, r = 1, 2, · · · . When K 6= 3r,
equivalently only ta(z1:K) is used to make decision, since
tb(y1:⌊K/3⌋) does not contribute any new information. If we
only use tb(y1:⌊K/3⌋) as hypothesis testing statistic in Wald’s
SPRT, it will eventually terminate as yks are independent. It’s
easy to show that the proposed approach will also terminate
with probability one since the Wald’s SPRT procedure will
terminate as long as either ta(z1:K) or tb(y1:⌊K/3⌋) crosses one
threshold. By applying the same procedure, this terminative
joint sequential object detection and tracking approach can be
applied to general problems with an arbitrary nx.

The thresholds A and B are set using the same method as
in [8]: let α and β be the nominal probabilities of false alarm
and miss respectively. Then, A and B are obtained by A =
1−β
α and B = β

1−α . Regarding the actual probabilities of false

alarm α′ and miss β′, we will investigate their relationship
with α and β in our future work.

IV. SIMULATION RESULTS

The average sample number (ASN), probability of false
alarm, and probability of miss of the proposed approach are
evaluated under different SNRs in this section.

Let us assume that an object is moving in a 1-dimensional

space with its state at time k denoted as xk = [ξk ξ̇k]
T , where

ξk and ξ̇k are the object’s position and velocity at time k,
respectively. The state transition matrix is

F =

[

1 Ts

0 1

]

where Ts = 0.5 seconds is the time interval between two
measurements. The eigenvalues of F are λ1 = λ2 = 1, and
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Fig. 1. ASN vs. SNR

we choose nx = 2 in this example. In the joint detection
and tracking system, there is a sensor measuring the object’s
position over time. Therefore, the measurement matrix is H =
[1 0]. The process noise gain matrix Γ in (1) is [T 2

s /2 Ts]
T .

The variance of state process noise is Q = 0.01. The mean of
the object’s initial state is x̂0|0 = [0 1.5]T , and its covariance
is P0|0 = diag([1000, 1]). The mean of measurement noise
under H0 is same as the position mean of x0, namely µ =
0. The variance of measurement noise under H0, Ru, is the
same as the position variance of x0, which is P0|0(1, 1). Both
probability of false alarm and probability of miss are set to
10−3. All the simulation results are based on 105 Monte Carlo
simulations. The SNR is defined as Fisher information about
the object’s position contained in zk. Therefore, the SNR in
decibels is equal to 10log10(1/Rw) in this case.

We evaluate the ASN required by the proposed approach
under different SNRs first. The simulation results are shown in
Fig. 1, from which we know that ASN is inversely proportional
to SNR. This is just as we have expected. We know that
when the SNR increases, the distance between distributions
of observations under two hypotheses also increases. So, the
proposed approach will take less time to terminate under higher
SNR. From Fig. 1, we also know that the ASN under low SNR
conditions is small, which means that the proposed approach
will terminate quickly even when the signal is very weak.

To show the advantage of the proposed fused approach,
we compare it with the dependent approach which is our
previous work [8] and the independent approach which only
uses tb(y1:K/3) in Wald’s SPRT. Under H0, the ASNs required
by each approach under different SNRs are shown in TABLE I,
from which we know that the ASN required by the proposed
fused approach is the lowest. In this particular example,
the fused statistic provides a slight improvement over the
dependent approach as in [8] in terms of the ASN. Under
H1, the simulation results are shown in TABLE II, which are
similar to those under H0.

The probabilities of errors made by the proposed approach
are tested in this experiment. The probability of false alarm and
probability of miss under different SNRs are shown in Fig. 2
and Fig. 3, respectively. Obviously, the actual probabilities
of error α′ and β′ are less than the nominal probabilities of
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TABLE I. COMPARE ASN AMONG THREE APPROACHES UNDER H0

SNR (dB) -25 -20 -15 -10 -5

Dependent approach 16.1303 5.0296 3.0880 2.4848 2.2477

Independent approach 51.6410 12.3935 6.3170 4.4636 3.7322

Fused approach 16.0878 5.0094 3.0791 2.4810 2.2460

TABLE II. COMPARE ASN AMONG THREE APPROACHES UNDER H1

SNR (dB) -25 -20 -15 -10 -5

Dependent approach 19.7756 9.7470 6.5429 5.1206 4.3073

Independent approach 91.5980 31.5792 18.4958 13.3509 10.1639

Fused approach 19.7698 9.7461 6.5424 5.1205 4.3073
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Fig. 2. Probability of False Alarm vs. SNR
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Fig. 3. Probability of Miss vs. SNR

error α and β, respectively. We also know that α′ and β′ are
inversely proportional to SNR from Fig. 2 and Fig. 3. This is
because the hypothesis testing statistics will pass the correct
threshold with higher probability under lower disturbance of
noise.

V. CONCLUSION

We proposed a terminative joint sequential object detection
and tracking approach in this paper. In this approach, the
adjacent measurements are combined together to generate a se-
quence of independent and identically distributed observations,

and two hypothesis testing statistics cooperate with each other
to guarantee that the Wald’s SPRT procedure will eventually
terminate and keep the good performance of the approach
proposed in our previous work [8] in detection and tracking.
Numerical results show that the proposed algorithm requires
a small ASN with low probabilities of errors under low SNRs
and the probabilities of errors are smaller than the nominal
probabilities of errors.
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