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Abstract—This paper addresses the problem of multi­static
doppler­only tracking in doppler blind zone (DBZ). In such a
problem, target measurements are suppressed when the range­
rate (doppler) drops below a specified threshold in magnitude
(the minimum detectable velocity, MDV). Moreover, tracking
using doppler­only measurements is not an easy problem due
to its weak observability. In order to improve the estimation
performance, a novel three­step method is proposed. In the first
step, a standard Extended Kalman Filter (EKF) is applied using
obtained measurements. In the second step, preliminary estimates
of mean and covariance are obtained conditioned on the MDV
constraints, to which we refer as the coarse­step since it needs a
linearization step. In the third step, Monte Carlo (MC) truncation
technique for enforcing the constraints is used for further process,
to which we refer as the fine­step. Simulation results show that the
proposed method is more effective with moderate computational
cost.

I. INTRODUCTION

Driven by applications, such as passive surveillance and the
technology improvements in wireless network, target tracking
using measurements of doppler­shift frequencies has attracted
much more attentions recently [1]­[3]. For example, in the
radar context, GSM­based passive radar systems, have at­
tracted tremendous research interest [4]­[6]. As a passive radar
system, it provides crucial advantages over active systems such
as no frequency allocation problem, improved anti­jamming
performance, energy saving and much lower costs. Although
GSM waveform has poor range resolution, it can achieve good
Doppler resolution, which makes GSM­based passive radar
suitable for Doppler detection and tracking.

Target tracking using doppler­only shift measurements has
been studied in different contexts for several decades [7]­
[10]. Some of the studies in the literature mainly concentrate
on the static estimation solutions, observability analysis, and
optimal positioning of the passive system [11]­[15]. Recently,
tracking moving targets using doppler­only measurements is
mostly considered in multi­static passive radar framework
[16]­[19]. However, tracking using doppler­only measurements
is not an easy problem due to several reasons. Among all
these reasons, weak observability due to the uninformative
doppler­shift measurements is the key difficult problem. More
specifically, target state remains unobservable unless more than
three doppler measurements are obtained. Since target tracking
using Doppler­only measurements strongly depends on the

number of doppler­shift measurements obtained, it’s highly
demanded to incorporate the DBZ into the tracker design
[20][21].

Doppler blind zone arises from preprocessing of sensor
outputs to suppress low range­rate measurements and re­
move heavy static clutters, that is, the measurements are
deliberately suppressed once the magnitude of the range rate
drops below a specific threshold (the Minimum Detectable
Velocity  ) [22]­[25]. For such a set­up, the occurrence,
or non­occurrence, of a measurement in itself can still provide
information about target motion. The remaining question in
multi­static doppler­only tracker design is how to exploit this
’negative’ information. Extensive research about doppler blind
zone (DBZ) has been done on Ground Moving Target Indicator
(GMTI) sensors, which can be classified mainly into two
categories based on the different modelling of DBZ. The first is
proposed by Koch et al.[26], their algorithm accommodates the
loss of a measurement within the model of the measurement
process. DBZ is accounted by constructing a suitable state­
dependent detection probability, which takes low values inside
the zone. The tracker takes the form of a Gaussian mixture
Kalman filter, in which negative weights may possibly arise.
This idea is generalized by [27], which approximates detection
probability by arbitrary Gaussian mixture. In contrast to [26],
an extra approximation step is introduced in order to replace
the resulting ’negative’ Gaussian mixture with one of strictly
positive mixture weights, thus improve algorithmic stability.
The second category is proposed by Clark et al., DBZ is
formulated as constraints on state estimation. Different from
the blind doppler mixture filter (BDMF) proposed in reference
[28] and its modified version in reference [29], the algorithm
proposed in reference [31] is better matched to the practical
data gathering process since the decision to suppress a mea­
surement is made on the basis of the noise­corrupted, rather
than the exact as the former one. In reference [31], it makes
use of formulae for the conditional mean and covariance of
a random variable , given that a scalar measurement  lies
in a specified interval . In constructing the algorithm, they
interpret ’ 2 ’ as a ’measurement is suppressed’. In order
to fit for such a linear formula, a linearization procedure is
applied since the measurement equation is nonlinear, which is
relatively rough to some extent.
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Fig. 1. Multi­static Doppler­only survelliance network. Transmitted signal
from an illuminaor Tx is reflected from a detected moving target and received
by the Doppler­shift measuring sensors.

In this paper, we focus on the problem of target tracking
using doppler­only measurements under a minimum detectable
velocity constraint. Following the idea of reference [31], a
novel three­step tracking algorithm is proposed. In the first
step, we perform standard EKF to update state using available
doppler­shift measurements. In the second step, a modified
method suitable for our problem based on reference [31] is
applied, which we also denote as the coarse­step. In the third
step, the truncation approach for enforcing the constraint is
chosen, which we refer to as the fine­step. The simulation
results demonstrate the effectiveness of our method.

The remainder of this paper is organized as follows: in the
next section, the tracking problem with DBZ is formulated and
the necessity of incorporating DBZ into the tracker design is
fully explained. In Section III, we give out the detailed algo­
rithm design process including two techniques on which our
method is based. Simulation results are discussed in Section
IV. Section V provides conclusions and some directions for
future work.

II. PROBLEM FORMULATION

A. State and Observation Model

The scenario considered in this paper is as follows: Four
transmitters of opportunity, one doppler­shift measuring re­
ceiver, as in Fig.1. The locations of the transmitters and
receiver are assumed to be known. The state of the moving
target in the 2D scenario at time  is represented by the state
vector

 = [ 

 


 ] (1)

where superscript  denotes the matrix transpose.
Target motion is modelled by a CV model

x+1 = x + u (2)

where  is the transition matrix and u » (u; 0 ) is
zero­mean white Gaussian process noise with covariance  ,
We adopt

 = 2 ­
·

1 
0 1

¸
(3)

 = 2 ­ 

"
 3
3

 2
2

 2
2



#
(4)

where ­ is Kronecker product,  is the sampling interval and
 is the level of power spectral density of the corresponding
continuous process noise.

Bi­static doppler­shift measurements are collected by the
receiver located at r = [  ] from four transmitters with
position t = [ 


]  = 12 3 4. The target state at time 

is denoted as x , and the doppler­shift measurement received
from transmitter  is modelled as follows

 = (x) +  (5)

where

(x) = ¡
v


·
p ¡ t
kp ¡ tk

+
p ¡ r
kp ¡ rk

¸
(6)

is the true doppler frequency shift,  is the wavelength
of the transmitted signal and  is the measurement noise
( » (0 )). p denotes the location of the illuminated
target. In addition, we do not distinguish between doppler­shift
measurement and bi­static range rate in this paper.

B. Doppler Blind Zone

As mentioned above, for the purpose of separating out
moving targets of interest from heavy, static clutter, ’Doppler
Blind Zone’ (the region of the state space in which the range
rate magnitude is small) is introduced artificially as a sensor
data preprocessing stage. As we can see from Fig.2, when
the plane moves in the red rectangular region, due to the bi­
static range keeps almost unchanged. Consequently, the bi­
static range rate (i.e. Doppler shift) is close to zero, which
will surely be suppressed during the sensor data preprocessing
stage. Thus, receiver will not obtain doppler­shift measurement
from this transmitter.

However, as reference [7] says, the number of measurements
obtained in the fusion center directly determines the tracker
performance for multi­static doppler­only tracking due to its
inherent poor observability. So, it is necessary to incorporate
the doppler blind zone into the tracker design.

For simplicity, detection probability  is considered to
be unity in this paper. In other words, a missed detection
means  2 , where  is the expected but not detected
measurement and  is the interval

 = (¡+) (7)

The constant  is termed the minimum detectable veloc­
ity threshold.
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Fig. 2. Doppler Blind Zone (DBZ). When the target moves in the red
rectangular, the bi­static range keeps almost unchanged. Consequently, the
signal reflected will be easily drown by noises.

III. DOPPLER­ONLY TRACKING INCORPORATING THE
DOPPLER BLIND ZONE

A. Preliminary Analysis
First, we present a proposition which is the theoretical basis

of reference [31].
Proposition 1: Take independent random variables  »

(̂0 0) and  » (0 2) and an interval  = [ ].
Define the scalar random variable  to be

 = x+ (8)

Here ̂0  are given n­vectors, 0 is a given  £ 
covariance matrix, and 2  0. Write

 = 0(
0 + 2)¡1 (9)

 = 0 ¡0

Then

[xj 2 ] = x̂0 +[̂ ¡ ] (10)
[xj 2 ] =  +



where

 =  x̂0 (11)
̂ = [j 2 ]

 = [j 2 ]

Furthermore

̂ = ¡1¹2[(; ¹2)] +  (12)

 = ¡1¹2[(+ )(; ¹2)¡ (+ )(; ¹2)]

+(2 + ¹2)¡ ̂2
 (13)

where
¹2 = 0 + 2 (14)

 denotes a normalizing constant ensuring that a probability
density integrates to unity. In this case

 =

Z 



(; ¹2) (15)

B. Monte Carlo truncation technique
Multi­static doppler­only tracking with minimum detectable

velocity can be formulated as a constrained estimation prob­
lem. However, most constrained estimation problems proposed
such as optimization based filters moving horizon estima­
tion (MHE) [33] and unscented kalman filter (UKF) [34]
realizations are based on linear (in)equality constraints, and
their computational cost are relatively high. A computationally
efficient constrained nonlinear filter is proposed [32], which is
based on the Monte Carlo truncation method.

Suppose unconstrained estimate is given as

(xjz) = (x; x̂jPj) (16)

Let  be a set of all states satisfying the inequality
constraints:

 = fx : ¡  (x)  g (17)

Then, the truncated pdf (probability density function) is:

(xjzx 2 ) (18)

which can be further expressed as follows

(xjzx 2 ) (19)

=

½
¡1 (xjz)  x 2 

0 

where

 = fx 2 jzg =
Z



(xjz)x (20)

In order to complete the recursive loop, the truncation pdf
must be approximated by a Gaussian pdf:

(xjzx 2 ) ¼ (x; x̂

jP


j) (21)

The state estimate and the corresponding covariance are
given by

x̂j =

Z
x(xjzx 2 )x (22)

 j =

Z
(x ¡ x̂j)(x ¡ x̂j) (xjzx 2 )x

(23)
However, except for some special cases, the mean

x̂j and covariance  j of the truncated pdf (xjzx 2
) cannot be expressed analytically. In reference [32], the
Monte Carlo (MC) techniques are used to approximate the
moment of the truncated pdf for its relatively simple imple­
mentation and moderate computational cost, not significantly
depending on the dimension of the state [35].

523



In this paper, the perfect Monte Carlo technique [36] is
chosen. In order to approximate the moments of the truncated
pdf derived above, first suppose that  samples 

()
   =

1 2  are drawn from (j), and the samples satisfying
the constraints  are denoted as ()   = 1 2

Then, the truncated pdf can be approximated by the samples
x
()
 as follows

(xjzx 2 ) ¼
1



X

=1

(x ¡ x() ) (24)

where  is the Dirac delta function.
Next, the mean and the covariance matrix of the truncation

distribution can be approximated as

x̂j ¼
1



X

=1

x
()
 (25)

 
j ¼

1

 ¡ 1

X

=1

(x
()
 ¡ x̂j)(x() ¡ x̂j) (26)

Nevertheless, we wish to emphasize that the quality of trun­
cation technique is affected by the mass of the unconstrained
filtering pdf within the constrained region. That is to say, the
effectiveness of the proposed MC truncation techniques may
degrade if significant mass of the unconstrained filtering pdf is
outside the constrained region. A direct solution is to increase
the number of samples at the cost of the time consumption.
In this work, in order to improve the efficiency of the MC
truncation technique, we propose a modified method which
adds a preprocessing step before the MC truncation step. The
purpose is to increase the mass of the unconstrained filtering
pdf within the constrained region, which is also the motivation
of our method.

C. A Novel Three­step Algorithm

As we can see from Fig.3, when the target moves in the red
rectangular region, 1 will receive only three true Doppler­
shift measurements (from 2 3 4 respectively) due to the
bi­static range of 1 and 1 keeps almost unchanged, the
expected but missed measurement is denoted as 1 .

Proposition 1 is the theoretical basis of reference [31] to
model doppler blind zone in GMTI applications, while it is
not accurate enough since the linearity of reference (8) in x is
not satisfied. What’s more, the method proposed in reference
[31] is for single sensor, while what we have to deal with here
is multi­sensor target tracking. Nevertheless, the Proposition
itself can yet be regarded as a good preprocessing method,
which will be used in the coarse step of our method.

Based on the theoretical basis mentioned above, we propose
a three­step method incorporating the doppler blind zone
information into multi­static doppler­only tracker design.

T3

T2

T1

T4

R1

Fig. 3. Multi­static doppler only tracking scenario. The receiver will only
receive the signals come from T2­T4, and the measurement should be received
from T1 is hidden in DBZ.

1) Unconstrained Estimation: In this step, we derive the
unconstrained state estimate using recorded doppler­shift mea­
surements. Suppose x¡1 » (x̂¡1j¡1 ¡1). It follows

x̂:¡1 =  x̂:¡1¡1 (27)

 
j¡1 = ¡1j¡1

 +¡1 (28)

x̂j = x̂j¡1 +(z ¡x̂j¡1) (29)

 
j = j¡1 ¡


 (30)

where

 = 

j¡1


 + (31)

is the covariance of the innovation term  = z ¡
(x̂j¡1)and the Kalman gain  is as follows

 =  
j¡1


 

¡1
 (32)

where
 =

£
¢ ¢ ¢ r(̂j¡1) ¢ ¢ ¢

¤ (33)

is the Jacobian matrix with  2 f  j  2 [¡] g
2) Coarse Step: Suppose  is not recorded, i.e.  2

 = [¡]. In order to apply Proposition 1, we
should perform a linearization procedure at first, by a first
order Taylor approximation around the predicted state ̂j¡1

 = (̂j¡1) +( ¡ ̂j¡1) +  ¼  + 
(34)

with noise term 4 » (0 2 ).
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 = r(̂j¡1) (35)

Let
x̂j¡1 = x̂


j (36)

j¡1 = j (37)

Now, according to Proposition 1, we can obtain:

 = (x̂

j) (38)

 =  (39)

 =  (40)

So,

̂¡j = x̂j + [̂ ¡ ] (41)

 =  
j(

j + 2)¡1 (42)

¡j = j ¡
j +


 (43)

and

̂ = ¡1 ¹2[(; ¹2)¡(; ¹2)] +  (44)

 = ¡1 ¹2[(+ )(; ¹2)¡ (45)
(+ )(; ¹2)] + (2 + ¹2)¡ ̂2



¹2 = j + 2 (46)

 =

Z 

¡
(; ¹2) (47)

3) Fine Step: Suppose we have obtained the rough estimate
x¡  

¡
j from Step2. Obviously, (x;x¡  

¡
j) is preferred

here since it has been preprocessed by Step 2, which is
relatively close to the pdf (xjzx 2 ). Consequently,
the quality of MC truncation techniques will be hopefully
improved.

So, let  samples x,  = 1 2  drawn from
(x;x¡  

¡
j). Following the MC truncation technique men­

tioned above, we can approximate the moments of the trun­
cated pdf as follows

x̂j ¼
1



X

=1

x
()
 (48)

j ¼
1

 ¡ 1

X

=1

(x() ¡ x̂j)(x() ¡ x̂j) (49)

where x()   = 1 2 are the samples within the con­
straint region .

The outline of the proposed method is summarized in
Table.I.

TABLE I
ALGORITHM OUTLINE

Input: ̂¡1j¡1 ¡1j¡1
—if all measurements are obtained(No measurement is in DBZ)

Perform standard Kalman Filter process
1) Predict: use the equations (27)­(28) to evaluate

x̂:¡1 and 
j¡1

2) Update: use the equations (29)­(32)
to evaluate x̂

j and 
j

—if some measurement, for example,  is not recorded due to DBZ
Unconstrained Estimation Step:
1) Use equation (33) to evaluate 
2) Predict: use the equations (27)­(28) to evaluate

x̂:¡1 and 
j¡1

3) Update: use the equations (29)­(32)
to evaluate x̂

j and 
j

Coarse Step: (add constraints on estimate based on Proposition 1)
1) Calculate  using (35)
2) Calculate ̂¡

j and ¡
j from equations (41)­(47)

Fine Step: (Further Process using MC truncation)
1) Draw  samples x ,  = 1 2  from (x;x¡  

¡
j)

2) Approximate the moments of the truncated pdf, that is x̂j j
using (48)­(49)

Recursion:  =  + 1
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Fig. 4. Sensors and target trajectories

IV. SIMULATION RESULTS

A. Scenario

A problem of tracking a moving vehicle in a scenario with
4 transmitters and 1 receiver is considered. The locations
of transmitters are known with 1 = [¡10 2] 2 =
[20 4]3 = [30¡10]4 = [5¡20] The
receiver is located at [0 0]The initial state of the tar­
get x0 = [2¡24 50 200] The target is
supposed to follow the continuous white noise acceleration
motion model with  = 1  = 102. The minimum
detectable velocity threshold MDV is set to 3 as [31] .The
receiver inaccuracy is characterized by standard deviation of
 = 2. The scenario and the simulated measurements
are given in Fig.4 and Fig.5, respectively.
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TABLE II
ESTIMATION PERFORMANCE OF FILTERS

      
 3340 5265 4316 4487 3571
 17011 17439 17184 17239 17035
() 02236 02025 02543 14409 14817

In order to demonstrate the efficiency of our algorithm,
four comparative filters are chosen. The first is named 
assuming all measurements are received ideally, which is
taken as the lower bound (benchmark). The second is named
 which is also EKF­based. In contrast to the first one,
when some measurement drops below the DBZ, it only uses
the remaining measurements to update target state without
incorporating the DBZ into the tracker design. The third is
realized using the modified method based on [31]. In order to
keep consistent, we also refer to the third method as the noise
related doppler blind mixture filter (NRDB). The difference is
we need extend NRDB to the case of multi­static. The forth
is perfect MC­based truncation using  = 500 samples[32].
RMS error curves of the position and velocity are shown in
Fig.6 and Fig.7 respectively. The time averaged 100­trial RMS
error for position and velocity is also summarized in Table
II, the average computational costs for one MC simulation
are presented as well (Pentium(R) Dual­Core CPU E5400
@2.70GHz).

As illustrated in Fig.4, the bi­static distance of 4 and the
receiver is almost unchanged during  = 10 to 60. So, from
Fig.5 we can easily find that the doppler­shift measurement
falls below the  , that is to say, the target is hidden in
the doppler blind zone.

Fig.6 and Fig.7 illustrate the comparison results of the
proposed method with aforementioned methods. Firstly, it
is found that by incorporating doppler blind zone infor­
mation, filters such as ,  , and our algorithm
provide much higher estimation performance in comparison
with . Secondly, in comparison with the other filters
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(  ), our algorithm still exhibits uniform perfor­
mance improvements as expected. The reason is the first algo­
rithm  we compared with is based on the idea of paper
[31]. It is exact only for linear constraints, rather than the non­
linear case here. The second algorithm  we compared
with is based on the idea of paper [32]. As mentioned before,
the truncation quality is easy to be affected by the mass of
the unconstrained filtering pdf in the constrained region, so it
may suffer from performance degradation in cases that samples
are not enough. Our algorithm, hopefully, outperforms these
two methods in both position and velocity estimation since
the nonlinearity of the DBZ constraint is considered together
with the possible inefficiency of MC truncation technique. The
coarse step is essential for higher efficiency of MC truncation
technique used in the fine step, and the fine step is also
meaningful to further improve the estimation performance,
which can be seen in Fig.8. In addition, as listed in Table.II,
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the proposed algorithm obtained an improvement in the order
of 32% with respect to  , 17% with respect to ,
and 20% with respect to  . The time consumption is
also increased due to the MC technique adopted. Fortunately,
it should not be a difficult problem nowadays.

V. CONCLUSION

In this paper, we studied the problem of multi­static doppler­
only tracking with minimum detectable velocity constraints (or
doppler blind zone). For this challenging problem, a novel
three­step method is proposed by incorporating the DBZ
constraints into the tracker design. Two techniques including
proposition 1 and MC truncation are used to improve the
estimation performance. Such a set­up is motivated by the
nonlinearity of doppler blind zone constraints and the possible
inefficiency of truncation quality induced by MC techniques.
Experimental results reveal that the proposed method with
three steps is more effective with moderate computational cost.
A future direction would be to extend this result to the case
of multi­target tracking.
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