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Abstract - Bernoulli filters are used to estimate the states 
of dynamic systems recently. However, in the application 
of tracking ground moving targets in clutter, some 
valuable information tend to be ignored, such as the road 
constraints. The road constraints, as prior information 
about the state, should be incorporated into the dynamic 
modeling process of the filtering algorithm. In this paper, 
a method of incorporating state linear equality 
constraints (LEC) into the Bernoulli filter called the LEC 
Bernoulli filter (LECBF) is presented for tracking 
ground moving target. In this case, the Bernoulli filter is 
improved by exploiting road constraints, and can achieve 
a better filtering performance than the original 
unconstrained Bernoulli filter. Finally, an illustrative 
example is provided to show the effectiveness and 
efficiency of the LECBF. 
 
Keywords: Bernoulli filters; ground target tracking; road 
constraints; dynamics modeling; linear equality constraint  

1 Introduction 
Control with constraints is useful in some engineering 

applications such as target tracking [1], fault diagnosis [2], 
robotics [3], navigation [4] and others [5]. It is increasingly 
applied in the tracking of ground moving targets. The state 
estimations of many dynamic systems are required to 
satisfy certain constraints. There are two kinds of 
constraints: hard constraint and soft constraint. Hard 
constraint is an exact relationship between state variables 
which must be satisfied. Soft constraint only can be 
satisfied approximately or probabilistically [8]. Constraints 
can also be classified to equality or inequality and linear or 
nonlinear [5], etc. Researchers have made great efforts to 
estimate constrained states and proposed several equality or 
inequality constrained estimation methods [5] [6] [7] [8] 
including model reduction [9] [10], perfect measurements 
[11] [12] and estimation projection [7] [13]. Furthermore, 
[18] incorporates digital road maps for road constrained 
targets, which leads to more precise tracks.  

Bernoulli filter is an optimal Bayes filter also known as  
joint target detection and tracking filter (JoTT) [14] [15]. 
In the application of Bernoulli filter, there is some known 

valuable information, such as geographic constraint that is 
often neglected because they do not fit easily into the 
structure of the Bernoulli filter.  

The problem of estimating target states which 
constrained by a class of hard linear equality is considered 
in this paper. The road constraint is a type of prior 
information and it should be incorporated into the dynamic 
modeling. A method of oblique projection is utilized to 
decompose the original unconstrained state into two 
mutually uncorrelated terms [8] and makes it fit easily into 
the structure of the Bernoulli filter.  

Section 2 presents a brief summary of the Bernoulli filter 
solution without consideration of any state constraints. 
Section 3 formulates the hard LEC problem and presents 
the algorithm of LECBF. Section 4 shows some simulation 
results, and finally described some concluding remarks and 
suggestions for further work. 

2 Bernoulli Filter 
The discrete-time formulation of dynamic filtering 

problem in the Bayesian framework is as follows [16]. 
Suppose the state vector kx   provides the complete 
specification of the state of a dynamic system at time k . 
Here xn  is the state space, while k  is the discrete-
time index. The dynamic system is described by the 
following two equations: 

 1 1k k kx Fx v     (1) 

k k kz Hx w    (2) 
where F is the state transition matrix  and H is the  
measurement matrix. 1kv   and kw are the zero-mean 
process and measurement noise respectively.   
    In tracking or filtering we are interested in the 
probability density of the state kx   at time k  given all 

measurements 1: 1( ,..., )k kz z z  up to time k  , denoted 

by 1:( | )k k kp x z . 

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 515



Assuming the initial posterior density 0( )p x is known. 
A two-step procedure can be used to recursively estimate 
the posterior density of the state at time k : 

| 1 1: 1 | 1 1 1: 1( | ) ( | ) ( | )k k k k k k k k kp x z f x x p x z dx       (3) 

| 1 1: 1
1:

| 1 1: 1

( | ) ( | )
( | )

( | ) ( | )
k k k k k k k

k k k

k k k k k

g z x p x z
p x z

g z x p x z dx
 

 
   (4) 

where | 1 1( | )k k k kf x x  is the transitional density and  

( | )k k kg z x is the likelihood function. 

2.1 Bernoulli RFS 
A random finite set (RFS) is a random variable that takes 

values as unordered finite sets [14]. The target state X is 
modeled as a Bernoulli RFS. A Bernoulli RFS on   has 
probability 1 q  of being empty, and probability q  of 
being a singleton whose only element is distributed  
according to a probability density ( )s x .The probability 
density of a Bernoulli RFS is given by: 

 
1 ,

( ) ( ), { }
0,

q X
f X q s x X x

otherw ise

    
  (5) 

2.2 Bernoulli Filter 
The Bernoulli filter, as a sequential Bayesian estimator, 

recursively estimates the posterior density of object state 
through the prediction and update stages by using the 
dynamic model and measurement model. The posterior 
density at time k  can be completely specified by two 
quantities: the posterior probability of object existence 

|k kq and the posterior density of the state
| ( )k ks x .

  

Reference [14] and [17] have originally derived the 
prediction and update equations of the Bernoulli filter. At 
time 1k  , let the posterior probability of object existence 
be 1| 1k kq   , the posterior density of the kinematic state of  

the target be 1| 1 ( )k ks x   . Now the prediction and update 
steps of the Bernoulli recursion are recalled [17]: 
Prediction step: 

If the posterior density 1kf   at time 1k   is a Bernoulli 

of the form 1 1 1{ , ( )}k k kf p s x   , then the predicted 

density  | 1k kf   to time k  is also a Bernoulli and is given by 

| 1 | 1 | 1{ , ( )}k k k k k kf p s x   . The prediction equations for 
the probability of existence and posterior density of  the 
state are given by: 

| 1 1| 1 1| 1(1 )k k b k k s k kq p q p q         (6) 

1| 1 | 1
| 1

| 1

1| 1 | 1 1| 1

| 1

(1 ) ( )
( )

( | ') ( ') '

b k k k k
k k

k k

s k k k k k k

k k

p q b x
s x

q

p q f x x s x dx
q

  




    





 
  

(7)

 
where, bp is the probability of object “birth” during the 

sampling interval, and sp is the probability of target 
“survival” during the sampling interval. If the object 
appears during the sampling interval, | 1 ( )k kb x  denotes its 
birth density. 
Update Step: 

If the predicted density | 1k kf   to time k  is a Bernoulli of 

the form | 1 | 1 | 1{ , ( )}k k k k k kf p s x   , then the updated 

density  |k kf  at time k  is also a Bernoulli and is given 

by | | |{ , ( )}k k k k k kf p s x  where 

 | | 1
| 1

1
1

k
k k k k

k k k

q q
q 



      (8)                    

| | 1

( | )1
( )(

( )
) )

)
(

1

(
k

k
d d

z
k k k k

k

g z xp
c zs x x

x p x
s




 

 
Z       (9) 

 

|

| 1

1

( ) ( | ) ( )

(
( ) (

)
)

k

k d k

d k

z
k

k kp x g z x s
p x s x d

x
z

x
dx

c


    
Z

                                                                                           
(10) 
If dp const (independent of the target state),  then (10) 
simplifies to : 

 
| 1( | ) ( )

(
)

1 )
(k

k d

k k k

z

g z x s x dx

z
p

c



   

Z

        (11) 

where dp is the probability of detecting the target. 

( | )kg z x is the conventional likelihood function of the 
target-generated measurement z . (z)c  and  are the PDF 
and average number of clutter respectively. 

3 Linear Equality Constrained Bernoulli  
Filter 

The incorporation of prior information such as road 
constraints can be used to improve the accuracy of tracking 
algorithm. In this section the linear equality constrained 
Bernoulli filter is presented by utilizing the Gaussian 
mixture Bernoulli filter to accommodate road constraints. 
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Consider a dynamic system whose state satisfies the hard 
LEC: 

 , 0,1, 2,...k k kC x d k    (12) 

where k  is the time step, kx is the state, kC  is a known 

matrix and kd  is a known vector but may be time varying.  
Based on the LEC (12), define a simple random vector 

mr as 
 ur Cx  (13) 

the superscript u implies unconstrained state. Let 
cov( )r r  , then an oblique (not orthogonal) projector 

P  is used to decompose the state of the original 
unconstrained state ux  into two mutually uncorrelated 
terms [8]:  

 ( )u ux Px I P Ar     (14) 

 ( ) ( )u u T T T
rP P I P A A I P        (15) 

where 1( )u T u TP I C C C C   , 1( )T TA C CC   
The constrained state estimation of linear systems are 

considered in this paper. The original unconstrained 
dynamic model and measurement model are: 

 1 1 1
u u u
k k k kx F x w      (16) 

k k k kz H x v    (17) 

where 1kF  and kH  are the state transition and 

measurement matrices. 1
u
kw  and kv are the zero-mean 

process and measurement noise with covariance uQ and 
R respectively.  Under the following assumptions: 
1)      Each target evolves and generates measurements 

independently. 
2)     Target births follow a Bernoulli RFS independent of 

target survivals. 
3)      Clutters, which are not too dense, and independent of 

target-generated measurements, follow Poisson 
distribution. 

4)      The dynamic and measurement model are both linear 
Gaussian forms. 

 | 1 1 1| ( ,( ; ))k k k kf x N x F Q      (18) 

 | ( ; , )( )k k kg z x N z H x R   (19) 
5)     The survival and detection probability are state 

independent, i.e. 
 , , , ,,( ) ( )S k S k d k d kp x xp p p    (20) 

6)     The density of the birth is linear Gaussian mixtures of 
the form 

 
,

( ) ( ) ( )
| 1 , , ,

1

(x) (x; , )
b kN

i i i
k k b k b k b k

i

b w m Q 
    (21) 

where ( )
,
i

b kw , ,b kN , ( )
,
i

b km , ( )
,
i

b kQ are given model parameters 
that determine the shape of the birth density. 

Linear equality constrained state estimation for the 
original unconstrained system model can be performed by 
using the Bernoulli filter .  A complete algorithm of the 
LECBF is summarized as following: 

Table 1 LECBF Algorthim 

1. Parameter Calculation: ( 0,1,2...)k   

matrix 1( )T T
k k k kA C C C   

projectors 
1

0 0 0 0 0 0 0( )
uu T TP I C C C C    

1
1 1( )

uu T T
k k k k k k kP I Q C C Q C C

    for 1k   

 parameters: *
1 1 , ( )u T

k k k k k k k kQ P Q P d I P A d     
2. Initialization˖ 

0
( ) ( ) ( )

0 0 0 0
1

ˆˆ( ) ( ; , )
N

i i i

i

s x w x m


  
 

where , 
0

( )
0

1

1,
N

i

i

w


 ( ) *
0 0 0 0ˆ ,im P m d  ( ) ( )

0 0 0
ˆ i iP            

3. Coefficient Resetting: 
* *

1 1 1 1,k k k k k kF P F G P G      
4. Filtering ( 1k  ) 
Prediction: 

1

| 1 1| 1 1| 1

1| 1
| 1 | 1

| 1

1| 1 ( ) ( ) ( )
1 | 1 | 1

1| 1

(1 )
(1 )

( ) ( )

ˆˆ( ; , )
k

k k b k k s k k

b k k
k k k k

k k

N
s k k i i i

k k k k k
ik k

q p q p q
p q

s x b x
q

p q
w x m

q



    

 
 



 
  

  


  
 

 with 
( ) * ( ) *
| 1 1 1

( ) * ( ) *
| 1 1 1 1 1

ˆ ˆ
ˆ ˆ ( )

i i
k k k k k

i i T
k k k k k k

m F m d

Q F F
  

    

 
     

  Update: 

| 1

| 1

| | 1
| 1

| | 1

( ) ( )
| 1 ( ) ( )

| |
1

( ) ( )
| 1

1

1
1
1( ) ( )
1

(z) ˆˆ( ; , )
1 (z)

(z)
[1 ]

(z)

k k

k

k k

k

k
k k k k

k k k

d
k k k k

k

i iN
k k k i id

k k k k
z Z ik

i iN
k k k

k d
z Z i

q q
q
ps x s x

w qp x m
c

w q
p

c














 


 

   
  

  
  

 
 

 

where, 
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( ) ( ) ( )
| 1 | 1

( ) ( )
| 1 | 1

( ) ( )
| 1 | 1

( ) ( ) ( ) 1
| 1 | 1

( ) ( ) ( ) ( )
| | 1 | 1

( ) ( ) ( ) ( ) ( )
| | 1 | 1

(z) (z; ,S )

ˆ
ˆS

ˆ [S ]
ˆ ˆ(z) (z )

ˆ ˆ ( )

i i i
k k k k k

i i
k k k k k

i i T
k k k k k k k

i i T i
k k k k k k

i i i i
k k k k k k k

i i i i i T
k k k k k k k k

q

H m

H H R

K H

m m K

K S K






 

 

 


 

 

 

 

  
 
  

   

 

5. Pruning and merging Gaussian components: 

given       
1

, , kNi i i
k k k i

w m  , a truncation threshold T, a 

merging threshold U, and a maximum allowable number of 
Gaussian terms maxN . 

Set 0l    , and ( ){ 1,..., | }i
kI i N w T    

repeat     

 

             1

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1
arg max

|

ˆ

1ˆ
ˆ
1ˆ ˆ ˆ( ( )( ) )
ˆ
\

i
ki I

Ti j i i j
k k k k k

l i
k k

i L

l i i
k k kl

i Lk

l i i l i l i T
k k k k k k kl

i Lk

l l
j w

L i I m m m m U

w w

m w m
w

w m m m m
w

I I L










 

     



     






 
Until 

I   
if maxl N  then replace ( ) ( ) ( )

1
ˆˆ ˆ{ , , }i i i l

k k k iw m    by those of 

the maxN Gaussians with largest weights. 

output ( ) ( ) ( )
1

ˆˆ ˆ{ , , }i i i l
k k k iw m   as the  pruned and merged 

approximation to the posterior density. 

4 Simulation Analysis  
In this section, a simple example is presented to show the 

performance comparison between the LECBF and BF, we 
consider an example of tracking a Land-Based vehicle 
(adopted in [7] first and then in [6] and [8]). The vehicle 
dynamics and measurements can be approximated by the 
following equations: 

 

1k k kx Fx w     (22) 

k k kz Hx v    (23) 

 
with 

1 0 0
0 1 0
0 0 1 0
0 0 0 1

T
T

F

         

   

0
0

, 1, 2
sin
cos

i

i

G i
T
T




         

 

1 0 0 0
0 1 0 0
0 0 0 1

H
      

 (24) 

 
The state vector  1 2 1 2

Tx x x x x   (where the 

first two elements 1 2( , )x x  are the northerly and easterly 

positions, the last two elements 1 2( , )x x   are the northerly 

and easterly velocities), kw and kv  are uncorrelated zero-
mean white process noise and measurement noise, 
respectively. T  is the sampling period and i  stands for 
the heading angle (measured counterclockwise from due 
east) of the vehicle located in road segment i . During 
certain times the vehicle is travelling on-road, in which 
case the state estimation is constrained. For instances, the 
vehicle moves on different road segments with known 
directions, starting from the initial state 0x  heading 1 , 
after 30s, it changes the direction of the velocity and turns 
to another segment, and then performs a nearly constant 
velocity motion with heading 2 which is maintained for 
30s until the end. The dynamic constraints of the vehicle in 
the two segments can be expressed by 

 
  0 0 1 tan 0, 1,2i kx i    (25) 

 
We set 12 , 60T s    and 2 45  , and the covariance 

of the measurement noise (400,400,20)R diag . The 

initial state is  0 0 0 11.8301 6.8301 Tx  , and 
the covariance of the process noise in the two segments are  
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1

16 0 0 0
0 64 0 0
0 0 0.9474 0.5470
0 0 0.5470 0.3158

Q

        , 
 
 
 

 2

16 0 0 0
0 64 0 0
0 0 0.8571 0.8571
0 0 0.8571 0.8571

Q

       
  (26) 

 
The state of the vehicle evolving as  (16)  with 
( 1, 2)iQ i  automatically satisfies the constraint (19) , 

and the observations generated by the sensor are about the 
constrained state. 

In this simulation, we use the LECBF to estimate the 
position of the vehicle and compare its performance with 
BF, These algorithms utilize the common unconstrained 
model over the whole time horizon, which is identical to 
the system model (16)-(20) except that the progress noise 
covariance 1Q and 2Q  are replaced by 

(16 64 1 6).uQ diag  Here uQ  is designed 
without much consideration of the constraints. Besides, the 
estimators share the same initialization: 0x  and 

 

0|0

400 0 0 0
0 400 0 0
0 0 7.5000 4.3301
0 0 4.3301 2.5000

         ,

  

 
Fig.1 shows the comparison of the RMS position and 

velocity errors of the estimators over 100 Monte Carlo runs. 
The dash-dot line is for the Bernoulli Filter without 
consideration of the constraint, the cross signs are for the 
proposed LECBF.  From the two figures, we can observe 
that the error level of LECBF is much lower than that of 
unconstrained Bernoulli filter. The LECBF is superior to 
the unconstrained Bernoulli filter. 

Since the RMSE plot does not capture the Bernoulli 
filter’s ability to detect, Fig.2 shows the optimal subpattern 
assignment (OSPA) metric to reveal the improvement in 
both detection and estimation. 

From figure 2, we can observe that the mean OSPA 
values of LECBF are much lower than that of 
unconstrained Bernoulli filter. It means that the inclusion 
of the constraints reduces the search space and leads to 
better detections. 
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Figure 1. Estimation errors versus time for tracking a 

land-based  vehicle 
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Figure 2. Mean OSPA values  
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The average computational loads of the two filters in 

terms of CPU time are shown in Table 2. It is shown that 
the LECBF is approximated to the unconstrained BF in 
computational complexity. 
 

 
 
 

 

5 Conclusion 
In this paper, the problem of modeling and state 

estimation for dynamic systems with linear equality 
constraints has been analyzed. As prior information, road 
constraints should be incorporated into the dynamic 
modeling. A method for incorporating linear equality 
constraints in the Bernoulli filter is presented in this paper. 
The simulation results indicate the effectiveness and 
efficiency of the LECBF, which is superior to that of 
unconstrained BF. If the state constraints are nonlinear, 
they can be linearized, although this may result in 
convergence problems. Our further work will focus on 
these lines. 
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