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Abstract - We propose a new method to estimate the 

trajectory of a source based on the two angles of the 

arrival lines of two waves emitted by the source but 

propagating with two different speeds. This difference 

between speeds is due to either the different natures of 

the waves or the different natures of the media in which 

the waves propagate. The source is assumed to move 

with a constant velocity and the observer is motionless. 

First we prove that such a trajectory is observable, and 

then we propose the maximum likelihood estimate 

(under Gaussian hypothesis) which is shown to be 

almost efficient. 

 

Keywords: Bearings-only TMA, estimation, Fisher 

information matrix, Cramér-Rao lower bound, 

observability. 

 

1 Introduction 

When we look at a plane in the sky, most of the time we 
do not hear the sound of the engine coming from its 
direction. We have all done this experiment which allows 
young children to realize that sound travels slower than 
light. In this paper, we propose a new way to passively 
estimate the trajectory of a source (or target) by 
simultaneously exploiting the angles of the “lines of sight” 
(LOS) and the angles of the “lines of sound”. Indeed, 
fusing these two pieces of information makes the 
trajectory of a source (whose velocity is constant) 
observable. Hence, the estimation can be envisaged. All 
these points are examined in this paper, yielding an 
original method. Indeed, to our knowledge, this problem 
has never been studied in the open literature. Still, this 
method is of great interest because it can be carried out in, 
for instance, naval contexts when a passive radar and a 
passive sonar are available, and more generally when a 
source emits two kinds of signals propagating with 
different speeds. 
In some papers, the so-called “delayed measurements” are 
taken into account; for example, in [6] “out-of-sequence 

measurements” sent by a set of sensors and received by a 

single center are synchronized by estimating each time 

delay. In [6-12], this time delay is on-line estimated to 

reduce the bias of the estimator of targets position. Hence, 

the time delay appears as a “drawback” of the propagation 

phenomena. Here, it must be considered as an advantage 

allowing one to propose a “low-cost” estimation of the 

target trajectory. 
Our paper is composed of three main sections: 
Section 2 is devoted to the definition of our problem. We 
give the notations employed subsequently. 
In Section 3, we prove that the trajectory of the source is 
observable when at least three instantaneous bearings and 
a delayed bearing are available. 
The estimation of the trajectory is developed in Section 4. 
The Cramér-Rao lower bound is computed and three 
typical scenarios are treated to give the performance of the 
maximum likelihood estimator via Monte Carlo 
simulations. A conclusion follows.  

2 Hypotheses and notations 

Consider a passive motionless observer (O) and a target 
(T) moving with a constant velocity (or CV motion). The 
origin of the Cartesian coordinates of the plane in which 
the two protagonists are, is chosen to be at the location of 
the observer. In this coordinate system, the position of the 
target at time t  is denoted 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]TT

TTT tttRtytxtP θθ cossin==  and its 

velocity is [ ] [ ]TT
vyxV γγ cossin== $$ . The trajectory 

of the target obeys the following equation: 

( ) ( ) ( )VtttPtP TT ** −+= , *t  being an arbitrary reference 

time. We denote ( ) xtxT =*  and ( ) ytyT =* . The trajectory 

of the source is entirely characterized by the state vector 

[ ]T
yxyxX $$= . Note that whatever t  is, the target 

and the observer are never located at the same place, i.e. 

( ) ( )[ ] [ ]00≠tytx TT
. 

At any time, the observer simultaneously measures two 

angles: the angle of the “line of sight” (LOS) and the angle 

of the  “line of sound”.  Of course, the propagation delay 

of the light is negligible whereas that of the sound must be 

taken into consideration. So, we can say that the angle of 
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the LOS is equal to ( )tθ  and the angle of the line of sound 

( )tDθ  is delayed by ( )tτ : ( ) ( )( )tttD τθθ −= .  The 

propagation delay ( )tτ  satisfies the recursion 

( ) ( )( )
c

ttR
t

τ
τ

−
= , where c  is the propagation speed of 

sound in the environment. It can be computed by the 

following expression 

 

( )
( )[ ] ( ) ( ) ( )

( )22

2222

vc

tPVtPvctPV
t

T

T

TT

T

−

−−+
=τ , proved 

in the Appendix. 

 

 

Figure 1.   Example of scenario. 

  

At time kt , the observer acquires the measured angles 

)( km tθ  and )(, kmD tθ : 

)()()( kkkm ttt εθθ +=  and 

Nkttt kDkDkmD ...,,2,1for),()()(, =+= εθθ . 

)( kD tε  and )( ktε are the additive noise, assumed to be 

zero-mean and Gaussian. Their covariance matrix are 

respectively equal to ( )2

Ddiag σ  and ( )2σdiag  (assumed to 

be known). 

We will assume subsequently that ( ) tktk Δ−= 1 , where tΔ  

is the measurement period. With no loss of generality, we 

choose 0* =t . 

We aim to estimate the trajectory of the source from the 

two sets { }Nktkm ...,,2,1),( =θ  and 

{ }NktkmD ...,,2,1),(, =θ . 

In the following section, we prove that the trajectory is 

observable from { }Nktk ...,,2,1),( =θ  and 

{ }NktkD ...,,2,1),( =θ . 

 

3 Observability Analysis 

3.1 Preamble 

First, we have the following one-way condition: 

( ) ( ) ( )[ ]tytxArgt TT ,=θ  ( )
( )

( )
( )ty

tx

t

t

T

T=⇒
θ

θ

cos

sin  

( ) ( ) ( ) ( ) 0sincos =−⇔ ttyttx TT θθ .    (1) 

 

Replacing ( )txT
 by xtx $+  and ( )tyT

 by yty $+  in (1) leads 

to 

( ) ( ) ( ) ( ) 0sincossincos =−+− tyttxttytx θθθθ $$ . 

( ) ( ) ( ) ( ) ( )[ ] 0sincossincos =−+−⇔ tyttxttytxtR θθθθ $$  

( ) ( ) ( ) ( ) 0=−+−⇔ txyttyxttxytyx TTTT
$$  

i.e., after re-introducing the state vector, 

( ) ( ) ( ) ( )[ ] 0=−− Xtxttyttxty TTTT
. 

 

Remark: 

We emphasize the fact that (1) is not equivalent to 

( ) ( ) ( )[ ]tytxArgt TT ,=θ since (1) remains valid when ( )tθ  is 

replaced by ( ) πθ +t . 

 

Proposition 1 

Consider a target in CV motion, detected in three LOS at 

times 1t , 2t , and 3t  by a motionless observer. 

If the three LOS are not equal, then the set of targets in CV 

motion detected in the same LOS is defined by the set of 

the state vector { }XXX λλ =′>∃′  0,assuch, .   

 

Proof: 

Without loss of generality, we assume that 01 =t . 

Consider the three different azimuths ( ) ( ) ( )321 ,, ttt θθθ  of 

the LOS. By construction, the system 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎪⎩

⎪⎨
⎧

=−

=−

=−

0sincos

0sincos

0sincos

3333

2222

1111

ttyttx

ttyttx

ttyttx

TT

TT

TT

θθ

θθ

θθ
 

can be expressed in the closed form 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎥⎥

⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−−

−−

−

0

0

000

333333

222222

11

X

txttyttxty

txttyttxty

txty

TTTT

TTTT

TT

******* )******* ('
M

            (2) 
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The analysis of observability is to identify any four-

dimensional vectors X ′  which can be a solution of (2), 

i.e. 
30=′XM . In other words, we have to identify the null 

space of M . 

We are going to prove that ( ) 3Rank =M . Obviously, 

( ) 3Rank ≤M .  

Compute the determinant of the submatrix composed by 

the last three columns: 

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ]
( )( ) .

00

det

3232

3232132

33333

22222

1

1

xyxxytttt

tytxtxtytxtt

txttyttx

txttyttx

tx

D

TTTTT

TTT

TTT

T

$$ −−=

−=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−−

−−

−

=

 

Now, compute the determinant of the ( )33× matrix 

composed by the first column and the last two columns of 

M :

( )
( ) ( ) ( )
( ) ( ) ( )

( )( ) .

00

det

3232

33333

22222

1

2

yyxxytttt

txttytty

txttytty

ty

D

TTT

TTT

T

$$ −−−=

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−

−=   

We get ( ) ( )yxyxxyttttDD +−−−=+ $$
323221

 . Hence 

21 DD +  is not equal to zero unless 0=− yxxy $$ , i.e. the 

vectors [ ]T
yx and [ ]T

yx $$  are collinear. This case, 

corresponding to the scenario where ( ) ( ) ( )321 ttt θθθ == , is 

discarded by assumption. 

Hence, the rank of M  is equal to 3 and, as a consequence, 

the dimension of its null space is equal to 1. We conclude 

that XX λλ =′∃ s.t.  . 

 

This condition is necessary but not sufficient. In order to 

respect the equality ( ) ( ) ( )[ ]iiTi tytxArgt λλθ ,= for 

{ }3,2,1∈i , the scalar λ  must be strictly positive. 

Ŷ 

 

Remarks:  (i) The above proof is widely inspired by [1] ; a 

version in continuous time can be found in some 

pioneering papers such as [3, 4]; (ii) a similar result can be 

found in [2] for continuous time; (iii) consequently, we are 

able to compute the azimuth ( )tθ at any time t. 

3.2 Analysis 

Proposition 2 

Consider a target in CV motion, detected in three LOS at 

times 
1t , 

2t , and 
3t ,  and a line of sound at time 

4t  by a 

motionless observer. 

Then the trajectory of this target is observable provided 

that the three LOS  are not equal.   

 

Proof: 

We know from Proposition 1 that the set of targets 

detected in three LOS and a line of sound is contained in 

the set { }0, >=′=Λ λλ forXX T
. At time 

4t , we acquire 

the angle of the line of sound ( )4tDθ  and we compute 

( )4tθ , thanks to Proposition 1.  

We denote A and A’, the respective positions of the target 

and of a λ -homothetic solution at time ( )44 tt τ− , and B 

and B’ their respective positions at time 
4t . The speed 'v  

of the λ -homothetic solution is obviously equal to vλ . 

Figure 2 illustrates the trajectory of the target and one 

homothetic solution: 

 
Figure 2. The target and a homothetic solution. 

 

From the Thales’ theorem (or intercept theorem), we get 

λ=
′

=
′′

OA

AO

AB

BA  

with  ( )( ) ( )444 tcttROA ττ =−= , ( )( ) ( )444 tcttRAO ττ ′=′−′=′ , 

( )4tvAB τ=  and ( )4tvBA τ ′′=′′ .  In these expressions, 

( ) ( )( )
c

ttR
t 44

4

''
'

τ
τ

−
= . 

Since OAAO λ=′ , we get ( ) ( )44 tt λττ =′ . We end up with 

( )4

2 tvBA τλ=′′ .  

The equality ABBA λ=′′  implies hence that 

( ) ( )44

2 tvtv τλτλ = , so  1=λ , and X ′  is equal to X . • 

B’ 

R(t
k
-τ(t

k
)) 

θ
D
(t

k
) 

O 

Target 

A' 

θ(t
k
) 

R(t
k
) 

A 

B 

P
T
(t

k
) 

Homothetic solution 

North 

East 
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4 Estimation 

4.1 Computation of the Cramér-Rao lower 

bound 

The Cramér-Rao lower bound (CRLB) is the inverse of 
the Fisher information matrix (FIM) given by the well-
known  formula 

 
( )

),(),(
1

),(),(
1

1

2

1

2

kD

T

XkD

N

k

X

D

k

T

Xk

N

k

X

tXtX

tXtXXF

θθ
σ

θθ
σ

∇∇+

∇∇=

∑
∑

=

=
. 

Only the computation of ),( kDX tXθ∇  needs some 

development, which is presented in the Appendix. 

4.2 The chosen estimator 

We chose the maximum likelihood estimator (MLE) 

that is identical to the least squares estimator minimizing 

the 

criterion

[ ] [ ] ,),()(
1

),()(
1

)(
1

2

,2
1

2

2 ∑∑
==

−+−=
N

k

kDkmD

D

N

k

kkm tXttXtXC θθ
σ

θθ
σ

since the noise is assumed to be Gaussian. 

The Gauss-Newton routine is employed for this 

minimization. The Hessian is based upon the expression of 

the FIM presented above. 

4.3 Monte Carlo simulations 

In our simulations, three types of targets have been 

considered:  a vessel (low speed), a helicopter (medium 

speed), and an airplane (high speed). No numerical 

problem has been noted. The units employed are those of 

the international metric system (meters for the distances 

and meters per second for the speeds). The Gauss-Newton 

routine was initialized with 

[ ]T

initX 0010001000= (m, m, m/s, m/s). For each 

example, we carried out 500 Monte-Carlo simulations. We 

computed the sampling standard deviation σ̂  which we 

compared to the square root of the corresponding diagonal 

element of the CRLB CRLBσ . 

4.3.1 Vessel 

We assume that the observer has a camera or a 

periscope (in the underwater context) and a passive sonar 

system. Each system measures an angle at regular instants. 

The target starts from ( ) [ ]T

TP 300020000 −= (m), with a 

speed equal to 5 m/s and a heading of 90°. 

The speed of sound (in the water), the sampling period, the 

standard deviations and the number of measurements are  

chosen to be smc /1500= , st 4=Δ , °= 5.0Dσ , °= 5.0σ , 

and 225=N . The performance obtained with 500 Monte 

Carlo simulations is summarized in Table 1 and the 

estimated positions (at initial time), together with the 90% 

confidence ellipses (at initial and final times), are depicted 

in Figure 3. 

 

Table 1. Performance of the MLE in the vessel case. 

X  Bias σ̂  CRLBσ  

-2000 (m) 2.3 517.4 532.4

3000 (m) 4.4 778.6 801

5 (m/s) 0.06 1.3 1.33

0 (m/s) 0 0.017 0.016
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Figure 3. The vessel trajectory, the estimates of the 

initial position, and the 90% confidence ellipses. 

4.3.2 Helicopter 

Now, a passive radar and a passive sonar are mounted on 

the observer. The target’s initial position is 

( ) [ ]T

TP 20003000 −= (m).  The velocity is equal to 

[ ]T
050  (m/s). 

The number of measurements is 10=N . The sampling 

period is chosen to be st 1=Δ . The observer acquires 10 

pairs of measurements. The speed of sound (in the air) is 

smc /330= . The standard deviations are °=1Dσ  and 

°= 1σ .  Table 2 presents the performance of the estimator 

(bias and standard deviation to be compared to those 

computed with the CRLB). The estimated positions (at 
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initial time) and the 90% confidence ellipses (at initial and 

final times) are plotted in Figure 4. 

 

Table 2. Performance of the MLE in the helicopter case. 

X  Bias σ̂  CRLBσ  

-300 (m) 0.03 13.92 13.61

2000 (m) 1.4 148.68 155.71

50 (m/s) 0.06 2.8 2.75

0 (m/s) 0.1 27.6 27.5

 

−1000 −500 0 500 1000
0

500

1000

1500

2000

2500

 
Figure 4(a). The helicopter trajectory, the estimates of the 

initial position, and the 90% confidence ellipses. 
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Figure 4(b). Magnification of the confidence ellipse, and 

the estimates at the initial time. 

4.3.3 Airplane 

In this last example, the target flies with a speed equal to 

150 m/s. The heading is still 90°. Its starts from the point 

( ) [ ]T

TP 20005000 −= (m). Again, the observer collects 10 

pairs of measurements only, with the sampling period 

st 1=Δ . The standard deviations are °=1Dσ and °= 1σ , 

respectively. The performance was evaluated with 500 

Monte Carlo runs and is presented in Table 3. The 

estimated positions (at the initial time) are depicted in 

Figure 5, together with the 90% confidence ellipses (at 

initial and final times). 

 

Table 3. Performance of the MLE in the airplane case. 

X  Bias σ̂  CRLBσ  

-500 (m) 0.03 9.25 9.82 

2000 (m) 0.35 51.53 51.85 

150 (m/s) 0.05 2.48 2.46 

0 (m/s) 0.43 8.38 9.17 
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Figure 5(a). The airplane trajectory, the estimates of the 

initial position, and the 90% confidence ellipses. 
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Figure 5(b). Magnification of the confidence ellipse, and 

the estimates at the initial time. 
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4.3.4 Comments on these examples 

The values presented in Tables 1, 2, and 3 reveal that the 

MLE is fairly efficient: no significant difference between 

σ̂  and 
CRLBσ  is noted. Of course, the performance of this 

new TMA method is up to a rotation. In any other case, the 

evaluation of the CRLB can give us prior information 

about the interest of this technique. At this stage, these 

three examples are very encouraging to pursue this study.  

5 Conclusion 

In this paper, we have proposed an original way to 

passively estimate the trajectory of a source emitting two 

kinds of waves, each of them propagating with different 

speeds. In the examples given here, we consider 

electromagnetic waves and acoustic waves. The 

asymptotic performance (given by the CRLB) let expect 

that this method was very interesting. The behavior of the 

maximum likelihood estimator confirms this, through 

numerous Monte Carlo simulations. This approach could 

be extended to the case of acoustic waves only, but 

propagating in two different media with two different 

speeds, for example in the air and on the ground for a 

terrestrial vehicle.  

 

This algorithm is protected under the patent NO 1461970. 

 

Appendix 

1. Computation of the time delay 

In the following expressions, τ  stands for ( )tτ : 

  ( )ττ −= tRc 222  

( ) ( ) 2
0 VtPT τ−+=  

( ) ( ) ( ) ( ) 222
020 VtPVtP T

T

T ττ −+−+=  

( ) ( ) ( ) ( ) 2222
2020 VttPVtP T

T

T τττ +−+−+=  

( ) ( ) ( ) 222222
202020 vvtPVvtPVtP T

T

T

T

T τττ +−−++=

 

( ) ( )( ) 2222
020 vvtPVVtP T

T

T ττ ++−+=  

( ) ( )( ) ( ) 0002
22222 =+−++−⇔ VtPvtPVvc TT

Tττ . 

Note that 022 >−vc  and ( ) 00
2

>+ VtPT
 ; the two roots 

of this equation are of opposite sign. Only the positive root 

is the value sought:  

( )( )
( )

( )( ) ( ) ( )
( )22

22222

22

2

00

0

vc

VtPvcvtPV

vc

vtPV

TT

T

T

T

−

+−++
+

−

+−
=τ

, 

or equivalently   

( )
( )[ ] ( ) ( ) ( )

( )22

2222

vc

tPVtPvctPV
t

T

T

TT

T

−

−−+
=τ . 

 

2. Computation of the FIM 

Recall that 

( )

).,(),(
1

),(),(
1

1

2

1

2

kD

T

XkD

N

k

X

D

k

T

Xk

N

k

X

tXtX

tXtXXF

θθ
σ

θθ
σ

∇∇+

∇∇=

∑
∑

=

=
 

 

We readily obtain 
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( )
( ) ( ) ( ) ( )[ ] .sincossincos

1

),(

T

kkkkkk

k

kX

tttttt
tR

tX

θθθθ

θ

−−

=∇

 

The difficulty is in computing ),( kDX tXθ∇  due to the 

recursive definition of ( )ktτ . 

We denote 

ie∂

∂  the derivative w.r.t. the i
th

 component of 

X , 4,3,2,1=i : 

( )
( )( )

( )( )
( )( )

( )( )
( )( )⎥⎦

⎤
∂

−∂
−−

⎢⎣
⎡

∂

−∂
−

−
=

∂

∂

i

kkT
kkT

i

kkT

kkT

kkTi

kD

e

tty
ttx

e

ttx
tty

ttRe

t

τ
τ

τ
τ

τ

θ
2

1

( )( )
( ) ( )( )

( ) ( )( )⎥⎦
⎤

∂

−∂
−

⎢⎣
⎡

∂

−∂

−
=

i

kkT
kD

i

kkT
kD

kkT

e

tty
t

e

ttx
t

ttR

τ
θ

τ
θ

τ

sin

cos
1

.   (A1) 

We now detail each derivative: 

( )( ) ( )
x

t
x

x

ttx kkkT

∂

∂
−=

∂

−∂ ττ $1                                       (A2) 

( )( ) ( )
x

t
y

x

tty kkkT

∂

∂
−=

∂

−∂ ττ $                                       (A3) 

( )( ) ( )
y

t
x

y

ttx kkkT

∂

∂
−=

∂

−∂ ττ $                                          (A4) 

( )( ) ( )
y

t
y

y

tty kkkT

∂

∂
−=

∂

−∂ ττ $1                                       (A5) 

( )( ) ( ) ( )
x

t
xtt

x

ttx k
kk

kkT

$
$

$ ∂

∂
−−=

∂

−∂ τ
τ

τ                          (A6) 

( )( ) ( )
x

t
y

x

tty kkkT

$
$

$ ∂

∂
−=

∂

−∂ ττ                                        (A7) 

( )( ) ( )
y

t
x

y

ttx kkkT

$
$

$ ∂

∂
−=

∂

−∂ ττ                                         (A8) 

( )( ) ( ) ( )
y

t
ytt

y

tty k
kk

kkT

$
$

$ ∂

∂
−−=

∂

−∂ τ
τ

τ                           (A9) 

 

 

Computation of ( )

i

k

e

t

∂

∂τ  can be done by using 

( ) ( )( ) ( )( )kkTkkTk ttyttxtc τττ −+−= 2222 . We get 

( )
( )

( )( )
( )( )

( )( )
( )( )

i

kkT
kkS

i

kkT

kkS

i

k

k

e

tty
tty

e

ttx
ttx

e

t
tc

∂

−∂
−+

∂

−∂
−=

∂

∂

τ
τ

τ
τ

τ
τ2

. 

 

Recalling that ( ) ( )( )kkk ttRctc ττ −=2 ,  

( )( ) ( )( ) ( )kDkkkkT tttRttx θττ sin−=− and

( )( ) ( )( ) ( )kDkkkkT tttRtty θττ cos−=− , we obtain 

( ) ( ) ( )( ) ( ) ( )( )

i

kkT
kD

i

kkT
kD

i

k

e

tty
t

e

ttx
t

e

t
c

∂

−∂
+

∂

−∂
=

∂

∂ τ
θ

τ
θ

τ
cossin . 

a)  Expression of ( )
x

tk

∂

∂τ : 

( ) ( ) ( ) ( ) ( )
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Inserting (A10) - (A13) in (A2) - (A9), we get 
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Inserting now (A14) – (A21) in (A1), we obtain 
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