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Abstract—The present work examines the problem of evalu-
ating the performance of statistically-characterized information
sources when ground truth is unavailable. Although exact verifi-
cation may be infeasible, inter-source statistical dependencies may
be used to test for information consistency. Through application of
a Rosenblatt transformation on an input sample and subsequent
Kolmogorov–Smirnov test against the uniform distribution, a
given information source can be statistically evaluated for good-
ness of fit. An algorithm is derived for detecting the presence
of suspect information and identifying the associated aberrant
source(s). The paper concludes with an example that considers
the detection of a malfunctioning radar system in the absence of
ground truth.

Keywords—Information Validation, Sensor Performance, Fu-
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I. INTRODUCTION

Fusion systems depend crucially on the accurate character-
izations of information sources in order to properly integrate
data in support of the inference being sought. When a collec-
tion of data (such as a set of measurements from a physical
sensor) does not exhibit its assumed characteristics—because
of incorrect model specification or a system malfunction—,
the quality of fusion is degraded, leaving downstream deci-
sions vulnerable. It is therefore of considerable importance to
rapidly identify aberrant data to minimize subsequent negative
outcomes. To this end, information sources may be evaluated
directly against ground truth, an approach where the resulting
validation (or lack thereof) enjoys a high degree of confidence.
However, in many scenarios—particularly in operation centres
that receive voluminous data from many diverse and distant
assets—this is prohibitively expensive or otherwise infeasible.

One mitigation strategy involves assessing data from multi-
ple distinct sources (such as tracks of a single vessel produced
by independent fusion systems) for agreement to within the
modeled uncertainty. In this framework, sources are evaluated
against their own assumed statistical models and/or compared
with other sources that produce redundant data. The manner
in which this approach is applied depends significantly on
the representation of uncertainty. Existing works have consid-
ered sensor validation in a variety of contexts characterized
by particular combinations of sensor failure modes, uncer-
tainty representation (Dempster–Shafer, fuzzy, etc), and other
domain-specific attributes. In [1], pattern matching and the
Nadaraya–Watson estimator were used to identify inconsistent
sensor readings in a framework that was applied to pH sensors.

Similarly, [2] studied the problem of intermittent and soft-
sensor faults in physically redundant sensors, while [3] applied
the Kullback–Liebler divergence to verify the functioning of
object-localization sensors in the context of microphone selec-
tion. In [4], a Bayesian method was developed that identifies
inconsistent sensor data through analysis of entropy.

The present work considers a collection of information
sources as generalized sensors that form the components
of a larger statistical system where inter-source statistical
dependencies are assumed be completely described. In this
framework, the statistical distributions representing data gener-
ated by individual information sources are cast into a multidi-
mensional uniform distribution, allowing samples (data) to be
evaluated for goodness of fit. A specialization of this approach
is derived for problems that meet certain Markov conditions
that commonly accompany target tracking. The special case of
the Kalman filter is examined, followed by the development of
a more general, non-Gaussian, nonlinear Bayesian smoothing
framework. The paper concludes with an example where a
group of sensors is used to detect the malfunctioning of a
radar system.

II. GENERAL MATHEMATICAL FRAMEWORK

The fusion system under consideration is modeled as a
statistical system composed of a pair of continuous random
vectors Z and X that represent information sources and system
state, respectively. It is assumed that Z and X have known
distributions and that their interdependence may be fully char-
acterized mathematically. In what follows, information sources
are defined as distinct subsets Zk of Z that are mutually
disjoint

Z =
[

Z1, Z2, · · · , Z |Z|
]⊺

(1)

where |Z| denotes the total number of sources in Z. The
random vector X may be similarly decomposed into smaller
random vectors (which may correspond, for example, to a
time-series of states)

X =
[

X1, X2, · · · , X |X|
]⊺

. (2)

Note that in the case of time series, |Z| and |X| are often
identical.

A (possibly empty) subset of sources Ztr of Z are as-
sumed to function correctly and provide data consistent with
their statistical definitions. These sources are segregated from
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their complement Zev, which form the set of sources to be
evaluated. This partition is given as
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(3)

where P is a permutation matrix that reorders Z, and |Zev| and
|Ztr| are the total number of measurements for the evaluated
and trusted sources, respectively that satisfy |Zev| + |Ztr| =
|Z|. The permutation matrix maps a given Zk into either Zk′

ev or

Zk′
tr for some k′ where generally k 6= k′. Finally, each Zk

ev may
be further decomposed into its individual scalar components

Zk
ev =

(

Zk,1
ev , Zk,2

ev , . . . , Z
k,|Zk

ev|
ev

)⊺

(4)

where |Zk
ev| denotes the number of elements in the kth

evaluated information source, and the total number of degrees
of freedom of Zev is given by

n =

|Zev|
∑

k=1

|Zk
ev| . (5)

Both Z and X completely describe the system over the
entire period of time under consideration. In systems charac-
terized by successive states and/or measurements, the indexed
members of the associated times series are mapped to distinct
Zk and Xk. Consequently, a statistical sample representing
the data produced by the information sources will comprise
only a single point in the high-dimensional space spanned
by Z.1 The approach adopted in the present work evaluates
a one-point sample Z of Z for statistical consistency against
the model given by (Z,X). Although technically redundant,
specification of X at the outset of analysis may simplify the
conceptualization of the problem, which typically involves
estimating some component(s) of the system state. The range
of the doublet (Z,X) is given by the space S that is formed
by the Cartesian product

S = SZ × SX (6)

where SZ and SX are spanned by the members of Z and X ,
respectively.

The fusion system derives its utility from the statistical
dependencies between the various Zk and X l. By design, these

1For example, an n-element i.i.d. sample drawn from a scalar distribution
given by Y ∼ Y may be regarded equivalently as a one-point sample from
the vector (Y1, . . . , Yn) where Y1 ∼ Y, . . . , Yn ∼ Y . The utility of a one
point sample in statistical inference thus depends crucially on the dependency
structure between elements of the presumed random vector. Further discussion
may be found in §III.

dependencies (which may be represented by copulas) relate
information and its uncertainty with the statistical inference
that is sought. For example, in the context of target tracking,
the elements of Z are sensor measurements while those of X
represent the system state (e.g. target position and velocity)
from which estimates may be computed. The members of
Z and X , which are indexed by time, exhibit dependencies
resulting from the prescribed sensor likelihood functions (that
model measurement processes) and transition densities (that
describe target motion such as that due to Newtonian me-
chanics). Furthermore, Markov conditions are usually imposed,
greatly simplifying the structure of (Z,X), thereby allowing
successive state vectors to be computed recursively as new
measurements become available.

In the present setting, it is assumed possible to define the
system joint probability density function for (Z,X) over S

denoted by
fZ,X (z,x) (7)

where z and x are the vectors that may be decomposed as
subvectors

z =
[

z1, . . . , z|Z|
]⊺

, and x =
[

x1, . . . ,x|X|
]⊺

. (8)

Upon definition of (7), members of X are no longer required
and may be regarded as nuisance variables that can be elimi-
nated through marginalization

fZ (z) =

∫

SX

fZ,X (z,x) dx . (9)

The structure of the information source evaluation problem is
captured by fZ(z), which defines the statistical relationships
between the various sources.

Analysis proceeds by incorporating data from the trusted
information sources in the form of the sample

Ztr = (z1tr, z
2
tr, . . . , z

|Ztr|
tr ) (10)

which yields the conditional density function

fZev|Ztr
(zev|ztr = Ztr) ∝ fZ (zev, ztr = Ztr) . (11)

The associated random variable (Zev|Ztr = Ztr) incorporates
everything that is known about the problem, and thus provides
the best statistical model against which a sample from Zev

may be evaluated. Data from the information source under
evaluation,

Zev =
(

z1ev, z
2
ev, . . . , z

|Zev|
ev

)

(12)

may thus be carried out by examining its goodness of fit against
(11). This process may be formalized by first transforming
(Zev|Ztr = Ztr) into the n-dimensional uniform distribution

Y = (Y 1, Y 2, . . . , Y |Zev|) over [0, 1]
∏

k |Zk
ev| by way of the

Rosenblatt transformation (Appendix). The transformed prob-
ability density function becomes

fY (y) =

|Zev|
∏

k=1

|Zk
ev|

∏

i=1

(

H
(

yk,i
)

−H
(

yk,i − 1
) )

(13)

where H( ·) is the Heaviside step function. A given sample
Zev of Z is transformed into the sample Yev of Y using

Yev = R (Zev) (14)
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where R( ·) is given by (39) in Definition VII.1. When the
evaluated sources are properly modeled, the transformed sam-
ple Y = {y1, y2, . . . , y|Zev|} comprises a set of n independent
and identically distributed (i.i.d.) subcomponents yk,i drawn
from U(0, 1).

Finally, it is important to note that finding the Rosenblatt
transform entails computing the series of |Zev| conditional
cumulative distribution functions

FZ1,1
ev |Ztr

(

z1,1ev = z1,1ev |ztr = Ztr

)

F
Z

φ1
ev |Z1,1

ev ,Ztr

(

zφ1
ev = zφ1

ev |z
1,1
ev = z1,1ev , ztr = Ztr

)

...

F
Z

φ2
ev |Zφ3

ev ,Ztr

(

zφ2
ev = zφ2

ev |z
(1,1):φ3

ev = z
(1,1):φ3

ev , ztr = Ztr

)

(15)
where

φ1 =

{

(2, 1), |Z1| = 1

(1, 2), |Z1| > 1

}

φ2 = (|Zev|, |Z
|Zev|
ev |)

φ3 =











(|Zev| − 1, |Z
|Zev|−1
ev |),

∣

∣

∣
Z |Zev|
ev

∣

∣

∣
= 1

(|Zev|, |Z
|Zev|
ev | − 1),

∣

∣

∣
Z |Zev|
ev

∣

∣

∣
> 1











.

(16)
As there may exist several means to evaluate the F in (15), it
is preferable to select an approach that minimizes computation
time.

III. INFORMATION SOURCE EVALUATION

A. Statistical Hypothesis Testing

Evaluation of a sample Zev against the model given by
the random variable (Zev|Ztr = Ztr) commences by defining
a collection of mutually-exclusive hypotheses. In the present
work these are

H0: The subcomponents of Y k,i of
(Y 1, . . . , Y |Zev|) are i.i.d., and
Y k,i ∼ U (0, 1). This is the null hypothesis
that asserts that the (Z,X) model is correct.

HA: This is the collection of alternate hypotheses.

An elementary statistical hypothesis test amounts to deciding
whether there is adequate evidence to reject H0 [5], [6].
This involves computing the sample’s test statistic D
and determining the critical region Rα (not necessarily
contiguous) for a predefined significance level α. Under the
null hypothesis, D evaluates to within Rα with a probability
α. For a sufficiently small significance level, such an event
is very unlikely and its occurrence is therefore grounds
on which the null hypothesis may be rejected. In many
cases (such as one-tailed tests), the critical region may be
completely specified by a minimum value Kα such that
Rα = {x|x ∈ R ∧ x > Kα}.

Failures to reject the null hypothesis in circumstances
where a member of HA holds (or vice verse) are regarded
as errors that may be categorized as

Type I: The null hypothesis H0 was rejected when
in fact it is correct.

Type II: The null hypothesis was not rejected when
in fact it is incorrect.

The frequencies of committing type I and type II errors are
quantified inversely by the test’s specificity and sensitivity (or
power), respectively. In general, different tests will exhibit
varying error profiles, and moreover, may differ markedly
in sensitivity to certain members of HA. Where a particular
set of alternate hypotheses is anticipated, it may be desirable
(when possible) to tailor tests to maximize sensitivity to this
group.

The Kolmogorov–Smirnov test (Appendix) may be em-
ployed as a general technique for evaluating i.i.d. samples
for goodness of fit with respect to a predefined cumulative
distribution function. In the present work, it was used to test
the subcomponents of Yev against the uniform distribution
U(0, 1). In each case, a significance level is chosen, and the
test statistic is computed and compared against the associated
critical value, which is found in a reference table or by
numerical computation.

In most cases, analysis of type II errors is challenging
and requires the definition of alternative hypotheses. In cer-
tain applications these may be readily identified, and the
Kolmogorov–Smirnov test can be modified to improve sen-
sitivity [7], [8]. Qualitatively, however, the test’s sensitivity
depends crucially on the mathematical structure of the assumed

model. Where the random variables Zk′
ev in (Zev|Ztr = Ztr)

are i.i.d., the problem becomes essentially one dimensional,
and the Rosenblatt transformation is found trivially. In this
instance, the alternative hypotheses will comprise random vari-
ables whose associated joint density function can be factored
into independent terms, and the Kolmogorov–Smirnov test will
exhibit the power typically expected with a univariate i.i.d.
sample. However, should the statistical structure of (Zev|Ztr =
Ztr) be complex, the problem’s dimensionality may be higher,
and the test becomes significantly less powerful. In cases
characterized by moderate degrees of statistical dependence,
the test will likely be of intermediate sensitivity.

Conditioning on Ztr improves the performance of hypoth-
esis testing by refining fZ(z) to more accurately reflect the
given circumstances, thereby reducing the incidence of type II
errors (the type-I error rate should remain unaffected because it
is explicitly defined). Conditioning can also be viewed in terms
of mutual information between Ztr and Zev [9]. In cases where
the mutual information is high, knowledge of Ztr substantially
reduces the uncertainty in Zev. Qualitatively, this is expected
to improve the test’s sensitivity.

B. Kolmogorov–Smirnov Statistic Under Source Exclusion

The foregoing hypothesis test is appropriate when certain
sources are believed to produce tainted data. In many situations
however, the suspect source(s) may not be obvious, and an
alternative approach is required. In these cases, the absence of
readily-identified trusted sources impedes the straightforward
application of hypothesis testing. One possible (but problem-
atic) solution is based on a partition of Z that designates
a single Zk as a evaluated and the remaining Z \ Zk as
trusted. The set of all such partitions may then be used

486



to carry out a sequence of hypothesis tests. Unfortunately,
the resultant test statistics (which are not independent) will
incur significant error by the inclusion of the problematic
source, and thus (Zev|Ztr = Ztr) may deviate substantially
from the correct model. An alternative approach is based on
sequentially excluding a single Zk at a time, and computing
the Kolmogorov–Smirnov statistic on the remaining |Z| − 1
sources. In the calculation performed without the problematic
source, the statistic is not expected to exceed the critical
value. In all other cases—depending on the test’s sensitivity—
the computed statistics may deviate noticeably from what is
expected under H0. Although the resultant D are once again
not statistically independent, this may not be of serious concern
in practical applications characterized by large numbers of
data.

IV. EFFICIENT JOINT PDF REDUCTIONS FOR MARKOV

TRANSITIONS AND MEASUREMENTS

The dimensionality of (11) may be prohibitive in practical
settings. However, when applied to recursive Bayesian filtering
[10]–[12], the mathematical framework of the foregoing sec-
tion admits a particularly simple decomposition. In this setting,
a time-series pair of random vectors Xk and Zk represent
system states and observations, respectively. In accordance
with (3), the Zk are embedded as subvectors in Z, and X is
decomposed analogously. A prior probability density function
fX1(x1) is assigned over a space of possible system states
SX . This function is then alternately brought forward in time
using a transition function fXk+1|Xk(xk+1|xk) that describes
the state evolution

fXk+1|Z1:k

(

xk+1|z1:k
)

=
∫

SX

fXk+1|Xk

(

xk+1|xk
)

fXk|Z1:k

(

xk|z1:k
)

dxk

(17)
and then refined with a Bayesian likelihood function
fZk|Xk(zk|xk) that represents a system observation

fXk|Z1:k

(

xk|z1:k
)

=
fZk|Xk

(

zk|xk
)

fXk|Z1:k−1

(

xk|z1:k−1
)

∫

SX

fZk|Xk

(

zk|xk
)

fXk|Z1:k−1

(

xk|z1:k−1
)

dxk

(18)
where z1:k and z1:k−1 are subvectors of z given in (8). Should
multiple observations occur simultaneously the (zero-time)
transition between timesteps is omitted. In practice, the zk are
replaced with actual observations Zk.

In many filtering applications, Markov conditions are
imposed on both the transition and measurement functions,
yielding, respectively,

fXk+1|Xk

(

xk+1|xk
)

= fXk+1|X1:k

(

xk+1|x1:k
)

(19)

and

fZk+1|Xk+1

(

zk+1|xk+1
)

= fZk+1|X1:k+1

(

zk+1|x1:k+1
)

(20)
where x1:k and x1:k+1 are subvectors of x defined in (8).
These simplifications enable the recursive formulation of (17)
and (18) and render tractable a problem that would otherwise
be of prohibitively high dimensionality.

Conditions (19) and (20) ensure that predictions and mea-
surements depend only on the present state, and thus the effec-
tive problem dimension reduces to that of a single time-indexed
state vector. Furthermore, under the Markov constraints, the
state of a system comprising |Z| observations is given by a
joint probability density function that may be factored as [10]

fX1:|Z|,Z1:|Z|
(

x1:|Z|, z1:|Z|) =

fX1

(

x1
)

|Z|
∏

k=2

fZk|Xk

(

zk|xk
)

fXk|Xk−1

(

xk|xk−1
)

.

(21)
Equation (21) serves as the joint density in (7) and may be
marginalized and conditioned on Zk

tr to yield

fZev
(zev) ∝

∫

SX

fX1

(

x1
)

|Z|
∏

k=2

fZk|Xk

(

zkev, z
k
tr = Zk

tr|x
k
)

fXk|Xk−1

(

xk|xk−1
)

dx .

(22)
The method employed to compute the conditional functions
given in (15) depends on the problem’s latent mathematical
structure (and the structure of fZev

(zev) in particular). Where
each term in (22) is distributed normally, fZev

(zev) may be
found algebraically. Otherwise, smoothing techniques must be
employed. These methods are described below.

A. Linear Gaussian Case

In this case, the transition density and measurement likeli-
hood are given by [11]

fXk+1|Xk

(

xk+1|xk
)

∝

e
− 1

2 (x
k+1−F

Xk+1|Xkx
k)

⊺

Σ−1

Xk+1|Xk(x
k+1−F

Xk+1|Xkx
k)

(23)
and

fZk|Xk

(

zk|xk
)

∝ e
− 1

2 (z
k−H

Zk|Xkx
k)

⊺

Σ−1

Zk|Xk(z
k−H

Zk|Xkx
k)

(24)
where FXk+1|Xk and HZk|Xk are matrices that describe target
kinematics and the measurement process, respectively. The
proportionality relations in (23) and (24) may be replaced
by equalities by scaling the respective right-hand sides with
factors related to the covariance-matrix determinants (although
this is unnecessary here). Equations (23) and (24) may be
substituted into (21) to yield a single, consolidated multivariate
Gaussian function

fZ1:|Z|,X1:|Z|
(

z1:|Z||x1:|Z|) ∝

e
−
1

2

([

x
z

]

−

[

µx

µz

])⊺

Σ−1

([

x
z

]

−

[

µx

µz

]) (25)

where z and x are notational abbreviations of z1:|Z| and x1:|Z|,
respectively. The system covariance matrix Σ and vector means
µz and µx are easily constructed from the prior and individual
term-term relations defined in (23) and (24). Marginalization
of x requires factorization of Σ−1 in a manner that separates
the elements of z from those of x. Noting that the covariance
matrix is symmetric, its inverse may be decomposed as

Σ−1 =

[

A B
B⊺ C

]

(26)
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where A, B, B⊺, and C correspond to the xx, xz, zx, and
zz terms, respectively. In this form, Σ−1 may be factored by
the Aitken block diagonalization [13], [14]

Σ−1 =

[

I 0
B⊺A−1 I

] [

A 0
0 Σ−1/A

] [

I A−1B
0 I

]

(27)
where Σ−1/A = C − B⊺A−1B is the Shur complement.
Equation (25) thus simplifies to

fZ1:|Z|,X1:|Z|
(

z1:|Z|,x1:|Z|) ∝

e
−
1

2

(

x− µx −A−1B (z+ µz)
)⊺

A
(

x− µx −A−1B (z+ µz)
)

· e
−
1

2
(z− µz)

⊺
[

Σ−1/A
]

(z− µz)
.

(28)
Noting that the term µx −A−1B(z+µz) may be treated as a
mean, marginalization in accordance with (9) yields

fZ1:|Z|

(

z1:|Z|
)

∝ e
−
1

2
(z− µz)

⊺
Σ−1

z
(z− µz)

(29)

where Σ−1
z

= Σ−1/A.

Conditioning on Ztr may be carried out by further separat-
ing ztr from zev through a decomposition of Σ−1

z
as

Σ−1
z

=

[

D E
E⊺ F

]

(30)

where D, E, E⊺, and F correspond to the zevzev, zevztr,
ztrzev, and ztrztr terms, respectively. A second Aitken block
diagonalization yields

fZev
(zev) ∝ e

−
1

2
(zev − µ′

z
)
⊺
Σ−1

z
(zev − µ′

z
)

(31)

where µ′
z

= µz − (D−1E)Ztr. The series of conditional
functions given in (15) may now be found trivially.

B. General Case

A more general approach must be developed for prob-
lems characterized by non-Gaussian and/or nonlinear transi-
tion densities and measurement functions. Provided that the
Markov conditions of (19) and (20) still hold, the challenges
posed by joint density function’s dimensionality may be ad-
dressed through Bayesian smoothing. The following adapts
two smoothers (forward-backward and two-filter) to the source
evaluation problem. Both approaches seek to compute the
series of conditional density functions

fZ1,1
ev |Ztr

(

z1,1ev = z1,1ev |ztr = Ztr

)

f
Z

φ1
ev |Ztr,Z

1,1
ev

(

zφ1
ev = zφ1

ev |z
1,1
ev = z1,1ev , ztr = Ztr

)

...

f
Z

φ2
ev |Ztr,Z

φ3
ev

(

zφ2
ev = zφ2

ev |z
(1,1):φ3

ev = z
(1,1):φ3

ev , ztr = Ztr

)

(32)
where the various φ are given in (16). These functions may
then be used to find the cumulative distribution functions
of (15). The individual observations will be of the form

fZk|Xk(zk = zk|xk) = fZk′
ev |Xk(zk

′
ev = zk

′
ev|x

k) where k is

related to k′ by the permutation matrix of (3). Each smoother

solves for f
Xk|Z1:k′−1

ev ,Ztr
(xk|z1:k

′−1
ev = z1:k

′−1
ev , ztr = Ztr),

which, by the law of total probability yields

f
Zk′

ev |Z1:k′−1
ev ,Ztr

(

zk
′

ev = zk
′

ev|z
1:k′−1
ev = z1:k

′−1
ev , ztr = Ztr

)

=

∫

fZk′
ev |Xk

(

zk
′

ev = zk
′

ev|x
k
)

·f
Xk|Z1:k′−1

ev ,Ztr

(

xk|z1:k
′−1

ev = z1:k
′−1

ev , ztr = Ztr

)

dxk

(33)
The left-hand side of (33) is the joint density function of

the scalar components Zk′,i
ev of the k′th information source,

conditioned on all k′′ < k′. This function may be further

sequentially conditioned for each Zk′,i
ev with i ∈ {1, . . . , |Zk′

ev|}
to yield the terms of (32). Note that this step depends on the

specific dependence structure2 between the Zk′,i
ev .

1) Forward-Backward Smoothing: The standard forward-
backward smoother pairs the ordinary forward filtering prob-
lem with a second recursion carried out in reverse. For any
given Xk, the latter step may be carried out with the pair
[15], [16]

fXk+1|Z1:k

(

xk+1|z1:k
)

=

∫

fXk+1|Xk

(

xk+1|xk
)

fXk|Z1:k

(

xk|z1:k
)

dxk
(34)

and

fXk|Z1:|Z|
(

xk|z1:|Z|) = fXk|Z1:k

(

xk|z1:k
)

·

∫ fXk+1|Xk

(

xk+1|xk
)

fXk+1|Z1:|Z|

(

xk+1|z1:|Z|
)

fXk+1|Z1:|Z|

(

xk+1|z1:|Z|
) dxk+1 .

(35)
Note that (34) is simply the Markov transition step that
occurs in the forward filter. The backward iteration begins
with X |Z| and recursively computes X |Z|−1, X |Z|−2, . . . , Xk.
In general, calculation of each successive member in (32)
requires performing both a forward and reverse pass. However,
a significant portion of each forward filter run may be reused
by adopting a reversed conditioning sequence given the by

subscripts3 (|Zev|, |Z
|Zev|
ev |), (|Zev|, |Z

|Zev|
ev | − 1), . . . (1, 1).

2) Two-Filter Smoothing: The two-filter smoother is based
on the decomposition [15]

fXk|Z1:|Z|
(

xk|z1:|Z|) ∝ fXk|Z1:k

(

xk|z1:k
)

·fZk+1:|Z||Xk

(

zk+1:|Z||xk
)

(36)
where the leading term on the right-hand side is the probability
density function of the state conditioned on all past measure-
ments (and is thus the output of the ordinary forward filter).

2This step is trivial when the Z
k′,1
ev , . . . , Z

k′,|Zk′
ev |

ev are statistically inde-
pendent.

3The second term of this sequence is (|Zev| − 1, |Z|Zev−1|
ev |) when

|Z|Zev|
ev | = 1.
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Applying Bayes’ rule, the trailing term becomes

fZk+1:|Z||Xk

(

zk+1:|Z||xk
)

∝
fXk|Zk+1:|Z|

(

xk|zk+1:|Z|
)

fXk

(

xk
)

(37)
when zk+1:|Z| is fixed. The numerator on the right-hand side is
produced by a filter running backwards in time (analogous in
function to fXk|Z1:k(xk|z1:k) from the forward filter), and the

denominator is related to fX|Z|(x|Z|) by a series of reverse
Markov transitions. The two-filter smoother is adapted to
computing the conditional densities of (33) by running the

forward filter with only Z≤k
tr = Z

≤k
tr and the reverse filter

with both Z>k
tr = Z>k

tr and Z>k
ev = Z>k

ev (i.e. Z>k = Z>k).

The joint density functions for each Zk′
ev = Zk′

ev are found in

reverse, starting with Z
|Zev|
ev = Z

|Zev|
ev . Note that this approach

requires each of the forward and reverse runs to be performed
only once.

Although this smoother may enjoy a straightforward im-
plementation (such as in the linear-Gaussian case), the final
probability density fX|Z|(x|Z|) in the reverse filter must be
sufficiently uninformative so as to ensure compatibility with
(37). In practice this entails using a fX|Z|(x|Z|) of very
high variance, which may engender numerical stability and
tractability issues. Further detail may be found in [15].

C. Computational Complexity

The running time of the reduction algorithms will depend
on a number of parameters. The asymptotic computational
complexity as a function of the total number of information
sources (or timesteps), however, is the most significant char-
acteristic that determines the scalability in most applications.
The complexity of the matrix-based linear Gaussian method
(§IV-A) depends primarily on the cost of matrix inversion
incurred by calculating the shifts in µz, whose naı̈ve complex-
ity is O(|Zev|

3). However, as the constituent (non-inverted)
submatrices are sparse, a carefully-designed algorithm may
yield significant improvements in running time.

The forward-backward algorithm of (IV-B1) requires both a
forward and backward pass for each evaluated source. As a sin-
gle pass entails O(|Zev|) numerical operations, the complexity
of the entire problem is quadratic in |Zev| (i.e. O(|Zev|

2)). In
contrast, the two-filter smoother of (IV-B1) requires each of
the forward and reverse passes to be carried out only once,
resulting in O(|Zev|) operations. Consequently, the two-filter
smoother exhibits the most favourable complexity, although
stability issues may preclude its use in certain applications.

V. EXAMPLE PROBLEM

The mathematical framework of the previous sections is
illustrated by way of an example that considers the problem
of verifying information sources used in tracking a vessel. Esti-
mates of the vessel’s kinematic states were computed by fusing
position observations from two ground radar stations, received
Automatic Identification System (AIS) messages, and satellite
radar (Fig. 1). Without loss of generality, it was assumed that
the sources produced measurements simultaneously at a rate
of one per second. In this example, measurements and vessel
motion were assumed to be linear Gaussian, allowing the
application of Kalman filtering and smoothing. The filter and

Vessel PathAIS Receiver

Ground Radar 1

Ground Radar 2

Satellite Radar

1 km

3 km

(0, 0)

θ1

r 1

θ2

r 2

Fig. 1. Multisensor tracking of a vessel showing sensors and their locations.
AIS and space-based radar coverage is assumed to be complete over the course
of the simulations.

simulated target motion and measurement were implemented
using common process and measurement noise covariances
given in Table I, where the rotation matrices are defined as

Rθ =

[

cos θ − sin θ
sin θ cos θ

]

(38)

for the pair of θ defined in Fig. 1. To maintain a Gaussian
framework, the crescent-shaped measurement likelihood func-
tions ordinarily associated with ground radar were replaced
with Cartesian-coordinate approximations, a step that is justi-
fied by assuming a small variance to the angular component
in the likelihood function.

Two simulations were performed. In the first, the range
components of the second ground-radar measurements were
scaled by 0.9 (Fig. 2), thereby simulating a malfunction in
the time base. In the second, the range components were left
unchanged, thus modeling the absence of any faults. Each
simulation was carried out for 100 time steps, yielding n = 200
degrees of freedom in Zev. Throughout, the detection and
false-alarm probabilities were 1 and 0, respectively, and the
transformed samples were generated from the set of measure-
ments using the two-filter smoother of §IV-B2 to reduce the
dimensionality of the joint probability density functions.
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TABLE I. PARAMETERS OF THE EXAMPLE PROBLEM.

Parameter Value

Process Noise Cov.

[

0.25I s4 0.5I s3

0.5I s3 I s2

]

m2/s4

Process Noise Mean

[

0 m
0 m/s

]

Ground Radar 1 Cov. (Pos.) R
−1

θ1

[

10−2r1m
−1 0

0 10−4r21m
−2

]

Rθ1
m2

Ground Radar 1 Mean (Pos.)

[

0
0

]

m

Ground Radar 2 Cov. (Pos.) R
−1

θ2

[

10−2r2m
−1 0

0 10−4r22m
−2

]

Rθ2
m2

Ground Radar 2 Mean (Pos.)

[

0
0

]

m

Satellite Radar Cov. (Pos.)

[

8 0
0 8

]

m2

Satellite Radar Mean (Pos.)

[

0
0

]

m

AIS Cov. (Pos.)

[

4 0
0 4

]

m2

AIS Mean (Pos.)

[

0
0

]

m

Note that I, r1, and r2 are the 2 × 2 identity matrix, distance (in meters) between

target and ground radar 1, and distance (in meters) between target and ground radar 2,

respectively. The first and second coordinates in centre matrices defining the ground radar

covariances are radial and polar, respectively. The 2×2 rotation matrices Rθ1
and Rθ2

are defined with respect to the angles given in Fig. 1.

Hypothesis tests were carried out for the information-
source partition that assigned ground radar 2 to Zev and the
collection of ground radar 1, space-based radar, and AIS to Ztr.
The resultant Kolmogorov–Smirnov test statistics are given in
Table II, which clearly illustrates the rejection of H0 in the
defective-radar run, and the non-rejection of H0 in the no-
fault run. In both cases, the results of the test hold for all
significance levels between at least 0.2 and 0.1, as given in
[17]. The Kolmogorov–Smirnov statistic was also computed
under the complete set of single source exclusions. As shown
in Fig. 3, exclusion of ground radar 2 yields a statistic of
∼ 0.5, which is well below the critical value given by 0.2
significance level. Conversely, exclusion of other sources (and

Correct 
covarianceCovariance due 

to malfunction

r Δr

Radar System

Fig. 2. Error in range due to defective time base. The radial component of
the measurement exhibits an error proportional to the distance between the
target and radar system (∆r). The variance in bearing is assumed to be small
enough to allow the covariance to be approximated in Cartesian coordinates.

TABLE II. COMPUTED KOLMOGOROV–SMIRNOV STATISTIC.

Simulation Run Scaled Kolmogorov–Smirnov Statistic

Non-Defective Ground Radar 2 0.74

Defective Ground Radar 2 31.89

Scaled Kolmogorov–Smirnov test statistic (
√
nD) for ground radar 2 in both the

defective-radar and no-fault runs. Ground radar 1, space-based radar, and AIS were

designated as trusted. Note that for a significance level of 0.01 and 0.2, the asymptotic

critical values are 1.63√
n

and 1.07√
n

, respectively [17].

hence inclusion of ground radar 2) yields a statistic of ∼ 50,
clearly illustrating a lack of consistency that flags ground radar
2 as problematic.

VI. CONCLUSION

This work studied the problem of assessing information-
source performance in statistically-characterized fusion sys-
tems. The derived mathematical framework allows informa-
tion from a collection of suspect sources to be evaluated
for consistency by exploiting statistical dependencies with
information obtained from trusted sources. The approach is
based on a Rosenblatt transformation that casts input data into
a sample of independent, identically-distributed observations of
the uniform distribution. The transformed sample is then used
to compute the Kolmogorov–Smirnov statistic, which provides
a quantitative measure for goodness of fit and serves as the
basis for an algorithm that detects the presence of suspect
information. The mathematical framework is applied to an
example that illustrates the identification of a malfunctioning
radar system by using the data available from a group of
sensors. This work is expected to be of significant value
in scenarios that lack ground truth but require validation of
received information.

VII. APPENDIX

Definition VII.1 (Rosenblatt Transformation
[18], [19]). Given an n-dimensional continuous
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Fig. 3. Scaled Kolmogorov–Smirnov statistic in the defective-radar run
as a function of source exclusion (given by

√
nD, where n is the number

of degrees of freedom in Zev). Note the two-order-of-magnitude difference
between ground radar 2 and the other sensors.
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random vector Z = {Z1, . . . , Zn} and its
marginal cumulative distribution functions FZ1(z1),
FZ2|Z1(z2|z1), . . . ,FZn|Zn−1, ... ,Z1(zn|zn−1, . . . , z1), a
new random vector Y = R(X) over Un(0, 1) may be defined
as

Y 1 = R (X)
1

= FZ1

(

z1
)

Y 2 = R (X)
2

= FZ2|Z1

(

z2|z1
)

...

Y n = R (X)
n

= FZn|Zn−1, ... ,Z1

(

zn|zn−1, . . . , z1
)

(39)
where Y i and Y j are statistically independent for i 6= j, and
R( ·) is the Rosenblatt transform. �

Definition VII.2 (Kolmogorov–Smirnov Test [17], [20]). A
univariate sample {x0, x1, . . . , xn} yields an empirical cumu-
lative distribution function

F̂ (x) =
1

n

n
∑

i=1

H
(

x− xi
)

(40)

where H( ·) is the Heaviside step function. A statistic D may
be defined as

D = sup
∣

∣

∣
F̂ (x)− F (x)

∣

∣

∣
(41)

for some analytically-defined cumulative distribution function
F (x). A goodness-of-fit test may be constructed by defining a
null hypothesis asserting that the sample elements are drawn
from a population with the same distribution as F (x). The null
hypothesis can be rejected at the significance level α if

D > Kα,n (42)

for the critical value Kα,n, which may be found numerically
or from a reference table (cf. [17], [20]). �
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