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Abstract – In this paper, various methods to control 

censoring of local state estimates in a distributed multi-

sensor radar tracking system are proposed. The data 

flow architectures that are used include three different 

feedback methods in order to achieve the goal of 

adequate state estimation using the fewest number of 

local state estimates sent to the fusion center as possible. 

The main novelty introduced in this paper is the use of 

J-Divergence for censoring the local state estimates in 

conjunction with the various feedback architectures. A 

simulation was run on these architectures with three 

spatially diverse sensors and a simple non-maneuvering 

target. Results show that distributed architectures that 

provide feedback from the fusion center to the local 

censoring processes or to the local state estimators, yield 

better estimates with more one-way communication 

savings. 

 

Keywords: Tracking, Information Fusion, Extended 

Kalman Filtering, Censoring 

1 Introduction 

Taking advantage of the information gained through the 

combination of data in multiple sensors has shown 

dramatic potential in a wide variety of applications. Two 

common data flow architectures used in data fusion 

include centralized and distributed structures. In a 

centralized architecture the measurements from sensors 

are combined at a fusion center to obtain a state estimate. 

A distributed architecture has each sensor generate and 

maintain local state estimates that are sent to a fusion 

center to be fused to obtain a global state estimate. This 

therefore requires that the sensors have their own state 

estimation algorithms. One of the major motivations to use 

a distributed architecture rather than a centralized one is 

that the rate at which information is sent to the fusion 

center does not have to be as high as the measurement 

sampling rate in order to maintain a reasonable level of 

communication cost. Another reason why a distributed 

architecture might be used is the inherent redundancy, 

since local estimates are maintained at the sensors in 

addition to the fusion center. Some of the more general 

work in centralized and distributed architectures for data 

fusion is provided in [1-2]. A comparison between a 

centralized and a distributed architecture as well as an 

overview of the use of each in track association was 

provided in [3]. The concept of limiting the data rate 

between the local sensor and the fusion center was 

explored in [4].  

Feedback from the fusion center to the local estimators 

has been studied in the past. The classical concept is that 

the prior state estimates at the local estimators are replaced 

by the global one. Some articles provide information on 

the use of feedback [1, 2, 5, 6]. According to [2], 

providing feedback at too low of a rate can cause 

divergence of the state estimators at local sensors. 

Each individual sensor’s data rate can be controlled by 

selectively censoring the information that goes to the 

fusion center.  Intuitively selecting the data that go to the 

fusion center allows for potentially reduced data rate, 

while maintaining a reasonable degree of accuracy in the 

global state estimate. Some recent work that explored 

various censoring algorithms is provided in [6-8].  Of 

note, for both linear and nonlinear filtering problems, [6] 

used the normalized innovation squared (NIS) as a metric 

for determining the viability of measurements that should 

be censored along with feedback and a fusion center.  

This paper analyzes the use of a distance measure (the J-

divergence) between the posterior and prior state 

probability density functions (pdfs) to censor data at the 

local sensor level, using a 2-D radar scenario. It is 

assumed that the local sensors have a significantly lower 

energy budget than the fusion center, and that the cost of 

the local sensors receiving data from the fusion center is 

negligible. Thus, for the purposes of this paper, only the 

one-way communication savings from the local sensor to 

the fusion center are taken into account. A main difference 

between this paper and [6] is that in [6], the raw local 

sensor measurements are either censored or transmitted to 

the fusion center, while in this paper it is the local state 

estimates which are either censored or transmitted to the 

fusion center.  

The remainder of this paper is organized as follows: 

Section 2 describes general background information 
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including the equations in an extended Kalman filter 

(EKF) for use in 2-D radar tracking, more in-depth 

comparisons between a centralized architecture and a 

distributed architecture as well as equations that are used 

for fusion. Section 3 describes censoring local state 

estimates by the use of thresholding, the J-divergence 

criterion, and various censoring architectures involving 

feedback in a distributed system. Section 4 gives the 

outline of parameters for a simulation that was run to show 

the effects of censoring using various architectures as well 

as the results of this simulation. Section 5 provides a 

discussion of the simulation results. Section 6 concludes 

the paper.   

2 Extended Kalman Filter 

2.1 Assumptions 

The EKF allows the performance of non-linear state 

estimation using general Kalman filter formulas by 

linearizing state-transition and measurement equations. 

The difference in the EKF is that the state transition and 

measurement equations may not be linear. The solution is 

linearizing the state transition and measurement equations. 

A general overview of the theory behind both the Kalman 

filter and the EKF can be found in [2] and [9]. 

2.2  2-D Radar Application 

In 2-D Radar with a near-constant-velocity model the 

state vector is defined as (1) with its elements in Cartesian 

coordinates.  
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The measurement vector is defined in range and bearing 

as shown in (2), with elements in polar coordinates. 
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Using a linear white noise acceleration motion model 

[9], the state-transition matrix F is defined in (4), with 

TΔ as the difference in time between state estimate 

updates. v is the process noise with zero-mean and a 

covariance of Q  as defined in (5), where q~ is the power 

spectral density of the continuous process noise before its 

discretization over time. The state evolves linearly 

according to (3). 
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The measurements in 2-D Radar are nonlinear because 

of the translation between Cartesian and polar coordinate 

systems. Assuming that the position of the target at time k 

is given as ),( kk yx and the position of Radar i is given 

as ),( ii yx . Then we define ikx ,  as in (5) and iky ,  as in 

(6). 
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ikik yyy −=,                                (6) 

 

Similarly the measurement equation is defined in (7) as 
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where ik ,w is the measurement noise with a covariance 

defined as R in (8) 
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The measurement matrix in 2-D radar, denoted as H, is 

given as (9) and is required for use in the normal Kalman 

filtering measurement prediction covariance and filter 

gain. This is approximated as the Jacobian of the 

coordinate conversions in (7). 
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3 Fusion Architectures 

3.1 Centralized Architecture 

A centralized architecture is one where the individual 

sensor measurements are taken and combined at the fusion 

center. A diagram of this architecture is given in Fig. 1. It 

is expected that an increase in the total number of sensors 

that are providing measurements will yield a decrease in 

the total root mean squared error (RMSE) of the state 

estimate. In a centralized architecture, we can evaluate the 

utility of a measurement in two ways: 1) before the 

measurement is available, by using either information 

theoretic measures, such as the mutual information [12-

13], or estimation theoretic measures, such as the 

conditional posterior Cramer-Rao lower bound (PCRLB) 

[14-15] to predict the utility of the measurement; 2) or 

after the measurement is available, by using the Kullback-

Leibler (K-L) divergence or J-divergence  between the 

prior and the posterior distributions, as proposed later in 

this paper. 
 

 

3.2 Distributed Architecture 

In a distributed architecture, each sensor preforms an 

individual state estimate and provides this to a fusion 

center, which calculates a global state estimate. A general 

distributed architecture is shown in Fig. 2. In a distributed 

architecture, the states do not need to be sent to the fusion 

center each time a new measurement is obtained. This has 

the potential to reduce the communication cost in 

comparison to the centralized architecture, but could also 

increase the error in the global state estimates if important 

updates are not sent to the fusion center. 

For both linear and nonlinear filtering problems, the 

optimal formulas governing the combination of local state 

posterior pdfs at the fusion center for both cases that come 

with and without feedback have been provided in [1,4]. 

When an EKF is used as the state estimator, the linear 

versions of the fusion equations can be used. This is done 

using the information filter for the purpose of reducing 

computational complexity. Assuming that )|( kkP  and 

)1|( −kkP are respectively the posterior and prior 

covariances, )|(ˆ kkx , and )1|(ˆ −kkx  are respectively the 

posterior and prior state estimates, the presence of the 

subscript i denotes the local covariance or state estimate 

for sensor i , and N  is the total number of sensors being 

fused, the fusion equations are thereby given as (10) and 

(11) for cases where the fusion center does not feed its 

global state estimate back to local sensors. For cases with 

feedback from the fusion center to the sensors, these are 

given as (12) and (13). 
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It is obvious, but should be noted that )|( kkP  should be 

multiplied by the results of (11) and (13) in order to obtain 

the state estimate. 

 

3.3 Censoring Local State Estimates 

Censoring state estimate updates to the fusion center can 

be done when the goal is to reduce communication cost. 

Non-Gaussian updates may require a more elaborate 

determination of the threshold. One method to determine 

this threshold is based on the K-L divergence. This 

method can be thought of as a measurement of the 
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“distance” between two probability distributions. This is 

defined in [10, 16] as (14) 
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For the KL-Divergence of two random Gaussian 

distributions (p(x) and q(x)), this was adapted from [11] as 

(15). Note that in this equation P and x̂ are respectively 

given as the covariance of and state estimate of the 

subscripted distributions and d is the dimension of x̂ . 
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This is not a formal distance since the value will differ 

depending on the direction. In order to make the K-L 

divergence symmetric the J-divergence is introduced. A 

variation of the J-divergence is defined in (16) as 

referenced in [10]. 
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For a distributed sensor system, the inputs to the K-L 

divergence calculation are the prior and posterior pdfs. 

There are 3 different methods that are analyzed in this 

paper, which are described in the next subsections. The 

differences between each of them are outlined in Table I 

below.  

 

Table I: Feedback Model Inputs 

MODEL # Threshold Input Sensor Filter 

Input

I Sensor prior pdf Sensor prior pdf 

II Global prior pdf Sensor prior pdf 

III Global prior pdf Global prior pdf 

3.4 MODEL I: No Feedback 

In the Model I the data flow is straightforward. Each 

local state estimator compares the prior state pdf and the 

posterior state pdf.  If there is significant amount of 

information in the new measurement, then the distance 

between the prior and posterior state pdfs exceeds a given 

threshold, and the estimate is allowed to be transmitted to 

and fused at the fusion center.  

There is no control at the fusion center regarding 

censoring when using this method. Therefore whether or 

not the fusion center diverges is dependent on the rate at 

which updates are provided to the fusion center.  

 

 
 

3.5 MODEL II: Threshold Feedback 

Model II feeds the global state estimate back to the 

threshold calculation and uses it as prior information. The 

idea is that the decision upon whether or not the 

information is passed to the fusion center lies in the hands 

of the fusion center itself rather than the individual 

sensors. If the global estimate begins to diverge separately 

from that of the local estimates, the distance between the 

global and local pdfs should also grow.  

Comparing this method to Model I, the J-Divergence 

threshold should be tuned differently. Since the fusion 

center maintains its state estimates separately from the 

sensors, there may be larger differences rather than simply 

using the local state estimates alone. If the threshold is set 

too low, then few, if any, updates will remain unused. 

Therefore a higher threshold for the J-Divergence metric 

must be used in Model II. 
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Figure 3: Model I - No Feedback 
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3.6 MODEL III: Global Feedback 

The third method feeds the information from the fusion 

center back to the sensor-level estimation algorithms as 

the prior. Inherently, the prior information in the 

thresholds is the same as that which was given to the 

sensor. In this method even more control is provided to the 

fusion center. 

In determining an adequate censoring threshold, it 

should be considered that the local filters already use the 

global state estimate. This means that the updates are 

likely to be closer to each other than in the thresholding 

performed in Model II. Although this is problem 

dependent, comparing Model III to Model I for a steady 

state case should yield a similar number of unused 

updates. 

One difference between Model III and Model I/II is in 

the use of equations (12) and (13) instead of (10) and (11) 

at the fusion center. It should be noted that between 

iterations the number of sensors providing inputs may 

change dynamically and this needs to be recorded as an 

input to (12) and (13). 

 

 

4 Simulation 

4.1 Parameters 

The parameters for the sensors involve their 2-D 

positions (Pos.) and measurement accuracies (Acc.) in 

range and bearing. There were 3 sensors in total with 

accuracies are the same for each sensor and are 100m in 

range, 1 deg in bearing respectively. Measurements on the 

target were taken at a rate of 100Hz and it was assumed 

that all were received and properly ordered by the fusion 

center. It is assumed that the fusion center has a 

significantly larger energy budget than the individual 

sensors and so, the fusion center also performs feedback at 

a rate of 100Hz, for Models II and III. 50 seconds of 

simulation time data were taken. For the purpose of 

analysis, the data were recorded over a set of 100 Monte-

Carlo runs. The value of q~ in (5) was set to 1. 

 Throughout each run, the sensors maintained constant 

positions, which are listed in Table II. 

 
Table II: Sensor Positions 

Sensor # Pos. (x,y) (km) 

1 (0,10) 

2 (10,25) 

3 (25,10) 

 
The target follows a near constant velocity model with a 

set start position and velocity. For the purposes of this 

simulation this is given as follows. 

 
Table III: Initial Target State 

Tar. Param Value 

x – start 5 km 

y – start 20 km 

x – velocity 300 m/s 

y - velocity -100 m/s 

 
The motivation behind the choice of initial target state 

and the sensor locations is such that the target moves 

through the center of the set of sensors. In this way the 

observability of each sensor will have a significant change 

as the target traverses the surveillance area. The choice of 

scaling was dependent upon the velocities, which were 

selected such that they were just below Mach 1 (~340 

m/s). In this scenario, the speed is 316.23 m/s. A plot of 

the target trajectory along with the sensor locations is 

given in Fig. 6.  

 

 
The sensor state and covariance are initialized using 

two-point differencing for the debiased converted 

measurements Kalman Filter as described in [2]. The 

fusion center is initialized by copying the state estimate of 

a randomly selected sensor.  
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Figure 6: Target Trajectory and Sensor Locations 
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The selection of the threshold used in the J-Divergence 

calculation was performed using trial and error. Over 

several runs, the number of unused updates for various J-

divergence values in each model was noted and the 

threshold was set based on this. Table IV in the results 

section provides an overview of this. More theoretical 

analysis of the relationship between the threshold on the J-

divergence and a desired global estimation accuracy will 

be conducted in our future work. For Models I and III, the 

J-divergence threshold was set to run between 0 and 0.05 

with a step size of 0.01. Model II was set to run between 0 

and 10 with a step size of 2. 

4.2 Results 

 
Table IV: J-Divergence threshold with Average Unused 

Updates (One-Way Communication Savings) 

 

J-Divergence 

I& III/II 

Percentage of Unused Updates 

 Model I Model II Model III 

0/0 0 0 0 

0.01/2 65.05 6.83 64.83 

0.02/4 89.55 78.13 80.82 

0.03/6 93.54 89.75 86.39 

0.04/8 95.2 94.84 89.32 

0.05/10 96.17 96.14 91.15 
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Figure 7: Model I - Positional RMSE vs. Time 
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Figure 8: Model I - Velocity RMSE vs. Time 
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Figure 9: Model II - Positional RMSE vs. Time 
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Figure 10: Model II - Velocity RMSE vs. Time 
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Figure 11: Model III - Positional RMSE vs. Time  
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Figure 12: Model III - Velocity RMSE vs. Time 

5 Discussion 

 It can be inferred from Table IV and Figs. 7-12 that 

Model II and Model III are able to better stabilize the 

RMSE with an increase in the number of unused updates 

in comparison to Model I. This is likely because of the 

control enabled by the global estimator. When updates are 

unused the covariance is expected to increase each time a 

prediction is made. Allowing feedback from the fusion 

center to the threshold implies that after a certain 

covariance is reached, the global estimator will attempt to 

reduce this value.  By only allowing control of the 

threshold at the sensor level, as in Model I, the covariance 

at the global estimator may drastically increase when the 

sensors do not determine their information to be useful 

enough to perform an update (consequently yielding a J-

divergence above the threshold). The effect shown in the 

Model I figures show an extreme increase in MSE with a 

similar number of unused updates to Model II and Model 

III.  

 In contrasting the results of Model II to Model III, it 

appears that the Model III results are more stable than 

Model II, but it is unclear which one is better. Fig. 9 and 

Fig. 10 (Model II) show fluctuations in the RMSE at the 

end of the run, but generally appear to yield similar RMSE 

results to Figs. 11 and 12 (Model III). This could be due to 

the increased stability provided by feeding back the fusion 

center state estimates to the local state estimators rather 

than to just the threshold calculations. Based on Table IV, 

Model II is able to maintain this degree of estimation 

accuracy with an average higher number of unused 

updates, and hence more communication savings. 

6 Conclusion 

Censoring approaches based on J-divergence between 

the local posterior and prior state pdfs have been proposed 

for   distributed tracking architectures with different 

feedback mechanisms, with the goal of reducing 

communication costs while maintaining a reasonably good 

tracking performance. These were tested on a multiple 2-D 

radar simulation using a near-constant velocity target 

model. Results showed that providing feedbacks from the 

global estimator to the thresholds or to the local estimators, 

has the potential to yield better results with greater 

communication savings. 
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