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Abstract—Long-haul sensor networks can be found in many
real-world applications, such as tracking and/or monitoring of
one or more dynamic targets in space. In such networks, sensors
are remotely deployed over a large geographical area, whereas
a remote fusion center fuses the information provided by these
sensors in order to improve the accuracy of the final estimates of
certain target characteristics. We consider the accuracy as well as
consistency of information measures such as the error covariance
matrices used to describe the theoretical error performance of
sensor and fuser estimates. In particular, the impact of filtering
and fusion, communication loss and delay, sensor bias, and
information feedback on the accuracy and consistency of error
measures is investigated by means of studying a maneuvering
target tracking application.

Index Terms—Long-haul sensor networks, state estimate fu-
sion, error covariance matrices, estimation bias, information con-
sistency, information feedback, root-mean-square-error (RMSE)
performance, reporting deadline.

I. INTRODUCTION

In long-haul sensor networks, sensors with sensing, data

processing, and communication capabilities are deployed to

cover a very large geographical area, such as a continent or

even the entire globe, and are tasked for applications such

as target tracking and monitoring. A remote sensor measures

certain parameters of interest from the dynamic target(s) on its

own, and then sends the state estimates it derives from these

measurements to the fusion center. The fusion center serves to

collect data from multiple such sensors and fuse these data to

obtain global estimates periodically at specified time instants.

There exist many challenges in estimation and fusion over

such long-haul connections. The signal propagation time can

be significant, due to the long distances, in the tens of thou-

sands of miles for satellite links, for instance. Communication

is often subject to sporadic high bit-error rates (BERs) and

burst losses that can effectively reduce the number of reliable

estimates available at the fusion center. As a result, the global

estimates may not be promptly and accurately finalized by

the fusion center, leading to degraded fusion performance and

even failures to comply with the system requirements on the

worst-case estimation error and/or maximum reporting delay,

both crucial elements for near real-time performance in many

applications. Some sensors may also be prone to estimation

bias, as a result of poor calibration or environmental factors.

In the literature, some works have attempted to address

estimation and/or fusion under variable communication loss

and/or delay conditions. In [2] and [11], estimation and fusion

performances using Kalman filters (KFs) under variable packet

loss rates have been studied. [8] and [15] have addressed filter-

ing in the context of out-of-sequence measurements (OOSMs),

where all data would finally arrive despite the random delay.

[7] and [10] have exploited retransmission to recover some of

the lost messages over time so that the effect of information

loss can be somewhat mitigated. More recently, a staggered

estimation scheduling scheme and an information feedback

mechanism have been proposed in [4] and [5] respectively that

aim to improve the overall tracking performance by exploring

the relationships of sensor data over time and sensor-fuser data

across space.

A number of data fusion methods have been developed over

the years, with a primary goal of taking in the data from

multiple sensors – which typically output and communicate

their own state estimates and the corresponding error covari-

ances – and combining them to produce a condensed set of

meaningful information (state estimates and error covariances

as well) with the highest possible degree of accuracy and

certainty [1]. A question then arises of how well the error

covariance matrices – as theoretical measurements of the

error performance – could describe the actual estimation error

level of the corresponding state estimates; in other words,

if the two are consistent. Besides investigating the accuracy

performance, this work also aims to answer the above question

by exploring the consistency of error covariances under a

number of conditions, including target motion uncertainty,

filter and fuser types, communication loss and delay, sensor

bias, and information feedback, among others. A maneuvering

target tracking example is used throughout to demonstrate the

performance of tracking accuracy and information consistency.

The remainder of this paper is organized as follows: The

system model is outlined in Sec. II. In Secs. III and IV, we

explore the estimation and consistency performances using

one sensor, and a combination of two sensors, respectively,

under variable conditions. The effect of information feedback

is investigated in Sec. V via analytical and simulation studies.

The paper concludes in Sec. VI.
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II. SYSTEM MODEL

In this section we present the target and sensor measurement

models as well as the estimation and fusion algorithms.

A. Target Model

We consider a trajectory that consists of two basic types

of motion: straight-line and turn movements, which are de-

scribed by the continuous white-noise acceleration (CWNA)

and coordinated turn (CT) models respectively.

1) Continuous White-Noise Acceleration (CWNA) Model:

The discretized CWNA model is a simple, commonly used

motion model in which an object moving in a generic coordi-

nate ξ is assumed to be traveling at a near constant speed. The

discrete-time state equation is given by xk+1 = Fxk + wk,

where (dropping the time index k), x = [ξ ξ̇]T here is a

vector representing the position and velocity, and F is known

as the transition matrix and is given by F =

[

1 T
0 1

]

, where

T is the scan rate of the sensor1 (i.e., sampling period). The

covariance of the discrete-time process noise wk is Q =

q̃

[

T 3/3 T 2/2
T 2/2 T

]

, where q̃ (often assumed to be constant over

time) is the power spectral density (PSD) of the underlying

continuous-time white stochastic process.

In many scenarios, the motion along each coordinate (such

as in the “east-north-up” coordinate system [1]) is typically

assumed to be decoupled from the other coordinates; as such,

the same model is used for each coordinate. Since our focus is

on 2-D tracking, we extend the above model to two coordinates

ξ and η. The evolution of the state vector x = [ξ ξ̇ η η̇]T

is described by

xk+1 =

⎡

⎢

⎢

⎣

[

1 T
0 1

]

02×2

02×2

[

1 T
0 1

]

⎤

⎥

⎥

⎦

xk +wk, (1)

and the covariance matrix Qk of the process noise wk is

Qk =

⎡

⎢

⎢

⎣

q̃ξ

[

T 3/3 T 2/2
T 2/2 T

]

02×2

02×2 q̃η

[

T 3/3 T 2/2
T 2/2 T

]

⎤

⎥

⎥

⎦

. (2)

2) Target Maneuver: The second type of motion occurs

when the target performs a maneuver (i.e., a turn). A turn

usually follows a pattern known as a coordinated turn, which

is characterized by a constant turn rate and a constant speed.

The turn rate Ω is incorporated into the motion model by

augmenting the state vector for a horizontal motion model:

x =
[

ξ ξ̇ η η̇ Ω
]T

, which gives rise to the discretized

1Note that a superscript T always denotes the transpose of a vector or
matrix.

coordinated turn (CT) model [1], given by

xk+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 sinΩ(k)T
Ω(k) 0 − 1−cosΩ(k)T

Ω(k) 0

0 cosΩ(k)T 0 − sinΩ(k)T 0

0 1−cosΩ(k)T
Ω(k) 1 sinΩ(k)T

Ω(k) 0

0 sinΩ(k)T 0 cosΩ(k)T 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

xk +wk,

(3)

where wk is the process noise whose covariance matrix is

given by

Qk =

⎡

⎢

⎢

⎢

⎢

⎣

q̃ξ

[

T 3/3 T 2/2
T 2/2 T

]

02×2
0
0

02×2 q̃η

[

T 3/3 T 2/2
T 2/2 T

]

0
0

0 0 0 0 q̃ΩT

⎤

⎥

⎥

⎥

⎥

⎦

.

(4)

In contrast to the CWNA model, the CT model is a nonlinear

one if the turn rate Ω is not a known constant. In practice, the

linear acceleration noise PSD levels in both dimensions are

assumed to be equal; i.e., q̃ξ = q̃η . The general guidelines for

selecting an appropriates levels of these noise parameters can

be found in [1].

B. Sensor Measurement Model

A sensor collects measurements of the target range and

azimuth angle according to the following measurement model

[14]:

z =

[

r
a

]

=

[√

x2 + y2

tan−1
(y

x

)

]

+

[

wr

wa

]

(5)

where wr and wa are independent zero mean Gaussian noises

with standard deviations σr and σa, respectively. Note that this

measurement has been normalized to the sensor’s own known

location.

C. Generating the State Estimates

1) Conversion of Measurements from Polar to Cartesian

Coordinate: In practice the measurements are often reported

in polar coordinates as in Eq. (5) with respect to the sensor

location. Nevertheless, common motion models are given in

Cartesian coordinates as shown earlier. Therefore, a sensor

may need to first convert the polar measurements to Cartesian

ones before generating its state estimates. A general unbiased

conversion rule is given as follows [9]:

zuξ = eσ
2

a/2r cos a zuη = eσ
2

a/2r sin a, (6)

where σa is the standard deviation of the polar azimuth

measurement.
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2) Filtering: The goal of a state estimator is to extract the

state information x from measurement z that is corrupted by

noise; this is done by running a filter that sequentially outputs

the state estimate x̂ and its associated error covariance matrix

P. The Kalman filters (KFs) are linear minimum-mean-square-

error (LMMSE)-optimal as the trace of P – characterizing the

estimation error – at each step is minimized [12]. On the other

hand, when the state dynamics and/or sensor measurement

models are nonlinear, extended Kalman filters (EKFs) can be

used to approximate the nonlinearity.

In many practical scenarios, the system characteristics can

change over time. The interacting multiple model (IMM)

serves a versatile tool for adapting the state estimation process

in dynamic systems where a target can undergo different types

of motion at different times. At any time, the system state

is assumed to be in a number of possible modes that are

described by their probabilities. The transition probabilities

between modes from one estimation epoch to the next are

assumed to follow a Markov chain. For each mode, the

underlying filtering process is performed as described earlier,

with the addition of evaluating the probabilities of different

modes and interacting and mixing all the modes to generate

an overall state estimate and error covariance [1].

D. Fusers

It is a well known fact that the common process noise

results in correlation – described by the error cross-covariance

– among estimates generated by multiple sensors. However,

it is generally difficult to derive the exact cross-covariance

terms in practice. We consider two types of fusers where the

fused estimate can be obtained directly in closed forms with

no cross-covariance calculation needed.

1) Track-to-Track Fuser without Cross-Covariance: In

tracking applications, the track-to-track fuser (T2TF) is a

linear fuser that is theoretically optimal in the linear minimum

mean-square error (LMMSE) sense. In general, the fused state

estimate x̂F and its error covariance PF are defined for two

sensors [1] as

x̂F = x̂1 + (P1 −P12)(P1 +P2 −P12 −P21)
−1(x̂2 − x̂1)

(7)

PF =

P1 − (P1 −P12)(P1 +P2 −P12 −P21)
−1(P1 −P21)

(8)

where x̂i and Pi are the state estimate and error covariance

from sensor i, respectively, and Pij = PT
ji is the error cross-

covariance between sensors i and j. However, when the sensor

errors are correlated and the cross-covariance is unavailable,

one may assume that the cross-covariance is zero in order

to apply this linear fuser, even though the result will be

suboptimal. The fuser would then be reduced to a simple

convex combination of the state estimates:

PF = (P−1
1 +P−1

2 )−1 (9)

x̂F = PF (P
−1
1 x̂1 +P−1

2 x̂2) (10)

2) Fast Covariance Intersection (CI) Algorithm: Another

sensor fusion method is the covariance intersection (CI) al-

gorithm. The intuition behind this approach comes from a

geometric interpretation of the problem. If one were to plot

the covariance ellipses for PF (defined as the locus of points

{y : yTP−1
F y = c} where c is some constant), the ellipses

of PF are found to always contain the intersection of the

ellipses for P1 and P2 for all possible choices of P12 [3].

The intersection is characterized by the convex combination

of sensor covariances:

PF = (ω1P
−1
1 + ω2P

−1
2 )−1 (11)

x̂F = PF

(

ω1P
−1
1 x̂1 + ω2P

−1
2 x̂2

)

, ω1 + ω2 = 1 (12)

where ω1, ω2 > 0 are weights to be determined (e.g., by

minimizing the determinant of PF ).

A fast CI algorithm has been proposed in [13] where the

weights are found based on an information-theoretic criterion

so that ω1 and ω2 can be solved for analytically as follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
(13)

where D(pA, pB) is the Kullback-Leibler (KL) divergence

from pA(·) to pB(·), and ω2 = 1− ω1. When the underlying

estimates are Gaussian, the KL divergence can be computed

as

D(pi, pj) =
1

2

[

ln
|Pj |
|Pi|

+ dT
XP−1

j dX + Tr(PiP
−1
j )− k

]

,

(14)

where dX = x̂i − x̂j , k is the dimensionality of x̂i, and | · |
denotes the determinant. This fast-CI algorithm will be used

for a quantitative comparison against the above T2TF with

unavailable cross-covariances.

E. Target Trajectory

The initial state of the target in Cartesian coordinates

(with the position in meters and velocity in m/s) is

set to be [14] x(0) = [x(0) ẋ(0) y(0) ẏ(0)]T =
[0 0 20000 250]T . At t = 60 s, the test target starts

to take a left turn at a turn rate of 2◦/s for 30 s, and then

continues straight until t = 150 s. The sampling rate of the

sensors is once every two seconds, i.e., T = 2 s. During

the straight-line movement, the process noise power spectral

densities q̃ξ = q̃η = 0.0018 m2/s3; during the turn, on the

other hand, q̃ξ = q̃η = 32 m2/s3 and q̃Ω = 5 × 10−7 m2/s3

[14].

In what follows, we investigate tracking of this target with

individual sensors running KF and IMM respectively, and

with both sensors. In particular, we are interested in (1) the

actual error performance, and (2) how the theoretical error,

as described by the error covariance matrix, differs from the

actual estimation error, under variable communication and

computation constraints.
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Fig. 1: Theoretical (covariance-based “cov”) and actual position estimate root-mean-square-error (RMSE) performance with a hypothetical
extended straight line movement over time. The numbers indicate the multiples of the exact process noise power spectral density (PSD) in
Eq. (2).
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Fig. 2: Position estimate RMSE performance of the maneuvering
target tracking with Kalman filters of different levels of noise power
spectral density (PSD) q̃ (unit: m2/s3): (1) theoretical; (2) actual

III. ESTIMATION AND CONSISTENCY PERFORMANCE OF

INDIVIDUAL SENSORS

We first look at the estimation performance of individual

sensors – before the estimates are communicated to the fusion

center – along with the consistency performance of the filters

run.

A. Kalman Filter

A Kalman filter, under certain settings, such as perfectly

matched process noise (to the actual underlying system model)

along with linear process and measurement models, generates

a stream of state estimates, whose mean-square error (MSE)

at any time epoch always matches the error derived from the

corresponding error covariance matrix [6]. However, note that

the measurement conversion process in Eq. (6) is a nonlinear

one, and this consistency may no longer hold. To verify this,

we modified the original trajectory so that the straight-line

movement alone now lasts 9 minutes. Fig. 1(c) shows the

theoretical (“cov”) and actual position root-mean-square error

(RMSE) performance with perfectly matched process noise

PSD levels. The mismatch between the two curves stems partly

from the nonlinearity of the measurement conversion step, but

also reflects the important fact that KFs aim to minimize the

trace of the covariance error matrix, in this case, the sum of

all squared position and velocity error components. Here we

are mainly interested in a portion of the sum, namely, the

position estimation error performance. In addition, the root

square operation is also nonlinear, further contributing to the

discrepancy between the two curves.

In practice, a KF may run using a process noise PSD that

is different from the level that best approximates the actual

target movement. Filter divergence [12] can occur, resulting in

elevated estimation error overtime. Fig. 1 displays how the KF

with variable process noise levels – from 1/100th of the actual

q̃ to 100 times – performs under the same condition. From the

plots, filter divergence can easily occur when the presumed

noise level is far below the true level (as in (a)), whereas

a too conservative noise level used for filtering (as in (e))

can lead to overall elevated estimation errors. Meanwhile, the

theoretical, or covariance-based errors, seem to only slightly

change according to the changes in the presumed noise level.

This demonstrates that it is desirable, at least in this situation,

that the process noise level used for filtering is as close to the

actual scenario as possible. Compared to other cases, despite

the discrepancy between the two curves in (c), the “cov” errors

are within a factor between 1.3 and 1.6 as against the actual

errors, the most stable among all.

However, if this “matched” noise level (to the straight-

line movement) were to be used by the filter through the

entirety of the original trajectory, the error would soon diverge

as the maneuver starts. In fact, from Fig. 2, it would take

roughly 10,000 times the process noise level to yield decent

performance to accommodate the extent of noise elevation for

the turn phase. More specifically, compared to lower presumed

process noise (such as 1 m2/s3 and to a lesser extent, 10

m2/s3), where the errors during/after the turn are high and

unstable, as well as higher presumed process noise (such

as 1,000 m2/s3), where the overall errors start to become

unnecessarily high, a level at 100 m2/s3 seems to be able

to balance the needs of stabilizing and reducing the peak

error performance during and after the maneuver as well as

maintaining a decent tracking performance during straight-line

segments. In the following, this noise level will be set for

the sensor running KF. In the meantime, from Fig. 2(a), the

theoretical curves seem to follow a simple relationship (that

is more often not a good representation of the actual error

performance); at the above set level, the theoretical position

RMSE values are within a factor of two compared to the actual

errors.

B. IMM Filter

The complexity of IMM filters is not only reflected in

the choice of process noise levels, but also the individual

modes that can cover multiple motion trajectory types. Here

we consider a two-mode IMM comprising a KF and an EKF

(used to describe the possible straight-line and turn movements
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Fig. 3: Position estimate RMSE performance of
the maneuvering target tracking with an IMM filter
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Fig. 4: Fused position estimate RMSE performance of the maneuvering target tracking
with (a) track to track fuser (T2TF); (b) fast covariance intersection (CI) fuser

respectively), whose process noise levels are matched to those

in the CWNA and CT models in Sec. II respectively.

From Fig. 3, during the initial straight-line motion stage,

the IMM estimator yields somewhat more accurate estimates

compared to the KF estimator, thanks to the better match

of the process noise level; however, after the turn begins

at t = 60 s, its error gradually increases and at around

t = 80 s, shoots up rapidly till shortly after the maneuver

ends at t = 90 s. Afterward, the error decreases, much less

precipitately compared to the previous phase, and does not

fall back to the pre-maneuver level until around t = 140 s.
This observation reflects the fact that a mode “switch” – in

terms of the probability changes for individual modes – occurs

gradually and thus usually lags that of the actual underlying

motion change. Interestingly, the curve for the theoretical error

shows that it changes more readily with the actual motion

change, e.g., at t = 60 s, although the end of the maneuver at

t = 90 s doesn’t seem to affect its downward trend after the

peak reached earlier.

Next, a positive bias term is added to the measurement of the

IMM estimator, where the bias values are σr/
√
5 for the range

and σa/
√
20 for the azimuth. Also from Fig. 3, the tracking

errors with this added bias seem to much elevated, especially

during and after the maneuver. However, the theoretical curve

remains the same, which means the sensor itself is oblivious

to the fact that its measurements are biased.

IV. ESTIMATION AND CONSISTENCY PERFORMANCE WITH

TWO-SENSOR FUSION

We explore the estimation and consistency performance for

the maneuver target tracking with both the track-to-track fuser

(T2TF) and fast-CI fusers – combining the IMM filter (Sensor

1) and KF (Sensor 2) outputs as described in the previous

section – under varying conditions.

A. Performance with T2TF

From the plots in Fig. 4(a), the following can be observed

for the fused estimates using T2TF under the condition that

there is no communication constraints (e.g., loss or delay) or

computation constraints (e.g., sensor bias). First, fusion can

effectively reduce the estimation error in both straight-line and

turn phases of the trajectory. For instance, the peak RMSE

error towards the end of the turn can be reduced by nearly

20% from that of the IMM filter alone (although this error is

still higher than that of the KF filter with a steady process

noise set at 100 m2/s3); and for the most part of the straight-

line segments, the estimation errors appear better than in the

cases using individual filters. In addition, the shape and trend

of the curve largely resemble those of the IMM filter, thanks

to the relatively stable performance of the KF. When the same

measurement bias term (as in the previous section) is added

to the IMM filter, a similarly trending curve is seen from the

plot. In the meantime, the theoretical curves prior to and after

adding in measurement bias are identical for the same reason

as described in the IMM case.

The communication constraints are determined by the long-

haul link conditions. For now, we consider a 50% communi-

cation loss rate encountered over the links from both sensors

to the fusion center. Loss can effectively reduce the number of

estimates that are successfully received by the fusion center.

If the fusion center applies prediction from the previously

available estimates for any sensor, then a fused estimate at

time k could be obtained from (1) available x̂1 and x̂2 at k;

(2) available x̂1 but a predicted estimate from an earlier time

for Sensor 2; (3) available x̂2 but a predicted estimate from

an earlier time for Sensor 1; and (4) predicted estimates from

(possibly different) earlier times for both sensors. Prediction

generally introduces more uncertainty and higher errors, which

can be confirmed from the plot in Fig. 4(a), where under 50%

loss, the position RMSE seems to be much higher during and

shortly after the maneuver (also higher than the case with bias

alone at the specified level). The curve with both loss and bias

is also plotted, whose main difference from the loss-only case

is largely seen during the straight-line segments. Finally, the

theoretical curve (regardless of bias) with the loss case has

nearly the same shape and trend as that without loss.

Usually, the T2TF is considered an “optimistic” fuser,

meaning the actual error is typically worse than the theoretical

error indicated by the covariance matrix [1]. The “pessimistic”

behavior observed here, i.e., the worse theoretical error outside

the “peak” segment, is due largely to the same pattern at both

the IMM and KF. In other words, the optimistic fuser can’t

offset the strong pessimistic characteristic of the individual

components.
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B. Performance with Fast-CI

The estimation and fusion performance under the same set

of conditions is studied for the fast-CI fuser. From the plots in

Fig. 4(b), in contrast to the T2TF case, in lossless scenarios,

the tracking error doesn’t noticeably increase until t = 75
s; and after peaking out near the end of the maneuver at

t = 90 s, it falls back at the same rate and returns to that

of the pre-maneuver level at around t = 120 s. Also the peak

errors for both bias and non-bias cases are also noticeably

lower than their T2TF-fused counterparts. Meanwhile, from

the theoretical curve, the error in the straight-line case is

already so high that any change when the turn is initiated

is barely noticeable. This can be described by the pessimistic

nature of the CI fuser, where the covariance-indicated error is

typically worse off than the actual error. The entirety of the

trajectory is characterized by higher theoretical error, more so

for the segments away from the peak near the center.

Next, a 50% loss rate is again imposed onto the system.

Much elevated errors are observed for both bias and non-bias

cases; in fact, the errors are in general 20%-30% higher even

compared to the corresponding T2TF-fused values. This can

be explained by the geometric interpretation of the CI-based

fusers. Since the fusion result is described by an ellipse that

contains the intersection of the two ellipses corresponding to

errors of both sensors, with increasing loss, more prediction

steps need to be performed, corresponding to the area increase

of individual ellipses; as a result, to contain both growing

ellipses (often in different directions), the CI fuser must come

up with an even bigger ellipse, representing a much higher

error. Also due to the very pessimistic nature of the CI fusers,

the theoretical measure grows even faster, sometimes so fast

as to reach a unreasonably high level and overall experience

instability based on the instantaneous loss conditions; this is

the reason why the theoretical curve for the lossy case is not

shown in Fig. 4(b) at all.

To sum up the differences in estimation and consistency

performances using T2TF and fast-CI fusers, under lossless

conditions, the fast-CI fuser is able to recover faster from

the effect of motion change and doesn’t have as high a peak

error as in the T2TF case; however, the loss can severely limit

this advantage, resulting in much elevated tracking errors. The

optimistic nature of the T2TF serves to offset the effect of

pessimistic individual filters, whereas the opposite feature of

the fast-CI fuser serves to reinforce it. In addition, under loss

conditions, the theoretical performance of the fast-CI fuser, a

poor indicator of the actual errors, can become highly unstable.

V. ESTIMATION AND CONSISTENCY PERFORMANCE WITH

INFORMATION FEEDBACK

Usually the information flow in the estimation and fusion

applications is from sensors to the fusion center only. The

main purpose of information feedback from the fusion center

to the sensors is to combat any biases at the individual sensors

[5]. In Fig. 5, feedback is sent back to Sensor 1 (as the IMM

filter in this work) that is unaware of its measurement bias,

in the hope that the extra tracking error can be somewhat

FC FC FC

Sensor 1

Sensor 2

Fig. 5: Feedback from the fusion center to the biased Sensor 1

alleviated. In what follows, we first analyze the timing issues

in information feedback, and then we evaluate the tracking

accuracy and consistency performances using T2TF and CI

fusers with information feedback.

A. Analysis of Feedback Timing

Over a lossy long-haul communication link, any feedback

message is also subject to loss on the reverse link; in other

words, a feedback message may never be received by the

intended sensor at all. However, in what follows, we mainly

examine how the communication delay and timing of the

feedback schedules also affects the information exchange.

The latency that a message undergoes before arriving

at the destination may consist of the initial detection and

measurement delay, data processing delay, propagation delay,

and transmission delay, among others. For ease of analysis,

suppose fF (·) and fR(·) represent the forward and reverse

link delay pdf’s describing a shifted exponential distribution:

fF (t) =
1

μF
exp

−
t−TI
µF , fR(t) =

1

μR
exp

−
t−TI
µR , for t ≥ TI ,

(15)

where TI serves as the common link and processing delay, or

the minimum delay any message must experience, and μ’s are

the mean of the random delay beyond TI that can be affected

by factors such as weather and terrain. Then the pdf h(·) of

the total time for a feedback message to return to a sensor

(starting from the time when the estimate was originally sent

out by the sensor to the fusion center) can be found as

h(t) =
1

μF − μR
(e

−
t−2TI
µF − e

−
t−2TI
µR )

=
μF

μF − μR
e

TI
µF fF (t)−

μR

μF − μR
e

TI
µR fR(t), (16)

for t ≥ 2TI ,

and the distribution function can be found by replacing fF (·)
and fR(·) with their respective cdf’s respectively. With this

distribution, the probability mass function (pmf) of the time

when a subsequently updated estimate is sent out by the sensor

can be obtained by taking the ceiling of t, and in turn the pdf

of the time when the updated message takes effect at the fusion

center by superimposing the above time on another forward-

link communication delay.

In our two-sensor case, it can be derived that in a lossless

scenario, an average amount of E[max(T1, T2)] = TI+3μF /2
time is needed before the fusion center receives both sensor

estimates. However, if the fusion center restricts the fusion

473



time to within a certain range, the total amount of time it takes

for the feedback message to arrive can be found to follow the

distribution

Pr{t ≤ D} =

∫∫ D

0

fR(t|TF )g(TF )dtdTF , (17)

where fR(t|TF ) is the conditional pdf contingent on a certain

TF value, and g(·) is the prior pdf of the fusion/feedback

time. If the fusion time is chosen uniformly from the interval

[TI , D − TI ] (accounting for the propagation delay), i.e.,

g(TF ) = 1/(D−2TI) for TF ∈ [TI , D−TI ] and 0 otherwise,

then the distribution in Eq. (17) can be further derived as

Pr{t ≤ D} =
1

D − 2TI

∫ D−TI

TI

(1− e
−

D−TI−t

µR )dt

= 1− μR

D − 2TI
FR(D − TI), (18)

which is a further improvement compared to the distribution

derived with Eq. (16) alone, i.e., without the additional prior

knowledge about TF .

Generally, the average amount of time it takes for the

feedback message to arrive is TI +μR; with the initial period

TF , the total average latency between the time when the

feedback message is received and the (prior) time instant the

message describes is

TF + TI + μR ≤ 2TI + 3μF /2 + μR. (19)

If this duration exceeds the estimation interval T , the sensor

has already generated a new estimate before the feedback

message arrives; then it would have to either use prediction

or measurements to project this delayed fused estimate to its

next pending estimate [5], with an average of no less than

⌈ 2TI+3µF /2+µR

T ⌉ prediction steps, or alternatively, using each

measurement ⌈ 2TI+3µF /2+µR

T ⌉ times, both of which could

potentially offset the very benefit of bias reduction.

To summarize, to reduce the potential negative effect of

estimation error increase due to prediction and/or measurement

bias following delayed feedback, it is preferable to use a

smaller TF . However, with an early time cutoff, the fusion

center is using less information for fusion, which may have

a more adverse effect on tracking performance as a decrease

in TF can easily reduce the probability of having new arrivals

from both sensors.

B. Performance with Feedback

Next we investigate the tracking performance with feedback

sent back to the IMM filter whose measurement bias profile

has been used in both Secs. III and IV. The different time

parameters are listed in Table I.

TABLE I: Time parameters

parameters TI µF µR D DF

values (s) 0.5 0.3 0.2 2 1.5

1) Fast-CI: Time constraints essentially have the same ef-

fect as communication loss to CI-based fusers: the probability

that a message is successfully delivered to the destination

by a certain time is reduced. In Fig. 6(a), without feedback,

the error performance with communication delay as specified

earlier can be seen. Of note is the unstable theoretical curve

due to the pessimistic nature of the fuser and much elevated

errors with unavailable tracks.

As feedback depends on timely communication of the

messages involved, an early time cutoff would serve to reduce

the effective number of messages to received by the deadline.

By comparing Figs. 6(b), where D = 2 s and DF = 1.5 s, with

6(c), where D = 1.2 s and DF = 0.8 s, we observe that the

gain from feedback in the former case (from the baseline no-

feedback case) is reduced in the latter; whereas the estimation

errors are noticeably lower with a less stringent deadline, early

time cutoff renders the CI output largely the same as compared

to the no-feedback case. The one less step for prediction

or measurement update (after the feedback message arrives)

seems not sufficient to offset the fusion gain lost by setting an

earlier cutoff. Interestingly, the theoretical error curve appears

to be pulled down with a tighter schedule. Finally, in Fig.

6(d), the feedback performance with the original schedule but

under a 50% loss rate is plotted. Sending back fused states

that are highly erroneous in the first place doesn’t help: The

resulting errors are worse than without feedback, even much

higher than those of individual filters; and as in the lossy case

without feedback, the theoretical curve again is highly unstable

with very large values.

2) T2TF: We run the same set of feedback schedules with

variable loss conditions on the T2TF. Apparently, compared

to the curves in Fig. 4(a), the feedback messages are able

to largely reshape the error curves of Sensor 1 (IMM) –

and in turn, of the fused estimates – around the maneuver

period. In particular, from Fig. 7, the peaks of the error bell

curves are significantly narrowed by the feedback, although the

peaks seem to largely retain their no-feedback values. Another

prominent characteristic of the T2TF curves, in contrast to

their CI counterparts, is that the errors – theoretical or actual –

are much more stable with variations in time cutoffs/schedules

and loss rates. An increasing loss rate seems to elevate and

widen the peak of the fused state error curves, so does a

reduced cutoff time for fusion and feedback. Besides, as

more communication and computation constraints are im-

posed, feedback seems to “homogenize” the IMM and fused

estimate curves: whereas the two are far apart in (a), they

move closer with increasing loss and/or time constraints, and

almost overlap toward the post-maneuver segment in (d).

In summary, while it’s generally beneficial to feed the fused

state information back to the biased sensors, communication

loss/delay as well as fusion and feedback schedules can limit

the potential gain from feedback. Whereas with feedback, the

fast-CI fuser performs well in lossless conditions compared

to the T2TF, it is more sensitive to the above constraints,

resulting in elevated and unstable tracking performance. In

addition, covariance-based error measures are sometimes a
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Fig. 6: Position estimate RMSE performance of the maneuvering target tracking with the fast-CI fuser and biased estimates from the IMM
filter: (a) the theoretical performance (“cov”) can easily become unstable with increasing communication constraints, i.e., higher loss and/or
tighter reporting deadline; (b) with feedback, no loss; (c) with feedback, reduced reporting deadline, no loss; (d) with feedback, 50% loss
(“cov” not shown)
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Fig. 7: Fused position estimate RMSE performance of the maneuvering target tracking with the T2TF and feedback: (a) no loss; (b) 50%
loss; and with tighter reporting and feedback time constraints in (c) no loss; (d) 50% loss

poor representation of the actual error performance and should

be used with caution.

VI. CONCLUSION

In this work, we have investigated estimation and fusion

accuracy and consistency performances using a maneuver

target tracking example. In particular, the effects of a num-

ber of communication and computation constraints, including

loss/delay, sensor bias, as well as fusion and feedback time

cutoffs, over a long-haul sensor network have been studied.

Since in practice, the fusion center may need to rely on the

expected information quality from individual sensors to make

its decisions [6], of future interest are ways to adaptively

incorporate the inconsistent error measures in a complex

dynamic system, based on the short- and long-term objectives

of sensor fusion. Extensions of this work also include studies

of information quality and consistency performance for other

error measures other than MSE/RMSE.

REFERENCES

[1] Y. Bar-Shalom, P. K. Willett, and X. Tian. Tracking and Data Fusion:

A Handbook of Algorithms. YBS Publishing, 2011.

[2] A. Chiuso and L. Schenato. Information fusion strategies and perfor-
mance bounds in packet-drop networks. Automatica, 47:1304–1316, Jul.
2011.

[3] S. J. Julier and J. K. Uhlmann. General Decentralized Data Fusion with

Covariance Intersection, ser. Handbook of Multisensor Data Fusion.
CRC Press, 2001.

[4] Q. Liu, X. Wang, and N. S. V. Rao. Staggered scheduling of estimation
and fusion in long-haul sensor networks. In Proc. 16th International

Conference on Information Fusion (FUSION 2013), pages 1699–1706,
Istanbul, Turkey, Jul. 2013.

[5] Q. Liu, X. Wang, and N. S. V. Rao. Information feedback for estimation
and fusion in long-haul sensor networks. In Proc. Information Fusion

(FUSION), 2014 17th International Conference on, Salamanca, Spain,
Jul. 2014.

[6] Q. Liu, X. Wang, and N. S. V. Rao. Fusion of state estimates over
long-haul sensor networks with random loss and delay. IEEE/ACM

Transactions on Networking, 2015.
[7] Q. Liu, X. Wang, N. S. V. Rao, K. Brigham, and B. V. K. Vijaya Kumar.

Performance of state estimate fusion in long-haul sensor networks with
message retransmission. In Proc. Information Fusion (FUSION), 2012

15th International Conference on, pages 719–726, Singapore, Singapore,
Jul. 2012.

[8] M. Mallick and K. Zhang. Optimal multiple-lag out-of-sequence
measurement algorithm based on generalized smoothing framework. In
Proc. SPIE, Signal and Data Processing of Small Targets, San Diego,
CA, Apr. 2005.

[9] L. Mo, X. Song, Y. Zhou, Z. Sun, and Y. Bar-Shalom. Unbiased
converted measurements for tracking. Aerospace and Electronic Systems,

IEEE Transactions on, 34(3):1023–1027, Jul. 1998.
[10] N. S. V. Rao, K. Brigham, B. V. K. Vijaya Kumar, Q. Liu, and X. Wang.

Effects of computing and communications on state fusion over long-haul
sensor networks. In Proc. Information Fusion (FUSION), 2012 15th

International Conference on, pages 1570–1577, Singapore, Singapore,
Jul. 2012.

[11] E. I. Silva and M. A. Solis. An alternative look at the constant-gain
kalman filter for state estimation over erasure channels. Automatic

Control, IEEE Transactions on, 58(12):3259–3265, Dec. 2013.
[12] D. Simon. Optimal state estimation: Kalman, H [infinity] and nonlinear

approaches. Wiley-Interscience, 2006.
[13] Y. Wang and X. Li. Distributed estimation fusion with unavailable cross-

correlation. Aerospace and Electronic Systems, IEEE Transactions on,
48(1):259–278, Jan. 2012.

[14] T. Yuan, Y. Bar-Shalom, and X. Tian. Heterogeneous track-to-track
fusion. In Information Fusion (FUSION), 14th International Conference

on, pages 1–8, Jul. 2011.
[15] S. Zhang and Y. Bar-Shalom. Optimal update with multiple out-of-

sequence measurements with arbitrary arriving order. Aerospace and

Electronic Systems, IEEE Transactions on, 48(4):3116–3132, Oct. 2012.

475


