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Abstract—We consider long-haul sensor networks where sen-
sors are remotely deployed over a large geographical area to
perform certain tasks, such as tracking and/or monitoring of
one or more dynamic targets. A remote fusion center fuses the
information provided by these sensors to improve the accuracy
of the final estimates of certain target characteristics. In this
work, we pursue artificial neural network (ANN) learning-based
approaches for estimation and fusion of target states in long-haul
sensor networks. The joint effect of (1) imperfect communication
condition, namely, link-level loss and delay, and (2) computation
constraints, in the form of low-quality sensor estimates, on ANN-
based estimation and fusion, is investigated by means of analytical
and simulation studies.

Index Terms—Long-haul sensor networks, state estimate fu-
sion, artificial neural networks, estimation bias, backpropagation,
error regularization, root-mean-square-error (RMSE) perfor-
mance, reporting deadline.

I. INTRODUCTION

Sensor networks can be found in many real-world ap-

plications, such as security, healthcare, and environmental

monitoring, among others [1]. In one subclass of networks,

namely, the long-haul sensor networks, sensors with sensing,

data processing, and communication capabilities are deployed

to cover a very large geographical area, such as a continent or

even the entire globe, and are tasked to perform target tracking

and monitoring. A remote sensor measures certain parameters

of interest from the dynamic target(s) on its own, and then

sends the state estimates it derives from these measurements

to the fusion center. The fusion center serves to collect data

from multiple such sensors and fuse these data to obtain global

estimates periodically at specified time instants. A global

estimate is expected to be more accurate than those provided

by the individual sensors, and this benefit is often referred to

as the fusion gain.

Many challenges exist in estimation and fusion applications

over such long-haul networks. Due to the long distances (e.g.,

tens of thousands of miles for satellite links), the propagation

time can be significant. In addition, communication is often

characterized by sporadic high bit-error rates (BERs) and

burst losses that can effectively reduce the number of reliable

estimates available at the fusion center. As a result, the global

estimates may not be promptly and accurately finalized by

the fusion center, leading to degraded fusion performance and

even failures to comply with the system requirements on the

worst-case estimation error and/or maximum reporting delay,

both crucial elements for near real-time performance in many

applications. Besides, some sensors may also be prone to

estimation bias, as a result of poor calibration or environmental

factors.

Existing studies have attempted to address estimation and/or

fusion under variable communication loss and/or delay con-

ditions. In [4], [18], estimation and fusion performance using

Kalman filters (KFs) under variable packet loss rates have been

considered. Studies such as [17], [21] have addressed filtering

in the context of out-of-sequence measurements (OOSMs),

where all data would finally arrive despite the random delay.

[15] has exploited retransmission to recover some of the lost

messages over time so that the effect of information loss can

be somewhat mitigated. A staggered estimation scheduling

scheme is proposed in [12] that aims to explore the temporal

domain relationships of adjacent data within an estimation

interval to improve the estimation and fusion performance.

More recently, [13] has considered an information feedback

mechanism where fused estimates are fed back to a subset of

sensors in order to improve their information quality, and in

turn, the overall fusion performance.

A number of data fusion methods have been developed over

the years, with a primary goal of taking in the data from

multiple sensors and combining them to produce a condensed

set of meaningful information with the highest possible degree

of accuracy and certainty [2]. Whereas most conventional

state fusion approaches produce fused estimates by linearly

combining the available sensor data, the use of nonlinear fusers

is still fairly unexplored. Since in many applications, field tests

may be performed a priori using the available sensor networks

to collect test measurements, we are interested in the use of

learning-based fusers that are able to learn how to fuse the

data based on these measurements in a nonlinear fashion.

Artificial neural networks (ANNs) have been applied to

tasks such as pattern classification, clustering/categorization,

function approximation, and prediction/forecasting, among

others [8]. More recently, [3] has proposed learning-based non-

linear fusion including ANNs. This study of ANN-based fusers
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accounts for both communication and computation constraints

and aims to yield improved long-haul target tracking and

monitoring performance under these constraints. In particular,

besides exploring the core function of learning from true target

trajectories and sensor data and then applying such learned

patterns to testing data to be combined by the fusion center,

we also consider how to perform such tasks effectively with

(1) very limited training data; (2) lost data in both training

and testing stages; and (3) sensor biases. Of concern is the

performance of generalization capabilities from training to

testing data under variable constraints.

The remainder of this paper is organized as follows: We

first overview the fundamentals of ANNs and the learning

algorithm called backpropagation in Sec. II. In Sec. III, the

enhanced variations of a standard backpropagation solution

are explored that could potentially improve the generalization

capabilities of the training-based fuser to new data. The effects

of missing data and estimation bias are studied in Secs. IV and

V respectively. Simulation results of a ballistic target tracking

application using different fusers are presented and analyzed

in Sec. VI before we conclude the paper in Sec. VII.

II. ARTIFICIAL NEURAL NETWORKS (ANNS) AND

BACKPROPAGATION

We are primarily interested in using nonlinear functions to

fuse sensor data that may potentially yield better results than

with closed-form linear fusion. Field tests with known true

target states facilitate learning-based fuser design as many

types of regression analysis methods exist and can be used

to learn or compute the parameters of the fusing function we

wish to estimate from these field tests. In this work, we look

at the use of artificial neural networks (ANNs) for fusing the

state estimates as they are known to be able to approximate

any continuous function given sufficient parameters.

A. Structure of an ANN

Broadly speaking, ANNs are a class of statistical models

that consist of sets of adaptive weights (i.e., numerical param-

eters) that are tuned by a learning algorithm, and are capable

of approximating non-linear functions of their inputs. There

are different types of ANNs, but we focus on the simple

feedforward neural networks where connections between the

units do not form a directed cycle or loop (i.e., no feedback

exists in the network). The structure of such a three-layer

neural network is shown in Fig. 1. This network consists of an

input layer, a hidden layer, and an output layer, interconnected

by weights (to be determined) which are represented by the

arrows between the layers. Apparently, information moves

forward in one direction, from the input nodes, through the

hidden nodes, and to the output nodes.

In our settings, the inputs x̂(1), ..., x̂(Ni) are the state

estimates from the sensors, and the outputs x̂
(1)
F , ..., x̂

(No)
F are

the global (fused) state estimates. There is also a bias unit (not

shown in the figure) that is connected to each node in addition

to the input nodes. The output of the jth hidden node, aj , is

Fig. 1: An example of a three-layer feedforward neural network

given by

aj = g1

(

Ni
∑

i=1

wij x̂
(i) + bj

)

, (1)

where the parameters wij and bj are typically called the

weights and biases, respectively. x̂(i) is an input feature (e.g.,

a state estimate from a sensor), and g1(·) is a nondecreasing

function called the activation function, which is typically

a bounded function such as the sigmoid function. If we

concatenate all of the hidden node outputs aj into a vector

a = [a1, ..., aL]
T , then we can write the hidden node outputs

as

a = g1(W
T
H x̂+ bH), (2)

where WH = [wij ]Ni×L is the matrix of weights whose trans-

pose is multiplied by the input vector x̂ = [x(1), ..., x(Ni)]T ,

and bH = [b1, ..., bL]
T is a vector of the biases for each hidden

node. The fused output of our network, x̂F , which is an No-

dimensional vector, is then given by

x̂F = g2(W
T
o a+ bo), (3)

where Wo = [wo
ij ]L×No

is another weight matrix, bo =
[bo1, ...b

o
No

]T is the vector of biases for each output, and g2(·)
is another activation function.

B. Backpropagation

When the target outputs are available, a well-known ap-

proach to determining the neural network parameters is called

backpropagation. Backpropagation is based on gradient de-

scent; the weights are initialized with random values and are

iteratively updated to reduce the error (according to some user-

defined error function, e.g., the mean-squared error). Once the

network parameters are learned from training data, new inputs

can simply be fed into the neural network to obtain fused

outputs.

The d-dimensional parameter vector w that contains all of

the neural network parameters is

w = [WH(1, 1),WH(1, 2), ...,WH(L,Ni),

bH(1), ...,bH(L),Wo(1, 1), ...,bo(No)]
T .

(4)

Note that if we have Ni network inputs, L hidden nodes,

and No network outputs, then the dimension of w is d =
L(Ni+1)+No(L+1). The state estimates from each sensor
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are used as a network input, so Ni = Ns since there are N
sensors generating s-dimensional state estimates, and No = s
so that the neural network outputs a s-dimensional fused state

estimate. Assume we want to minimize some function S(w)
with respect to this weight vector, then the Gauss-Newton

method for updating w, an iterative method that uses the first

and second derivatives of a function to find a point where the

derivative is zero, would be

∆w = −[∇2S(w)]−1∇S(w), (5)

where ∇2S(w) and ∇S(w) are the Hessian and the gradient,

respectively, of S(w). If we let S(w) be a sum of squares

function over m training patterns, e.g.,

S(w) =
m
∑

k=1

(y(k) − f(x̂(k),w))2

=

m
∑

k=1

(ek(w))2 = e(w)T e(w), (6)

where y(k) is the true target state in the kth training pattern,

ek(w) = y(k) − f(x̂(k),w) and e(w) = [e1(w), ..., em(w)]T ,

then we can approximate the Hessian and the gradient with

the Jacobian, J, of the error vector e(w) and rewrite Eq. (5)

as

∆w = −(JTJ)−1JT e(w), (7)

where

J =

⎡

⎢

⎢

⎣

∂e1(w)
∂w1

. . . ∂e1(w)
∂wd

...
. . .

...
∂em(w)
∂w1

. . . ∂em(w)
∂wd

⎤

⎥

⎥

⎦

. (8)

The Levenberg-Marquardt (LM) modification [7] to the Gauss-

Newton method is

∆w = −(JTJ+ ηI)−1JT e(w) (9)

where I is the identity matrix, and η > 0 is a damping factor,

which is adjusted at each iteration of the weight update. If a

step (i.e., weight update) results in an increased S(w), then

η is multiplied by some factor ν, and if a step results in a

decreased S(w), then η is divided by ν. The Jacobian of

e(w) can be computed using the backpropagation approach

as described in [7]. The LM algorithm is used in this study

to train the ANNs as it can be implemented efficiently and

is considered to be one of the faster training methods with

relatively good performance.

III. IMPROVING THE GENERALIZABILITY OF THE ANN

TRAINING

Overfitting is one of the most critical issues during neural

network training, or more broadly, for any learning-based

design. The error on the training set is driven to a small value,

but when new testing data are input to the learned network,

the error can be potentially large. In other words, the network

has memorized the training examples, but it has not learned to

generalize to new situations. In this section, we consider a few

techniques for improving the generalizability of the LM-based

ANN training.

A. Multiple ANNs

It is preferable to train several networks to ensure that

a network with good generalization is found. Simple as it

sounds, using multiple neural networks to train the same

set of data and averaging their outputs might yield superior

performance by diversifying the training process. Typically

each backpropagation training session starts with different

initial weights and biases and these conditions may lead to

very different solutions for the same problem. In addition,

the network structure can be diversified as well by using a

different number of hidden nodes or even hidden layers. Just

a slight change in the structure would result in a different

neural network with a completely new set of parameters. This

approach can be especially helpful for a small and noisy

dataset.

B. Bayesian Regularization

Another method for improving generalization capabilities

of an learning algorithm is called regularization. This involves

modifying the performance function, which is normally chosen

to be the sum of squares of the network errors on the training

set, as shown in Eq. (6). An additional term is added to the

original performance function, usually in the form of a cost

or penalty function for complexity.

In the Bayesian framework proposed by MacKay [16], the

weights and biases of the network are assumed to be ran-

dom variables with specified distributions. The regularization

parameters are related to the unknown variances associated

with these distributions. In the meantime, the effective number

of parameters actually used by the model – in this case, the

number of network weights – is also sought to be reduced.

Hence, MacKay’s Bayesian regularization expands the original

sum-of-squares cost function to search for the minimum

error using minimum weights by introducing two Bayesian

hyperparameters, α and β, to balance the dual needs during

the learning process. In particular, the objective function to be

minimized is in the form of

S(w) =
β

2

m
∑

k=1

(y(k) − f(x̂(k),w))2 +
α

2

d
∑

k=1

w2
i

= β · SSE + α · SSW. (10)

It can be seen that an additional term, namely, the sum of

squared weights (SSW), is added to the objective function. The

SSW is simply the square of the L2 norm of the d-dimensional

weight vector w introduced in Eq. (4). The hyperparameters

are updated as

α =
γ

2 · SSW
, and β =

m− γ

2 · SSE
, (11)

where

γ = d− α tr((JTJ)−1) (12)
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is considered as the number of effective parameters (weights

and biases) being used by the network, thus giving an indica-

tion on how complex the network should be. These parameter

update steps can be easily incorporated into each iteration of

the LM weight update equation as in Eq. (9).

C. Regularization Using Error Covariance Matrices

Since the sensors also provide additional information re-

garding the state estimates, i.e., the error covariances, we are

interested in incorporating these error covariance estimates to

train the ANNs and improve the neural network’s generaliza-

tion capability.

In particular, a quadratic term containing the error covari-

ance term is incorporated into the objective term, along with

a tradeoff parameter λ [3]:

S(w) =
m
∑

k=1

(y(k) − f(x̂(k),w))2 + λwTΣw (13)

where

Σ =

[

PR 0NLs×(d−NL)s

0(d−NL)s×NLs 0(d−NL)s×(d−NL)s

]

. (14)

PR ∈ ℜ(NLs)×(NLs) is a block diagonal matrix with each

block consisting of the matrix P, repeated L times (once for

each hidden node):

PR =

⎡

⎢

⎢

⎢

⎣

P 0Ns×Ns · · · 0

0 P · · · 0
...

...
. . .

...

0 · · · 0 P

⎤

⎥

⎥

⎥

⎦

, (15)

and P is a block diagonal matrix where the blocks are P1

through PN :

P =

⎡

⎢

⎢

⎢

⎣

P1 0s×s · · · 0s×s

0s×s P2 · · · 0s×s

...
...

. . .
...

0s×s · · · 0s×s PN

⎤

⎥

⎥

⎥

⎦

, (16)

where the state estimates from the sensors are assumed to be

equal to the true states plus noise, i.e., x̂i = x+ni, in which i
is the sensor index, and ni is zero-mean white Gaussian noise

with covariance Pi; in other words, n = [nT
1 , ...,n

T
N ]T , where

n ∼ N (0,P). Recall that N is the number of sensors and s
is the number of states, so each block diagonal matrix P is of

size Ns×Ns.

The weight update equation can be similarly computed as

∆w = −(JTJ + λΣ)−1(JT e(w) + λΣw), and with the

LM modification to include the damping factor, we obtain

the final weight update equation which incorporates the error

covariance estimates into the training using the LM method:

∆w = −(JTJ+ λΣ+ ηI)−1(JT e(w) + λΣw). (17)

IV. TRAINING AND TESTING WITH MISSING DATA

Having provided the training algorithm and techniques for

generalization, we now focus on the communication and com-

putation constraints and their impact on the learning process.

First, the communication link loss and delay further reduces

the amount of data that can be effectively used for training and

testing purposes, which must be accounted for by the fusion

center in devising efficient learning-based fusers.

A. Data Loss during Training

As training is performed based on data gathered from

historical field tests, usually the true target states are obtained

via some other sources that are not subject to the same link

loss and delay conditions as from the sensors, whereas some

sensor estimates may have never arrived. As such, the fusion

center simply has a smaller set of training data that are input

to an ANN. Suppose the link-level loss rate is pL across all

training patterns, then the effect this loss has on training can be

interpreted in two different ways. First, the actual number of

available training patterns m̃ is often less than m, and thus the

training objective simply uses SSE terms for the available m̃
patterns. In other words, in Eq. (6), based on the actual pattern

availability, we have

S(w) =
m̃
∑

k=1

(ek(w))2 = ẽ(w)T ẽ(w), (18)

where ẽ is the error vector containing m̃ elements. Alterna-

tively, the number of available patterns follows the following

binomial distribution: m̃ ∼ B(m(1−pL),mpL(1−pL)). As a

result, the original SSE term in Eq. (6) can now be expressed

as

S(w) =

m
∑

k=1

ik(ek(w))2 = e(w)TΛe(w), (19)

where ik is the indicator function in which ik = 1 with

probability 1 − pL and 0 otherwise, and the diagonal matrix

Λ = iD where i = [i1, i2, ..., im]T . These results can be easily

extended to patterns with different link loss rates.

B. Data Loss and Delay during Testing

The testing phase of the learning process, namely, to apply

the learned ANN parameters to new sensor inputs, coincides

with the actual online tracking process. The loss and delay

inherent over the communication link, as a result, plays a

somewhat different role compared to the off-line training

phase. In most tracking tasks that impose nearly real-time

performance, the fusion center is required to finalize its fused

state within a very tight deadline, by which time one or more

sensor estimates may have not yet arrived (although they might

arrive later). Thus, in contrast to the off-line training phase, the

communication delay is a major limiting factor in the desired

performance.

The structure of the ANN-based learning requires that the

input data be complete in order to generate the desired output.

Whereas it is in general difficult to interpolate missing values
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in the training phase as the underlying time-domain relation-

ship between the training data is not readily available, it is

possible that the fusion center uses adjacent sensor estimates

that are available to interpolate the missing ones, based on the

knowledge it has on the possible trajectory of the underlying

target being tracked. Therefore, when some of the inputs are

missing, the fusion center can use prediction and retrodiction

(when applicable) techniques [14] to manually fill in the

missing inputs. Of course, should all other methods fail (as

under extremely lossy link conditions), the fusion center can

still bypass the neural network altogether by using prediction

on its previously fused states to generate the immediate fused

value, although this is likely to compromise the accuracy

performance by a large margin.

V. SENSOR BIAS AND ERROR REGULARIZATION

Another concern arising out of the long-haul tracking is

the sensor information quality. Notably, sensor biases could

potentially degrade the fusion performance. To be answered

are questions such as how the ANN-based fuser would perform

with the presence of variable bias levels and whether the

learning process could potentially improve the training and

testing data quality. In this section, we discuss bias-related

issues pertaining to the ANN training and testing.

An important fact about estimation biases is that a sensor

i might not be aware of its biases. Sometimes the biases are

an integral part of the filtering process, due to linearization

and coordinate conversion; while other times it is due to

poor calibration or environmental factors that result in sensor

measurement biases. As such, the error covariance matrix Pi –

which is also supplied to the fusion center – is likely to be an

optimistic measure of the actual estimation error. Fortunately,

thanks to the available true target states during the training

phase, the fusion center can evaluate the potential estimation

biases from the sensor data and “correct” the error covariance

matrix for its training.

To illustrate, consider a generic sensor estimate as x̂i

whereas the true target state is x. Then the error covariance

matrix is defined as Pi = E[(x̂i−x)(x̂i−x)T ]. Now suppose

x̂i = x̂u + bi where x̂u is an unbiased estimate for x and bi

is the bias vector, then we have

Pi = E[(x̂i − x)(x̂i − x)T ]

= E[(x̂u − x+ bi)(x̂u − x+ bi)
T ]

= E[(x̂u − x)(x̂u − x)T ] + E[bib
T
i ] + 2E[(x̂u − x)bT

i ]

= Pu + E[bib
T
i ] + 2E[(x̂u − x)bT

i ]

≈ Pu + bib
T
i , (20)

where Pu is the error covariance matrix for an unbiased

estimate. In the extreme case when a sensor is fully oblivious

to its bias, this is the matrix it communicates to the fusion

center. The last line has used two approximations, the first one

being that the bias is largely uncorrelated with the true target

state, and the second being a running average (as denoted by

the overline) is used for the expectation of the outer (tensor)

product of the bias vector and itself.

In an ideal scenario, the estimation bias at a sensor is

deterministic and consistent, and the fusion center can easily

obtain the bias vector and subtract it from the associated sensor

estimates during the testing stage. However, with more com-

plex forms of bias, instead of correcting the sensor estimates,

the fusion center may want to use Eq. (20) for error regulation

so that the updated matrices more closely match the actual

error levels of the sensor estimates. Doing so might be of better

benefit to the prediction (and retrodiction) when the fusion

center encounters missing data during the online tracking. The

performance comparison using different error regularization

methods will be shown in the next section.

VI. PERFORMANCE EVALUATION

In this section, the performance of the ANN-based fusers

is evaluated for a coasting ballistic target tracking application

via simulations. Different configurations during the learning

process are considered, so are variable communication and

computation constraints. The tracking performance with ANN-

based fusers is also compared against that using the track-to-

track fuser and fast-CI fuser to be outlined below.

A. Simulation Models

1) Target Model: The state-space model of a ballistic coast

target has the form ẋ = [v a]T , where x = [pT vT ]T is the

state vector consisting of the target’s position p = [x y z]T

and velocity v = [ẋ ẏ ż]T in the Earth-centered inertial

(ECI) coordinate system (i.e., the coordinate system does not

rotate; it is fixed relative to the “fixed stars”, and its origin is

at the center of the Earth [11]).

In the coast phase, gravity is considered to be the dominat-

ing force acting on a ballistic target, so the total acceleration is

a = aG, where aG is the gravitational acceleration. Assuming

a spherical Earth model [11], we have aG = −(μ/‖p‖3)p,

where p is the target position vector from the Earth’s center

to the target, ‖p‖ =
√

x2 + y2 + z2 is its length, and μ =
3.986012 × 105 km3/s2 is the Earth’s gravitational constant.

The continuous-time model of the system is given by

d

dt

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x
y
z
ẋ
ẏ
ż

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ
ẏ
ż

−μx/r3

−μy/r3

−μz/r3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

where r =
√

x2 + y2 + z2. An algorithm for computing the

state propagation can be found in [20].

2) Sensor Measurement Model: We simulate the measure-

ments following the simulation in [10] for a ballistic coast

target. The measurement model is given by z = h(x) + w,

and the measurements of the range (r), elevation (E), and

azimuth (A) of the target are computed as follows:

z =

⎡

⎣

r
E
A

⎤

⎦ =

⎡

⎢

⎣

√

x2 + y2 + z2

tan−1
(

z/
√

x2 + y2
)

tan−1 (x/y)

⎤

⎥

⎦
+w, (22)
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where w is white Gaussian noise with covariance R =
diag

(

[σ2
r σ2

E σ2
A]
)

.

A simplified radar model is used to generate state values for

σr and σE so that the errors are state-dependent and correlated

across sensors. From [5], we have σr, σE , σA ∝ 1√
SNR

, where

the signal-to-noise ratio SNR is inversely proportional to r̃4

(r̃ is the range from the sensor to the target). We assume a

number of the radar parameters from the radar range equation

are constant (e.g., the radar pulse duration, antenna gain, etc.)

so that σr, σE , σA ∝ r̃2. The range and elevation errors of a

ballistic target/satellite tracking phased array radar, the Cobra

Dane, are found in [6] as 15 ft and 0.05◦, respectively. These

parameters are used to find reasonable values for scaling the

σr, σE , and σA values used in these simulations to generate

the state-dependent measurement noise.

3) Generating State Estimates: Since the measurement

noise is additive in spherical coordinates, a bias is introduced

into the state estimates in Cartesian coordinates. Zhao et. al.

[22] developed a recursive BLUE filter for a linear system

that is theoretically optimal (in the mean-squared error sense)

among all linear unbiased filters in Cartesian coordinates. This

filter is used to generate the state estimates in these simulations

to account for the converted measurements.

4) Communication Loss and Delay Profiles: The message-

level loss and delay characteristics are determined by the long-

haul link conditions. Suppose each message sent by a sensor

is lost during transmission with probability pL, whereas a

probability density function f(t) models the overall delay t
that any message experiences to be successfully delivered to

the fusion center, and the shifted exponential distribution [15]

f(t) = exp ((T − t)/μD) /μD for t ≥ T where T is the fixed

initial delay and μD is the mean of the additional random

delay. We consider the case where T = 0.5 s and μD = 0.3 s.

The fusion deadline DF describes the time by which the fusion

center must have combined the individual sensor estimates and

generated a fused estimate.

5) Closed-Form Fusers: For performance comparison, we

consider two closed-form (i.e., non-learning-based) fusers. The

track-to-track fuser (T2TF) [2] is a fuser theoretically optimal

in the linear minimum mean-square error (LMMSE) sense.

The fused state estimate x̂F and its error covariance PF are

defined for two sensors as:

PF = (P−1
1 +P−1

2 )−1, (23)

x̂F = PF (P
−1
1 x̂1 +P−1

2 x̂2), (24)

where x̂i and Pi are the state estimates and error covariance

from sensor i, respectively, The error cross-covariance Pij =
PT

ji, the error cross-covariance between sensors i and j, has

been omitted from the equations since it is often unknown.

This rule can be readily extended to multiple sensors.

In another fusion method – the covariance intersection

(CI) algorithm – the geometric intersection of the individual

covariance ellipses is considered as the error covariance of the

fused estimate. The intersection is characterized by the convex

combination of sensor covariances:

PF = (ω1P
−1
1 + ω2P

−1
2 )−1 (25)

x̂F = PF

(

ω1P
−1
1 x̂1 + ω2P

−1
2 x̂2

)

, ω1 + ω2 = 1 (26)

where ω1, ω2 > 0 are weights to be determined (e.g., by

minimizing the determinant of PF ). A fast-CI algorithm is

proposed in [19] where the weights are found based on an

information-theoretic criterion so that ω1 and ω2 can be solved

for analytically as follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
(27)

where D(pA, pB) is the Kullback-Leibler (KL) divergence

from pA(·) to pB(·), and ω2 = 1− ω1. When the underlying

estimates are Gaussian, the KL divergence can be computed

as:

D(pi, pj) =
1

2

[

ln
|Pj |

|Pi|
+ dT

XP−1
j dX + Tr(PiP

−1
j )− k

]

(28)

where dX = x̂i − x̂j , k is the dimensionality of x̂i, and

| · | denotes the determinant. This fast-CI fuser can also be

extended to more than two sensors, although the equations

are somewhat more involved.

6) Training and Testing Data Setup: The initial states of

the training and test targets are randomly generated from a

normal distribution with the mean set to the following (in km

for position, and km/s for velocity):

x(0) = [x(0) ẋ(0) y(0) ẏ(0) z(0) ż(0)]T

= [71.31, 0.946, 3794.5, 3.577, 5413.0, −5.676]T ,

with a standard deviation of 500 m and 5 m/s for each position

and velocity component, respectively. In our default setting,

two target trajectories are available for training. Measurement

data are generated according to the sensor measurement model

introduced earlier, and state estimates (and the associated error

covariance matrices) – also available in the training data set

– are computed from these measurements for each trajectory.

Data are available for each trajectory segment that lasts 30

seconds.

7) ANN Setup: The ANN used for training and testing

has one hidden layer with a number of hidden nodes. The

number of hidden nodes needed depends on the complexity

of the function we are trying to estimate. Using too few

hidden nodes may yield a poor approximation to the actual

function. Using too many hidden nodes results in overfitting

the data so that while the neural network may precisely give

the desired outputs for the training data, it may not generalize

well to unseen data. Unfortunately, there is no precise method

that provides the optimal number of hidden nodes needed to

properly model the data. But a good rule of thumb [9] is that it

lies between the number of input and output nodes. Hence, we

select three hidden nodes in our default setting. The tangent

hyperbolic sigmoid function is used as the activation function

from the input to hidden layers.
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Fig. 2: Position estimate RMSE over time with ANN-based fusers as well as T2TF and fast-CI fuser with pL = 0, DF = 2 s: (a) two
training trajectories, three hidden nodes; (b) five training trajectories, three hidden nodes; (c) two training trajectories, six hidden nodes
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Fig. 3: Position estimate RMSE over time with ANN-based fusers as well as T2TF and fast-CI fuser with pL = 0.5, DF = 1 s: (a) two
training trajectories, three hidden nodes; (b) five training trajectories, three hidden nodes; (c) two training trajectories, six hidden nodes

B. Fusion Performance without Sensor Biases

In Fig. 2(a), tracking performances using variations of the

ANN-based fuser, including the regular ANN (“reg-ANN”),

multiple ANN with 5 component ANNs of the same struc-

ture (“mul-ANN”), ANN with Bayesian regularization (“bys-

ANN”), and ANN with error covariance regularization (“cov-

ANN”), along with that of the T2TF/CI fuser are plotted. We

observe that the original ANN fuser doesn’t yield estimates as

good as those from the T2TF/CI by using only two available

training trajectories. In practice, Bayesian regularization is

often applied when combined with other techniques, such

as multiple ANNs; as a stand-alone technique, its perfor-

mance is not always superior to that of the regular ANN

as the Bayesian formulation depends on how the trade-off

parameters are set. In general, the multiple ANN approach

would outperform the original ANN-based fuser by variable

levels, depending on such factors as how the weights are

initialized in each component network. Most notably, the

covariance error regularization method can effectively use the

extra information from the covariance matrices supplied by

the sensors and provide improved performance compared to

all other techniques.

In Figs. 2(b) and 2(c), the performance plots with more

training data (five trajectories) and more hidden nodes (six)

are shown respectively. From these plots, the error curves for

ANN-based fusers are variably lower compared to those in

Fig. 2(a), reflecting the major benefit of training more data

and/or using a somewhat more complex neural network. But

regardless of the chosen data or network size, a consistent

observation is the superiority of the covariance-based ANN

fuser over others in terms of tracking accuracy.

As the link-level communication loss and/or delay increases,

so does the chance that the fusion center cannot receive both

sensor estimates for any time epoch during the testing stage.

With incomplete sensor data, the fusion center could use

predicted estimates it derives for the individual sensors to

interpolate the missing training and testing sensor data so that

the completeness of the ANN inputs can be guaranteed. Fig.

3(a) shows the performance with 50% sensor data loss in both

training and testing data. Whereas a fusion deadline of DF

= 2 s can effectively reduce any effect of early cutoff, here

the deadline DF = 1 s can result in more missing original

sensor data by the deadline. Comparing different cases, there

is an increase in the tracking error in non-learning based

T2TF and CI fusers compared to their respective no-loss

counterparts. However, the ANN learning-based approaches

are largely able to retain their tracking performance under the

lossless situation, thereby demonstrating the major benefit of

adopting these fusers in counteracting the negative effect of

communication constraints. Similar observations can be made

from cases with more training data and more hidden nodes.

C. Fusion Performance with Sensor Biases

Starting with the baseline case as shown in Fig. 3(a),

we examine the cases where the training and/or testing data

contain biased estimates. First, suppose in the test data, a

positive uniform bias, with its mean magnitude set at 0.1%

of the noise level, is added to the (unbiased) measurement

noise at one of the sensors. The fusion performance is shown

in Fig. 4(a). Due to the mismatch between the training and

testing data in bias profiles, the unlearned bias (i.e., bias absent

from the training data) reduces the generalization capability

of the trained parameters, resulting in elevated estimation
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Fig. 4: Position estimate RMSE over time with ANN-based fusers as well as T2TF and fast-CI fuser with pL = 0.5, DF = 1 s and a bias
of (a) 0.1% of noise in one testing data; (b) 0.1% of noise in training and testing data; (c) 0.2% of noise in training and testing data

errors across all learning-based cases. Next, suppose in one

of the training trajectories data share the same bias profile

as described above whereas estimates in the other remain

unbiased. The fusion performance is shown in Fig. 4(b), where

performance of the “cov ANN” under the bias correction

method introduced earlier is plotted as well (“b-cov ANN”).

With an additional bias correction step, the covariance reg-

ularization method is able to output even better estimates,

although this improvement seems somewhat limited. Finally,

all others kept equal, the mean bias level is now increased

to 0.2% of the unbiased measurement noise. From the plots

in Fig. 4(c), whereas the T2TF and the CI fuser output

increasingly error-prone estimates, the ANN-based fusers are

able to retain much of their error levels from the previous

case, thereby demonstrating their advantages in tracking with

biased sensor data. Nevertheless, with higher link loss rates,

any improvement in tracking accuracy over the non-learning

fusers can be reduced, as a result of the increased mismatch

level (from extended prediction over biased estimates) between

the training and testing data.

VII. CONCLUSION

In this work, we have provided a quantitative study on

the potential benefits of artificial neural network learning-

based fusers for sensor fusion in target tracking over long-

haul sensor networks. In particular, the effects of variable

communication link-level loss and delay conditions as well as

sensor bias profiles on the performance of a variety of ANN

implementations have been investigated. Extensions of this

work may be studied in a setting with a much larger training

dataset but with heterogenous trajectories and/or variable data

quality levels, so that prior to training, a classification process

needs to be carried out in order to increase the potential match

between the training and testing datasets and improve the

generalizability of the learned patterns.
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