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Abstract—As an important navigation technology, the inertial
navigation system (INS) has been widely used in various appli-
cations and many INS algorithms have been proposed. Their
performance evaluation is crucial for evaluating and improving
the algorithms, where the ground truth is assumed known.
However, knowledge of the ground truth is hard to acquire, and
this presents a challenge to performance evaluation. In this paper,
a truth-knowledge free approach to performance evaluation of
INS algorithms is proposed. In this approach, we generate some
mock measurements from the INS outputs and judging the
performance by checking how close the mock measurements
are to the real measurements. The INS algorithm whose mock
measurements are closer to the real measurements is preferred.
Simulations and related analysis are provided to illustrate and
validate our proposed evaluation approach.

Index Terms—Mock measurements, performance evaluation,
Strapdown INS, ground truth, navigation.

I. INTRODUCTION

The inertial navigation system (INS) [1], [2], which is a

dead-reckoning navigation system in the 3-D space, integrates

measurements of accelerometers and gyroscopes to provide

estimates of position, velocity, and attitude of its carrier. INS

has two different types: gimbaled and strapdown [3]. The

major drawback of INS is the time-accumulating navigation

errors. With more sophisticated inertial sensors and algorithms,

INS performance has been improved significantly. INS is a

critical component in many applications involving airplanes,

ships, automobiles, and so on [2].

Performance evaluation (PE) of INS is important for nav-

igation application [4], [5]. Existing work mainly focuses

on two aspects. a) PE of inertial sensors (gyroscopes and

accelerometers) [6]–[8]. For example, using Lab Testing [6] to

provide parameters such as noise density, bias instability, scale

factor instability, orthogonality, g-sensitivity, and temperature
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sensitivities. b) PE of the INS algorithms such as strap-

down INS [3] alignment [9], error modeling, propagation and

analysis [10], [11], and attitude/velocity/position (navigation)

computation [12], [13].

In this work, we consider PE of INS algorithms for

navigation computation. The most common way for PE of

INS algorithms in practice is Field Testing; that is, to use

information from sensors of higher accuracy (e.g., GPS signals

or other navigation/tracking systems’ output) as a “ground

truth” to evaluate the performance [14], [15]. Another way for

PE is simulation based [16]–[19], where the ground truth is

predefined by the user and the artificially generated INS sensor

measurements are processed by different INS algorithms to

output different solutions for evaluation. People also use the

results of a well-accepted INS algorithm, which provides good

performance theoretically or practically, as the relative “ground

truth” for PE.

As we can see, in the existing approaches to PE of INS

algorithms, knowledge of the ground truth is always needed.

In practice, exact knowledge of the ground truth is often

difficult to obtain. For example, a navigation/tracking system

with a higher accuracy such as GPS1 may not be available

for PE; the GPS might be temporarily unstable or blocked.

Although artificial ground truth could be generated (e.g., using

a “well-accepted” algorithm), such a “ground truth” is neither

objective nor reliable for PE, since the optimal algorithm

is usually either non-existent or infeasible to implement in

practice.

In fact, PE without knowing the ground truth is badly

called for in practice due to the difficulty to access the

truth [20]. Then, how to implement PE without knowing the

ground truth in practice? The real measurements acquired

from INS sensors are always available and without artificial

ingredients. Therefore, in this paper, the PE is implemented by

comparing the real measurements and the mock measurements

generated from each INS algorithm’s navigation output. An

1In realistic Field Testing, GPS/INS intergration is often used as the ground
truth. However, our goal is to evaluate the performance of INS, and thus INS
itself is inappropriate to serve as the ground truth.
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INS algorithm is better if its mock measurements are closer to

the real measurements. Simulation results and related analyses

are provided to validate our proposed method for PE.

II. BASICS OF INS NAVIGATION COMPUTATION

The inertial measurement unit (IMU) in INS includes three

accelerometers and three gyroscopes. A navigation processor

processes the measurements acquired by the IMU to provide

navigation information such as position, velocity and attitude.

There are gimbaled INS and strapdown INS. In this paper,

we focus on the strapdown INS (SINS) [3], where inertial

sensors are aligned with the body of the carrier 2. SINS must

be initialized before the navigation computation. The attitude

solution is used to transform the measurements under the body

frame to the resolving (or navigation) coordinate frame used

by the navigation processor. Integrating the acceleration yields

the velocity, and integrating the velocity gives the position.

There are many types of SINS algorithms [2], [13], [19].

A schematic diagram of basic SINS computation [1]–[3] is

shown in Fig. 1.

Fig. 1. Schematic diagram of SINS.

In Fig. 1, ∆t is the sampling interval, and Cn
b (·) denotes the

direction cosine matrix (DCM) from the body frame (denoted

by b) to the navigation frame (denoted by n).3 The elements

of the DCM can be determined using attitude angles (θ, ψ, φ)

[3].

The DCM update is very crucial in SINS computation.

There are many methods based on rotation vectors, direction

cosines, and quaternions, etc. A rotation can be represented

by a quaternion, which is a 4D hyper complex number

q = (q0, q1, q2, q3). The DCM can be represented by a

quaternion [1]–[3]. So the DCM update can be implemented

by updating the quaternion q, which is briefly introduced

2Our approach for gimbaled INS is parallel.
3Here, the body frame used is “right-head-up” and the navigation frame

used is “East-North-Up (ENU)”.

below. For simplicity, here we use a gravity-free model. q
is updated by

q̇ =
1

2
W · q (1)

where

W =







0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0







(2)

Here [ωx, ωy, ωz] is the 3-D angular velocity from gyroscopes.

Then the skew-symmetric matrix of the angle increment is

∆Θ =

∫
tk

tk−1

Wdt ≈







0 −∆θx −∆θy −∆θz
∆θx 0 ∆θz −∆θy
∆θy −∆θz 0 ∆θx
∆θz ∆θy −∆θx 0







(3)

Rewrite Eq. (1) in discretized form as

qk = e
1

2

∫ tk
tk−1

Wdt · qk−1 (4)

By Taylor series expansion,

qk =

[

I +
1
2∆Θ

1!
+

(
1
2∆Θ

)2

2!
+ · · ·

]

· qk−1

=

[

I · cos ‖∆θ‖
2

+ ∆Θ
sin ‖∆θ‖

2

‖∆θ‖

]

︸ ︷︷ ︸

A(∆θ)

·qk−1

(5)

where I is the identity matrix. To save computation, approx-

imations are often adopted in the calculation of A(∆θ) in

Eq. (5) [3]. The 1st order approximation is

A(∆θ) = I +
∆Θ

2
(6)

The 2nd order approximation is

A(∆θ) =

[

I

(

1− ‖∆θ‖2
8

)

+
∆Θ

2

]

(7)

The 4th order approximation is

A(∆θ) =

[

I

(

1− ‖∆θ‖2
8

+
‖∆θ‖4
384

)

+

(

1

2
− ‖∆θ‖2

48

)

∆Θ

]

(8)

Different approximations lead to different navigation results.

Intuitively and theoretically, a higher order approximation

should result in a higher precision.

III. PERFORMANCE EVALUATION OF SINS ALGORITHMS

KNOWING GROUND TRUTH

PE of SINS algorithms can be implemented based on the

difference between the ground truth and the navigation results

obtained. Suppose there are totally M SINS algorithms. X̂ i =
[x̂i1, ..., x̂

i
N ] is the navigation (estimation) result obtained using

algorithm i, where N is the total time steps. Suppose that the
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ground truth is X = [x1, ..., xN ]. Then the error vector of

algorithm i is

X̃ i = X − X̂ i (9)

Then, root mean square error (RMSE) [5] for SINS algorithm

i can be obtained as

RMSEi(x̂) =




1

M

M∑

j=1

||x̃ij ||2




1/2

(10)

RMSE is an important and widely used measure for PE of state

estimation. However, RMSE is dominated by large errors. A

better measure is average Euclidean error (AEE) [5]

AEEi(x̂) =
1

M

M∑

j=1

||x̃ij || (11)

However, knowledge of the ground truth is seldom available

in practice. This is a major difficulty for conventional PE

methods.

IV. MOCK-MEASUREMENT BASED EVALUATION OF SINS

PERFORMANCE WITHOUT KNOWING GROUND TRUTH

A. Basic Idea

What else is available if the ground truth is not available?

We provide an answer in this section.

A SINS algorithm A can be considered as an estimator [21],

whose input is the real measurements Z (in the measurement

space Z) and output is the estimate X̂ (in the state space X ).

Here we do not know the ground truth X . Without knowing

the ground truth, real measurements can be used for PE. If we

can generate mock measurements Ẑ = [ẑ1, ..., ẑN ] from X̂,

then we can implement the PE in Z by comparing Z and Ẑ.

If Ẑ is close to Z , the algorithm is deemed to perform well.

Such a PE in measurement space Z can be considered as an

alternative to the one in the state space X . See Fig. 2 for an

illustration.

Fig. 2. Diagram of mock measurements based PE.

B. Generating Mock Measurements

Mock-measurement generation is a mapping from the state

space X to the measurement space Z . It includes the gener-

ation of mock 3-D acceleration measurements and mock 3-D

angular velocity measurements.

1) Mock acceleration measurements: Suppose that

in the navigation frame, the initial position of the

moving body is (px(0), py(0), pz(0)), the initial velocity

is (vx(0), vy(0), vz(0)), and the initial attitude is

(θ(0), ψ(0), φ(0)). Suppose that the sample interval is

∆t. At time k (k = 1, ..., N ), the position estimate is

p(k) = [x̂(k), ŷ(k), ẑ(k)]

and the 3-D attitude estimate is

Att(k) = [θ̂(k), ψ̂(k), φ̂(k)]

Using Att(k), the DCM Cn
b (k) at time k can be obtained.

The average velocity from time k − 1 to time k is
V n(k−1)+V n(k)

2 . Then

V n(k−1)+V n(k)
2 ·∆t = p(k)− p(k − 1)

⇒ V n(k)−V n(k−1)=2
(

p(k)−p(k−1)
∆t −V n(k−1)

)

Therefore, the acceleration in the navigation frame is

an(k − 1) =
V n(k)−V n(k−1)

∆t

=
2

∆t

(
p(k)− p(k − 1)

∆t
−V n(k−1)

) (12)

Then, the acceleration in the body frame can be obtained as

ab(k− 1) = Cb
n(k) · an(k− 1) = [Cn

b (k)]
T · an(k− 1) (13)

where Cb
n = (Cn

b )
T denotes the DCM from the navigation

frame to the body frame.

Mock acceleration measurements can be generated based on

Eq. (12) and Eq. (13).

2) Mock angular velocity measurements: Based on the

attitude at time k − 1 and k, DCM Cb
n (k − 1) and Cb

n (k)
can be obtained. Using DCM Cb

n (k − 1) and Cb
n (k), we can

obtain [3]

∆Ψ = Cb
n(k − 1) ·

(
Cb

n(k)
)T − I (14)

Then, the angular velocity measurements in the body frame

can be obtained as






ωb
x(k − 1) = ∆ψ̂b(k − 1)/∆t = ∆Ψ(2,1)/∆t

ωb
y(k − 1) = ∆θ̂b(k − 1)/∆t = ∆Ψ(1,3)/∆t

ωb
z(k − 1) = ∆φ̂b(k − 1)/∆t = ∆Ψ(3,2)/∆t

(15)

where ∆Ψ(i,j) denotes the (i, j)th element of ∆Ψ.

Remark: The mock measurements Ž generated based on the

above method (denoted by ĥ(·) below) theoretically can be

regarded as noiseless mock measurements:

Ž = ĥ(X̂)

It should be noted that each real measurement Z actually

contains noise v (including random and non-random part)

caused by the IMU sensors:

Z = h(X) + v (16)

Therefore, to fairly and objectively quantify the difference be-

tween the real measurement and the mock measurement, noise
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with the same distribution f(v) as in the real measurement

should be added to the “pure” mock measurement 4, ; that is,

to quantify the difference between Z in Eq. (16) and Ẑ in

Eq. (17)

Ẑ = ĥ(X̂) + v = Ž + v (17)

Furthermore, adding only a single realization of the error v
to the “pure” mock measurements is not sufficient due to the

randomness as illustrated in Fig. 3.

Fig. 3. Illustration of the necessity for multi-generation.

Suppose there are six mock measurements generated by

adding error as in Fig. 3. In Case I, a single realization of

the mock measurement with noise is Ž+ v̌1, which is close to

the real measurements; however, in Case II, when the single

realization of the mock measurement is Ž + v̌5, which is

relatively far from the real measurements. This distance varies

significantly due to the randomness of noise v. Therefore,

we should generate the noise v multiple times (R times)

to obtain {v̌1, ...v̌R} and add them to the “noiseless” mock

measurements to generate a group of mock measurements as

{Ž} = {Ž + v̌1, ..., Ž + v̌R} (18)

These mock measurements are generated as follows.

3) Multi-realization of mock measurements: The error of

an accelerometer includes three parts [3]: (a) bias (βa
x, β

a
y , β

a
z )

(in m/s2), (b) zero-mean Gaussian white noise with standard

deviations (σa
x, σ

a
y , σ

a
z ) (in m/s2), (c) 3-D scale factor error

(Sa
x , S

a
y , S

a
z ) (in %). The error of acceleration measurements

at time k is






εax(k) = ∆tβa
x +∆tN (0, σa

x) + ∆tSa
xa

b
x(k)/100

εay(k) = ∆tβa
y +∆tN

(
0, σa

y

)
+∆tSa

ya
b
y(k)/100

εaz(k) = ∆tβa
z +∆tN (0, σa

z ) + ∆tSa
z a

b
z(k)/100

(19)

For each time k, we generate mock measurements ab(k)
according to Eq. (12) and Eq. (13), and generate measurement

4At the same time, the mock measurement generation approach ĥ(·) should
approximate the real measurement generation mechanism h(·) as closely as
possible.

errors according to Eq. (19). Then, based on Eq. (18), a group

of mock acceleration measurements {Ẑa} is obtained.

The error of gyroscopes [3] also includes bias (βg
x, β

g
y , β

g
z )

(in deg/hr), zero mean Guassian white noise with standard

deviations of (σg
x, σ

g
y , σ

g
z )(in deg/

√
hr), and the scale factor

error (Sg
x, S

g
y , S

g
z ) (in %). Angular velocity measurements’

error at time k is







εgx(k) = (∆tβg
x +

√
∆tN (0, σg

x))ρ+∆tSg
xω

b
x(k)/100

εgy(k) = (∆tβg
y +

√
∆tN

(
0, σg

y)
)
ρ+∆tSg

yω
b
y(k)/100

εgz(k) = (∆tβg
z +

√
∆tN (0, σg

z)) ρ+∆tSg
zω

b
z(k)/100

(20)

where ρ = π/180
3600 is the coefficient for unit transformation

from deg/hr to rad/s.

For each time k, we generate mock measurements ωb(k)
according to Eq. (14) and Eq. (15), and generate their error

according to Eq. (20). Then, based on Eq. (18), a group of

mock angular velocity measurements {Ẑg} is obtained.

C. PE Based on Mock Measurements

Given real measurements Z = {Za, Zg} and M SINS

algorithms, when M groups of mock measurements {Ẑ} =
{Ẑa, Ẑg} are generated, the mock measurements based PE is

illustrated in Fig. 4.

Fig. 4. Implementation of mock measurements based PE.

Since acceleration and angular velocity have different units,

the difference between Za and {Ẑa} and the difference

between Zg and {Ẑg} are calculated, respectively, to construct

a pair (Z̃a, Z̃g).

The difference between a measurement vector Za and a

group of measurement vectors {Ẑa} can be calculated as

follows. The difference (e.g., Euclidean distance) between Za

and each Ẑa
j , j = 1, ..., R is computed, respectively, to obtain

R different Z̃a
j . The same is done for Zg and {Ẑg}. Then we

calculate the mean of the errors as
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





¯̃Za =
R∑

j=1

Z̃a
j /R

¯̃Zg =
R∑

j=1

Z̃g
j /R

(21)

We call this procedure “error-then-mean”. Based on
¯̃Za and

¯̃Zg, we can calculate RMSE and AEE in Eq. (10) and Eq.

(11), respectively, to obtain the pairs (RMSEa,RMSEg) and

(AEEa,AEEg).
We can also calculate the mean of the R generated mea-

surements Ẑa
j (or Ẑg

j ) first as







¯̂
Za =

R∑

j=1

Ẑa
j /R

¯̂
Zg =

R∑

j=1

Ẑg
j /R

and then calculate the difference between
¯̂
Za (or

¯̂
Zg) and

the real measurements Za (or Zg). This is called “mean-

then-error”. Both “mean-then-error” and “error-then-mean”

can calculate the closeness between a point and a point set.

Which is better here? “Error-then-mean” is preferable. The

reason is illustrated in Fig. 5.

Fig. 5. “Error-then-mean” vs. “mean-then-error”

In Fig. 5, for both cases, the real measurement is Z . In Case

II, the four mock measurements (with noise) are distributed

approximately symmetrically around the real measurement. If

we take mean first and then calculate the difference between
¯̂
Z

and Z , the difference is close to zero. In Case I, the four mock

measurements (with noise) are not distributed symmetrically

around the real measurement. If we take mean first and then

calculate the difference, the difference is obviously larger than

that in Case II. So, Case II is then deemed better. This is

obviously bad, because every mock measurement in Case I is

closer to the real measurement than in case II. When using

“error-then-mean”, there are no such problems.

V. SIMULATIONS STUDIES

If the real measurements of IMU are available, the above

introduced mock measurements based PE for SINS algorithms

can be directly applied. If they are not available, to apply our

PE approach, we can generate simulated “real” measurements

first. The “true” trajectory, attitude and other states can be

preset. We can perform both the traditional PE knowing

the ground truth and our proposed PE to validate the latter.

Different noise levels can also be preset for a more detailed

comparison. Furthermore, in simulation given the true state,

the “real” measurement can be regenerated multiple times

with different realizations of the noise. Therefore, PE can be

implemented using the Monte Carlo method. The procedure

of mock measurement based PE using Monte Carlo simulation

is shown in Fig. 6.5

Fig. 6. Monte Carlo procedure for PE

A. Generation of Simulated Real Measurement

Here we use the INS simulation toolbox in Matlab [18]. The

profiles of the motion can be preset according to the user’s

preference. The user can set the initial state, noise parameters,

and sampling interval. Different types of motion models can be

used, including constant velocity (CV), constant acceleration

(CA), constant turn-rate (CT) with a constant height, and the

transition between these types. The length of each motion

stages can be set by the user. The simulated measurements

for gyroscopes and accelerometers can be generated after the

initialization. In the simulation, we use three noise levels given

in Table 1. 6

B. Simulations of SINS and Mock Measurements Based PE

Three SINS algorithms are compared, including the 1st, 2nd,

and 4th order approximations of the quaternion SINS method

given by Eq. (6), Eq. (7) and Eq. (8), respectively. Intuitively,

the performance of a higher order approximation is better.

5It should be noted that no Monte Carlo runs or generation of “real”
measurement is needed if real measurements are available.

6For simplicity, the scale factor error is not considered in this paper.
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TABLE I
INERTIAL SENSOR NOISE SETTINGS FOR SIMULATION

Levels
Low Medium HighItems Unit

βa
x

µg

10 40 180
βa
y 15 50 200

βa
z 10 40 180

σa
x 2 8 30

σa
y 3 10 30

σa
y 2 8 30

βg
x

deg /hr

0.005 0.02 0.1

βg
y 0.008 0.03 0.1

βg
z 0.005 0.02 0.1

σg
x

deg /
√

hr

0.002 0.004 0.03

σg
y 0.003 0.005 0.03

σg
y 0.002 0.004 0.03

For comparison of different SINS algorithms, in the motion

settings, the moving object did multiple aggressive maneuvers

(such as a turn with a large turn rate and speeding up with

a high g). The working frequency of SINS was set as 10 Hz

and the total length of simulation was 203.9 seconds. The true

trajectory and the estimated trajectories using different SINS

algorithms (at the high noise level) are shown in Fig. 7. A

zoomed-in comparisons is given in Fig. 8. As shown in Figs.

7 and 8, the 1st order approximation departs from the truth

farthest. The evaluated performance knowing the ground truth

in terms of RMSE and AEE is given in Table II and Fig. 9

(for the high noise level).
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Fig. 7. Ground truth and trajectories obtained using different SINS algorithms

We use the mock acceleration and angular velocity measure-

ments and the simulated “real” counterparts to implement our

PE method according to Eq. (21). The number of Monte-Carlo

runs is 100. On each run, the simulated “real” measurements

are regenerated with the error parameter setting given in Table

I. Mock measurements at each time are realized 10 times with

1st order approx

2nd order approx

4th order approx

true

Fig. 8. Zoomed in view of Fig. 7

TABLE II
PE OF DIFFERENT SINS ALGORITHMS KNOWING GROUND TRUTH

Noise level Metric 1st order 2nd order 4th order Rank

High
RMSE 76.9617 0.2477 6.9706e-6 3-2-1
AEE 53.6215.4884 0.1776 5.0125e-6 3-2-1

Medium
RMSE 76.9872 0.2473 6.9600e-6 3-2-1
AEE 53.6381 0.1774 5.0055e-6 3-2-1

Low
RMSE 76.9939 0.2472 6.9575e-6 3-2-1
AEE 53.6425 0.1773 5.0040e-6 3-2-1

the same noise parameter setting used for simulated “real”

measurements.

The time average RMSE and AEE for different noise

levels are listed in Tables III (for acceleration and angular

velocity). The results at each time under the high level noise

are illustrated in Figs. 10 (for angular velocity) and 11 (for

acceleration). The large errors in Figs. 10 and 11 occur at

those time steps with a large acceleration or angular velocity.

For those steps with small measurement values, the difference
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Fig. 9. Position error using PE knowing ground truth at the high noise level
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between mock and real measurements should not be large due

to their own small values.

Due to the periodicity of the angles, we should be cautious

when calculating the difference between two angles. Their

difference ∆ must always be −π < ∆ 6 π.

TABLE III
PE OF DIFFERENT SINS ALGORITHMS USING MOCK MEASUREMENTS AT

DIFFERENT NOISE LEVELS

(a) using gyroscopes measurements

Noise level Metric 1st order 2nd order 4th order Rank

High
RMSE 4.9549e-4 0.6436e-4 0.6399e-4 3-2-1
AEE 1.2822e-4 0.6258e-4 0.6228e-4 3-2-1

Medium
RMSE 4.9143e-4 0.1153e-4 0.0928e-4 3-2-1
AEE 0.8070e-4 0.0976e-4 0.0902e-4 3-2-1

Low
RMSE 4.9138e-4 0.0851e-4 0.0505e-4 3-2-1
AEE 0.7761e-4 0.0572e-4 0.0490e-4 3-2-1

(b) Using accelerometer measurements

Noise level Metric 1st order 2nd order 3rd order Rank

High
RMSE 609.06e-4 6.8087e-4 6.8080e-4 3-2-1
AEE 424.46e-4 6.6260e-4 6.6250e-4 3-2-1

Medium
RMSE 609.2e-4 1.9754e-4 1.9742e-4 3-2-1
AEE 423.0e-4 1.9208e-4 1.9196e-4 3-2-1

Low
RMSE 609.3e-4 0.5398e-4 0.5369e-4 3-2-1
AEE 422.6e-4 0.5235e-4 0.5210e-4 3-2-1
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Fig. 10. Mock angular velocity measurement based PE at the high noise level

Intuitively, the rank for the three SINS algorithms with the

1st, 2nd, or 4th order approximation should be “3-2-1”7. Such

7In a rank vector [r1, r2, r4], ri denotes the rank of the ith order
approximation, which could be anyone out of 1, 2, 3. 1 represents the best
and 3 represents the worst. So 3-2-1 means that the 1st order approximation
ranks third (the worst), the 2nd order approximation ranks second, and the
4th order approximation ranks first (the best).

a rank can also be obtained based on the average RMSE

and AEE using our PE approach. To be more specific, the

following Spearman rank distance [22]

d (ΛS ,Λi)

= 1− (ΛS−Λ̄S)
T

(Λi−Λ̄i)
√

(ΛS−Λ̄S)
T (ΛS−Λ̄S)

√

(Λi−Λ̄i)
T (Λi−Λ̄i)

(22)

where Λ̄S = Λ̄i = ((n+1)/2)e, (e = [1, 1, ..., 1]T ) and n is the

length of a rank, can be used to check the accordance between

the ranks obtained using the mock measurements based PE at

each Monte-Carlo run (denoted by Λi, i = 1, ..., 100) and the

standard rank “3-2-1” denoted by ΛS . This distance ranges

within the interval [0, 2]. d = 0 means two ranks are totally

the same, and d = 2 means that they are exactly reversed.
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Fig. 11. Mock acceleration measurements based PE at the high noise level

For example, for high level noise, the average rank distance

at each time is shown in Fig. 12. As shown in Fig. 12, the

rank of the three SINS algorithms does change at some Monte-

Carlo runs. In average of the 100 Monte-Carlo runs, the ranks

obtained using mock measurement PE have no contradictions

with the standard rank as shown in Table III. Our proposed

mock measurement based PE can work without knowing the

ground truth and is always accordant with the traditional PE

knowing the ground truth.

In Fig. 9, errors of the SINS navigation state space are

accumulated (affected by history); however, differences in

the measurement space are not significantly accumulated.

This is because a state is accumulated (affected by history)

while a measurement is not. In some cases, the 2nd order

approximation algorithm can not be well distinguished from

the 4th order algorithm. Although our PE approach is not as
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good as the direct PE in the state space, when the ground truth

is not known, it is the only way and it can at least accomplish

the PE task.

Fig. 12. Rank distance at each Monte-Carlo run

VI. CONCLUSION

In this paper, a mock measurement based PE approach with

an unknown ground truth for SINS algorithms is proposed.

Simulation results show that our proposed PE approach is

rational, which usually agrees with the PE with knowing the

ground truth. Our proposed PE can be a vital alternative when

knowledge of the ground truth is known. If the knowledge of

the ground truth is not available, traditional PE can not be

used while our proposed PE is the only choice, which can

accomplish the PE task reasonably well.

Future work includes: first testing our PE approach by

real data. Second, mock measurement generation has several

approximations resulting in the loss of information. We will

try to further analyze these approximations and their effects on

PE and try to propose new methods to generate mock mea-

surements with a high accuracy. Furthermore, our proposed

PE is accomplished in the measurement space Z , so more

theoretical analyses of the credibility and sufficiency of our

proposed PE in the measurement space are needed.
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