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Abstract—Fusing data from multiple sensing modalities, e.g.
laser and radar, is a promising approach to achieve resilient
perception in challenging environmental conditions. However, this
may lead to catastrophic fusion in the presence of inconsistent
data, i.e. when the sensors do not detect the same target due to
distinct attenuation properties. It is often difficult to discriminate
consistent from inconsistent data across sensing modalities using
local spatial information alone. In this paper we present a
novel consistency test based on the log marginal likelihood of a
Gaussian process model that evaluates data from range sensors
in a relative manner. A new data point is deemed to be consistent
if the model statistically improves as a result of its fusion. This
approach avoids the need for absolute spatial distance threshold
parameters as required by previous work. We report results
from object reconstruction with both synthetic and experimental
data that demonstrate an improvement in reconstruction quality,
particularly in cases where data points are inconsistent yet
spatially proximal.

I. INTRODUCTION

Advances in autonomous perception have enabled robots to

operate outdoors in important applications such as agriculture,

mining, defence, and autonomous driving. Resilient perception

is necessary to support further advances in situations where

robots must operate for long periods of time in challenging

and variable environmental conditions. One way to achieve

resilient perception is to employ multiple sensing modalities

(MSMs) such as visual and infrared cameras [1], laser and

camera [2], or laser and radar [3], [4].

As a system, the MSM approach can be resilient in cases

that would severely compromise any single sensor acting

alone. However, in some cases distinct sensing modalities

can detect different targets even though they are spatially

aligned. We then say that they provide inconsistent data, or

conflicting data. This situation often leads to catastrophic

fusion [5], where the quality of the representation of an object

or scene obtained using traditional Bayesian data fusion is

actually significantly degraded compared to the representations

obtained using a single source of information [6].

Our recent work in fusing data from laser and radar es-

tablished a consistency test to determine which subset of

sensing data, across multiple sensing modalities, can be fused

safely [6], [7]. This prevented the occurrence of catastrophic

fusion. In this paper we improve on this prior work for

data fusion in an MSM system by introducing an iterative

consistency test that is entirely automatic (no hand-tuned

parameter), and which significantly increases discriminatory

power, particularly when data points from multiple sensors

may appear to be locally consistent yet are inconsistent with

respect to a global model.

The consistency test in our initial work [6], based on

the Mahalanobis distance, provided encouraging results in

avoiding catastrophic fusion in cases such as the presence

of thick dust or smoke, which are often detected by lasers

but not by radars. However, this work had some limitations

and motivates further questions. Because the Mahalanobis dis-

tance essentially measures the “difference of opinion” between

sensors within a local geometric neighbourhood, a threshold

parameter is required in order to decide whether a pair of data

points are consistent (and thus safe to incorporate) or not. We

are interested in avoiding such a parameter. As a result, the

need to choose parameter values for different situations will be

removed and the consistency test will thus be more generally

applicable.

The challenge in developing consistency tests arises due

to differences between sensing modalities in terms of noise

characteristics and resolution. It is thus important to maintain

measures of uncertainty in the fused data. This case is in

contrast to work that assumes homogeneity in these factors [8],

[9], [10]. The specific challenge that we consider in this paper

is how to perform consistency tests accurately while avoiding

local threshold parameters.

In this paper we present a novel approach that uses an

iterative consistency test based on the log-marginal likelihood

of a Gaussian process (GP) model. We choose a single sensing

modality as a reference, and evaluate whether data from

other sensors statistically improve the reference model. This

approach avoids local geometric threshold parameters and can

be more discriminatory because it takes into account the global

model and does not involve absolute distances; the comparison

measures relative improvement of the GP model if the data

point under consideration was to be fused. The assumption to

bias the fusion towards one sensor that is trusted more than

others is reasonable and can occur, for example, in a scenario

with smoke or dust. Radar data are generally more immune

from airborne contaminants than are laser data, but it is still

beneficial to consider laser data where appropriate due to its
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higher resolution.

The benefits of this approach can be seen in our results

using both synthetic and experimental data. We evaluated our

algorithm, in comparison to our previous method, in an object

reconstruction task with two distinct range sensors acquiring

3D point clouds. The objects in the synthetic case have parts

made of two different materials, one being transparent for

only one of the sensors, and occluding the perception of the

other sensor. Several scenarios with varying levels of difficulty

are tested. The object in the experimental case is a car in an

outdoor environment obscured by dust. Results show that the

current method, with no hand-tuned parameter, performs at

least as well as the previous method in all cases, and performs

better in challenging cases where it is difficult to discriminate

inconsistent data locally.

This paper is organised as follows. Related work is dis-

cussed in Sec. II. Section III describes the background data-

fusion framework. Section IV then introduces the proposed

method and Sec. V presents its experimental validation. Fi-

nally, Sec. VI concludes and discusses future work.

II. RELATED WORK

The fusion of data acquired by multiple sensing modalities

has been implemented in multiple domains. Examples include:

fusing data from laser and radar [9], tactile and laser [11],

[12], and ultrasonic and laser [13]. In this context it is typi-

cally assumed that physically aligned sensors detect the same

target when pointed in the same direction [8], [9]. However,

this assumption can lead to catastrophic fusion. Therefore, a

consistency test is necessary to perform data fusion [6] when

using distinct sensing modalities.

Approaches to consistency testing include blind source

separation (BSS) methods [14] and dependency test meth-

ods [15]. With BSS methods, it is still necessary to resolve

ambiguities and there are several restrictions on the mixing

matrix structure. Dependency test methods must define the

size or number of expected clusters, which is usually un-

known. Although both methods can separate different sources

from mixed measures, they do not natively build continuous

representations or represent uncertainties with respect to the

estimates, which are accounted for in our proposed method.

Robust data fusion approaches have been implemented in

the context of Gaussian processes. A GP with a t-test prior

has been used to avoid spurious data that affects the quality of

continuous representations [16]. Our problem has been posed

in a slightly different way. Rather than applying an outlier

rejection to the data from a single sensing modality as is done

in [16], we focus on analysing data from multiple sensing

modalities by comparing models created with the GPs. In our

problem, information from multiple modalities is given (i.e.

we know the source of the data) and the goal is to detect

when the data from two sensing modalities are consistent in

order to perform robust data fusion.

Mixtures of Gaussian processes [17], [18] have also been

proposed to compare heterogeneous models. However, the

focus of application is different. In [17] and [18], the objective

is to determine the trajectories of multiple targets, whereas in

this work we want to estimate object or scene representations

by fusing data from multiple sensing modalities.

In [6] we proposed a framework using Gaussian processes

to estimate continuous surfaces with uncertainties from 3D

data provided by distinct sensing modalities. The method

compares two surfaces built from 3D points provided by each

sensing modality individually, by applying a χ2 test to the

Mahalanobis distance between two distributions representing

the two surfaces. The main drawback of this method is that a

manually predefined threshold is required to determine when

data are consistent or inconsistent, which leads to a lack of

adaptability to new situations. In addition, the comparison of

points from the two surfaces is achieved without any insight

into the potential effect that fusing points from a distinct

modality would have on the model. In this paper we propose an

entirely automatic method, with no hand-tuned parameter, that

takes data from one sensing modality and evaluates whether

or not to fuse with points from a distinct sensing modality.

This evaluation is based on the estimated impact that this

addition will have on the model. If adding this point improves

the model, it is considered consistent and fused. Otherwise it

is declared inconsistent and set aside.

III. BACKGROUND

A. Continuous Representations using Gaussian processes

In this work, we need to build continuous representations of

objects or environments from data acquired by each sensing

modality available. To that end we use GPs due to their ability

to learn spatial correlations between noisy data in a non-

parametric Bayesian fashion [19]. Assuming a single sensing

modality i, the inputs of the GP are given by the vector

Xi = [xiT

1
, ...,xiT

n ]T , where x
iT

k ∈ R
d, ∀k is one input point,

d is the dimension of each input point, and n is the number of

training points. In this work d is usually equal to 1 (for range

measurements in a plane), 2 (e.g. for an elevation map), or 3
for full 3D points, as in the experiments in Sec. V. The target

data are given by Y i = [yi
1
, ..., yin]

T , where yik ∈ R, ∀k.

For example, in the classical 2D example of elevation maps,

yk would be the elevation at a position xk in 2D space [20].

The GP provides a continuous representation of the output

function f represented by the mean estimates f̄⇤
i
(x⇤) with

uncertainties Vi(f⇤(x⇤)) which can be queried at any location

x⇤ ∈ R
d. The predicted distribution is given by:

P(f i
⇤
(x⇤) |X

i, Y i, ✓i, x⇤) = N (f̄⇤
i
,Vi[f⇤]), (1)

where ✓i are hyper-parameters. The mean f̄ i
⇤

and variance

V
i[f⇤] at x⇤ given the measured data Xi are:

f̄ i
⇤
= k(x⇤, X

i)
T
(K + σi

2I)−1Y i (2)

V
i[f⇤] = k(x⇤,x⇤)− k(x⇤, X

i)
T
(K + σ2

i I)
−1k(x⇤, X

i)(3)

where K is a covariance matrix and σ2

i is the variance of

the noise in the observed data. The hyper-parameters are

✓i = {Σi, `i, σi}, where `i is the length-scale of the data, and

Σ2

i is the signal variance. Note that σi can be learnt along
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with the other GP hyper-parameters. The optimisation of the

hyper-parameters ✓i is done by maximising the log-marginal

likelihood of the targets Y i given the training inputs Xi. This

log-marginal likelihood is given by:

LML(Y i) = −
1

2
Y iTA−1Y i −

1

2
ln |A| −

n

2
ln 2⇡, (4)

where we denote LML(Y i) , ln p(Y i|Xi, ✓i) and

A = K + σi
2I , for simplicity. The Cholesky decomposition

is used to obtain the predictors (f̄⇤ and V[f⇤]) and the

log-marginal likelihood [19].

In this work the input data are points acquired by range

sensors and we focus on cases where each observation x

is in 1D or 3D. In the 1D case we can use a Gaussian

Beam Process (GBP) [21]. This method allows for a fully

predictive model of range measurements f i
⇤
(x⇤) to be built

from only a few recorded range scans Y i and bearing angles

Xi. For the 3D case (d = 3) we use Gaussian Process Implicit

Surfaces (GPIS) [22]. In this paper the experimental validation

is focussed on the 3D case.

GPIS is a framework that models the surfaces of objects

with complex geometry. In this framework, the input points

Xi can be given as 3D point clouds, and the target values Y i

are the values of an implicit function f . In our implementation,

the implicit surface of a 3D object is represented by a 0-level

set function f defined such that f(x) represents the signed

distance between x and the surface of the object [23]. The

values of f(x) are positive for points inside the surface, and

negative for points outside. The estimation of the surface is

done by considering the observation of points on the surface

(f(x) = 0), which are usually the direct observations given by

the range sensors, as well as some points inside and outside,

also called constraints. GPIS follows the same formulation

as described in Eq. (1), where the mean and variance are

computed using Eqs. (2) and (3). 3D surface points and

corresponding variances are then computed for zero values of

f̄⇤ in Eq. (2) and Eq. (3) by querying points in a pre-defined

region that covers the area of the observed object. The surface

of an object of interest is reconstructed by computing the zero

contour of f̄⇤.

B. Gaussian Process Data Fusion

For simplicity let us assume that we have observation

data gathered by two sensing modalities i and j, denoted

(Xi, Y i) ∈ R
ni⇥d × R

ni and (Xj , Y j) ∈ R
nj⇥d × R

nj .

In [9] we described a method to fuse consistent data from

different sensing modalities using Gaussian Process Data

Fusion (GPDF). The inputs of GPDF can be composed from

the raw data of each sensing modality, e.g. X = [Xi, Xj ] and

Y = [Y i, Y j ]. Alternatively the inputs can be samples from

continuous representations of data from each sensing modality

e.g. X = [Si, Sj ], where Sk =
{

f̄ i(x⇤),V(f
i(x⇤))

 

, and a

set of target values Y = [xi
⇤
,x

j
⇤]. The variances are integrated

to the GPDF as fixed noise parameters. The result of the fusion

is a continuous representation with corresponding uncertainties

GPi
X
i

Sample

CT
ΓMCT

GXi
Y
i

Sample

GPDF
GPj

X
j

GXj
Y
j

S
i

Sample

S
i
ι

GX
ij

S
j

S
j

S
i
c

S
i
c

Fig. 1. The process of robust multiple-modality sensor data fusion presented
in prior work [6]. This process takes data from sensing modality j, Sj , as a

baseline and determines which subset S
j
c of data from modality i is consistent

with Sj by applying a consistency test (CT) using the Mahalanobis distance.

GPDF then fuses Sj with S
j
c . This results in a robust fused model GXij and a

representation ΓMCT that can be sampled as appropriate for any application.

expressed in f̄⇤ and V[f⇤] respectively:

f̄⇤ = k⇤
T (K +G)−1Y (5)

V[f⇤] = k(x⇤,x⇤)− k⇤
T (K +G)−1k⇤ (6)

where G is a non-fixed noise matrix:

G =



σi
2(Xi)Ini

0
0 σj

2(Xj)Inj

]

(7)

As in [9] we integrate different noise models into the GP

by implementing an input-dependent noise process following

Eqs. (5) and (6). Both noise parameters can be specified, e.g.

based on a predefined model, or they can be learnt along with

the other hyper-parameters.

Note that in the original formulation of the method (in [9])

we assumed that the sensing modalities did not provide any

conflicting data, i.e. that the two range sensors (a laser and a

radar) always detected the same targets when pointing in the

same direction. This was an appropriate assumption for the

experiments conducted in [9]. However, in robotics there are

many cases where this assumption is invalid, which led to the

introduction of a consistency test in our GPDF framework.

C. GPDF with Consistency Test

In [6], we proposed a framework to perform robust data

fusion that considers the difference of perception between

different sensing modalities by introducing a consistency test

applied on the sensor data in a GPDF framework. Consider

that we start from data given by modality j. Given there may

be conflicting data between the two sensing modalities, we

need to determine which subset of data acquired by modality

i should be fused with the data from modality j. The process

is illustrated in Fig. 1.

First, the method uses a GPIS to generate a continuous

representation model GXi using data from sensing modality

i only: [Xi, Y i]. We then sample points Si from the surface,

which come in the form of points where the estimated mean

f̄⇤ = 0 (the estimated distance to the surface), with a

corresponding variance. A continuous representation GXj is

also generated from the data of modality j, using another

GPIS. The corresponding surface is Sj . A consistency test

then evaluates if the sampled points Si are consistent with the

GXj model. Points that pass this test are saved in the subset of

consistent data Si
c while points that fail the test are considered
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as inconsistent data, saved in Si
ι . We then use GPDF to fuse

the data in Si
c with samples from GXj . This produces a final

model GXij and a corresponding surface ΓMCT .

In this prior work, the consistency test was formulated

within a hypothesis testing framework. Consider the point

currently tested to be x⇤. The hypothesis (H) was that x⇤

is located on Si but not on Sj . To test our hypothesis we

compared the two distributions expressed using Eq. (1) for

modalities i and j, respectively. We used the Mahalanobis

distance (D(x⇤)) to express the distance between the two

distributions at x⇤. Considering that given H , D2 has a χ2

density with one degree of freedom, the validity of our hypoth-

esis was subjected to a χ2 acceptance test. Our hypothesis was

thus tested using the following criteria:

H : D2 > χ2

1−tα
. (8)

Therefore, we considered that x⇤ was on surface Si but not on

Sj if Eq. (8) was true. We used a significance level tα = 0.05,

which gave us 95% probability concentration region of D2.

In [6] we demonstrated the approach with data acquired

by a laser (modality i) and a radar (modality j) in scenarios

where the object (or scene) of interest is partly covered with

a material that is detected by modality i but is transparent for

modality j. An example of this scenario in field robotics is the

presence of thick dust in the air, which is often detected by a

laser but not by a radar, whose waves penetrate through. In this

case, the inconsistent points Si
ι correspond to the detection of

dust by the radar. Using this proposed process, we were able to

reconstruct a car surrounded by a significant amount of dust,

by fusing radar data with consistent data from the laser.

IV. GPDF WITH LOG-MARGINAL-LIKELIHOOD

CONSISTENCY TEST

The main drawback of the previous method is that a

manually predefined threshold is required to determine how to

separate the consistent data from the inconsistent data. Conse-

quently, the method does not adapt well to different situations

and scenarios, especially when the frontier separating the two

types of data is very fine. In addition, all input points are

tested before any fusion is executed, ignoring the actual impact

that adding points from another modality will have on the

fused model. In this paper, we propose to make the decision

of whether to add points from the second sensing modality

based on the likely impact it will have on the fused model. If

adding a point leads to an improvement of the model (in terms

of data fit) then the point is considered as consistent and is

kept for fusion.

Our proposed method is based on an iterative evaluation of

the log-marginal likelihood (LML) of the data. It incorporates

a trade-off between model fit, model complexity and the

number of points used. This trade-off is achieved by iteratively

updating the model GXj with sampled points from GXi. Each

sampled point from modality i is accepted in the model (i.e.

accepted for fusion) if the LML of the model with the added

point is greater than the LML without the point. The output of

GPi
X

i

Sample

LML

GXi

Y
i

GPj
X

j
GXj

Y
j

X
i*

,Y
i*

GXup

iLMLCT

hola

Sample
Γ  iLMLCT

Fig. 2. GPDF with iLMLCT. k random samples taken from the model
GXi are tested for consistency with GXj prior to fusion. If adding a
sample improves the model then the point is fused and the model GXup

is updated accordingly. This improvement is tested using a log-marginal
likelihood criteria. This process is repeated to test all k samples. The output of
the process is the fused model GXup, from which a continuous representation
ΓiLMLMCT can be sampled as appropriate for any application.

Algorithm 1: Iterative LML Consistency Test Algorithm

Input: GXi, GXj , Xj , Y j

Output: GXup, Si
ι , S

i
c

Parameters: σi,σj , k,K,L

1 [Xi⇤, Y i⇤] = sample(GXi, Ni)
2 [Xup, Y up] = [Xj , Y j ]
3 GXup = GXj

4 for p = 1 : k do

5 Y j+ = Y up ∪ Y i⇤(p)

6 Xj+ = Xup ∪Xi⇤(p)

7 K⇤ = KUpdate(K,Xj+(p))

8 if LML(Y j+) > LML(Y up) then

9 [L,GXup] = GXUpdate(GXup,K⇤,σj ,σi, L)

10 Y up = Y j+

11 Xup = Xj+

12 Si
c = Si

c ∪ [Xi⇤(p), Y i⇤(p)]
13 K = K⇤

14 else

15 Si
ι = Si

ι ∪ [Xi⇤(p), Y i⇤(p)]

this process is a fused model (GXup) that incorporates only

the consistent data from modality i into the model GXj .

A. Iterative Consistency Test using LML

The proposed process of iterative log-marginal likelihood

consistency (iLMLCT) test is illustrated in Fig. 2 and Al-

gorithm 1. Similarly to the process described above in

Sec. III-C, we start with a GPIS model built from data from

modality j only, and consider which part of the data from

modality i should be integrated in a fused model. First a model

GXi is built from the modality i data only, which provides

a continuous representation, and also the sensor data noise

characteristics. Ni samples ([Xi⇤, Y i⇤]) are then randomly

taken from GXi (on the surface at f = 0 in the 3D case).

In practice, in this paper we used Ni = 2ni, where ni is the

number of input points from modality i, i.e. the size of Xi.

Then, for each sample, one by one, we evaluate the potential

impact the addition of this sample would have on the model.

This is tested by comparing the log-marginal likelihood of
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the current model LML(Y up) (from Eq. (4)) with the log-

marginal likelihood after adding the new point, LML(Y j+):

LML(Y j+) = −
1

2
Y j+

T

B⇤−1
Y j+−

1

2
ln |B⇤|−

n+ 1

2
ln 2π,

(9)

where Y j+ = Y up ∪ Y i⇤(p) is the new set of targets, and

B⇤ = K⇤ + diag(σ2

j , ..., σ
2

j , σ
2

i ). K⇤ is the updated covari-

ance matrix, and is obtained by augmenting K with the

covariance values between the new point Xi⇤(p) ∈ R
d and

the set Xj (see in Line 7 of Algorithm 1).

If LML(Y j+) > LML(Y up) then the new point is consid-

ered as consistent, therefore, it is added to the subset Si
c and

will be fused in the model. Thus, the set of points Xup, Y up

and model GXup including the Cholesky factor L and co-

variance K, will be updated by adding the new observation.

Updating the model (see details below in Section IV-B) is

done by using the function GXUpdate which approximates

the inversion of an updated K⇤ by computing a Cholesky

factor L0.

On the other hand, if the LML with the added point is

lower, then the point is considered inconsistent, therefore, it

is added to Si
ι and is not labelled for fusion in the model.

The process is repeated for each of the Ni samples taken

from modality i. Once the process is completed, we have

an improved continuous model GXup that is the result of

the fusion of data from modality j with the full subset of

consistent data from modality j. The model can then be

sampled as needed by the application, for example to generate

a surface Γup in the 3D case.

B. Updating the Model with New Points

Since this method requires updating our GP model iter-

atively, and building a new GP model is computationally

expensive, it is important to perform this operation in an

efficient way. We use the Cholesky decomposition to reduce

the computational cost from O(n3) to O(n2) [24] when

incorporating a new point (x⇤) into a covariance matrix K.

This is calculated as shown in Eq. (10) and (11), where

K3,3 = k(x⇤,x⇤) and c3 is the solution of the linear system

Lc3 = k1,2, where c3 = [a b]T :

M =

"

K1,1 K1,2

K1,2 K2,2

#

, L =

"

C1,1 C1,2

0 C2,2

#

(10)

L0 =

2

6

4

C1,1 C1,2 a

0 C2,2 b

0 0 chol(K3,3 − cT
3
c3)

3

7

5
(11)

The mean estimates f̄⇤ and variances V[f⇤] are computed

using the new Cholesky factor L:

f̄⇤ = KT
⇤
α, (12)

V[f⇤] =
L0

K⇤

, (13)

where α = LT \(L0\Y up). This process is repeated for each

of the Ni sampled points from GXi that need to be added to

the model.

V. EXPERIMENTAL VALIDATION

We evaluated the ability of the approach to generate accurate

reconstructions of the surfaces of objects in the environment

by fusing data acquired by two distinct sensing modalities.

Both sensors have been spatially aligned a priori, and in all

experiments the targets detected by the sensors are static in

the form of 3D point clouds. We first evaluated the proposed

approach using synthetic data of objects scanned by virtual

sensors (Sec. V-B), then using real experimental data of

objects scanned by sensors on-board an outdoor mobile robot

(Sec. V-C). In this section, we first describe the metrics used

to analyse the results, then we describe and analyse the results

obtained using simulated and experimental data.

A. Performance Metric

To evaluate the performance of the proposed robust Data Fu-

sion approach, in the experimental results below we compute

the accuracy of the fused continuous representations obtained

after robust fusion and compare them with the method in prior

work and with the reconstructions achieved with only one type

of sensing modality. To calculate the error between a set of

samples from an estimated surface S⇤ and a ground-truth (GT)

surface (e.g a CAD model), SGT , we compute the root-mean-

squared error (RMSE) of the Euclidean distance between each

point X⇤(p) on S⇤ and the closest point on SGT . Naming this

distance dist(X⇤(p)) and considering N sample points gives:

RMSE =
N
X

p=1

p

dist2(X⇤(p))

N
. (14)

In the experiments below we use N = 10, 000 samples.

B. Simulated Objects Test case

We first validated the ability of the approach to accurately

reconstruct the surface of 3D objects (d = 3) by using

synthetic data and setting up different challenging scenarios, in

particular due to the presence of a material that is transparent

for one sensor but not for the other. We show that the method

can accurately reconstruct the surface of the objects even when

they are partially covered by this transparent material.

1) Testing Conditions: Synthetic objects were scanned by

two virtual sensors namely i = L (virtual laser) and j = R

(virtual radar), with XL ∈ R
nL⇥d and L ∈ X

RnR⇥d
. We

considered objects composed of two different materials, ϕ1

and ϕ2. In this context, sensor L is able to reliably detect

both ϕ1 and ϕ2. However, the material ϕ1 is transparent for

R, which is only able to detect ϕ2. For these simulations, CAD

models of the objects made of ϕ2 were used as ground truth.

2) Space-Bunny Results: In the first test scenario we use

data from the Stanford-bunny [25] in different conditions.

To analyse the difference of perception during data fusion

we tested two different scenarios where the Stanford-bunny

is equipped with different sizes of a helmet that is partially

covering the top of the bunny. We assume that the Stanford-

bunny is made of ϕ2, with a spherical helmet made of ϕ1,

i.e. transparent for modality R (virtual radar). The considered
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(a) GT (b) GT
(wireframe)

(c) Laser data (d) Radar data

(e) SL (f) Γ (g) ΓMCT (h) ΓiLMLCT

(i) Uncertainty: 2 std. deviations (2
p

V[f∗]), in m

Fig. 3. Stanford Bunny Results. Both sensing modalities consistently observe
the same object. (a) Ground truth: the Stanford Bunny, made of material ϕ2

(in red). (b) Wireframe representation. 3D point clouds from the simulated
scans are shown in (c) for sensor L (nL = 330 points) and (d) for sensor R
(nR = 166 points). (e-h) show reconstructions using GPIS, coloured by
uncertainties, from blue to red, where red is the highest level of uncertainty
(see (i)). (e) GPIS reconstruction using only data from sensor L. (f)
GPIS reconstruction using GPISDF without consistency test. (g) GPISDF
reconstruction with consistency test using Mahalanobis Distance (MCT). (h)
GPISDF reconstruction after consistency test with LML.

TABLE I
RMSE OF GPIS OF STANFORD-BUNNY (IN M)

RMSE ± std. dev.

SL 0.017 ± 0.014

SR 0.049 ± 0.034

Γ 0.016 ± 0.012

ΓMCT 0.017 ± 0.013

ΓiLML 0.017 ± 0.013

% inconsistent points

MCT 3%
iLMLCT 2%

noise level was taken as σL = 0.03m for sensor L and as

σR = 0.1m for sensor R. We call this object the Space Bunny.

The bunny fits in a box of dimensions 1.4× 1.5× 0.6m3.

To get some initial insight into the performance of the

the consistency test methods we first tested a control case

where the bunny has no helmet, hence there is no significant

difference of perception between the sensors (see Fig. 3).

Because both sensing modalities are able to detect materials

ϕ2, the method should find that all points from both sensing

modalities are consistent. Any point found to be inconsistent

would represent a false alarm. Table I quantifies the results

obtained for the Stanford-Bunny in terms of RMSE and

standard deviation (std. dev.) of the error over the N samples,

as defined in Sec. V-A. The GT is the full-resolution surface

representation of the bunny. Results for laser reconstruction

SL, radar reconstruction SR, fusion without consistency test

Γ, fusion with Mahalanobis distance consistency test (MCT)

ΓMCT and fusion with LML test ΓiLML, are compared.

TABLE II
RMSE OF GPIS OF

SPACE-BUNNY WITH BIG

HELMET (IN M)

RMSE ± std. dev.

SL 0.102 ± 0.152

SR 0.049 ± 0.036

Γ 0.165 ± 0.164

ΓMCT 0.017 ± 0.024

ΓiLML 0.017 ± 0.020

% inconsistent points

MCT 38%
iLMLCT 39%

TABLE III
RMSE OF GPIS OF

SPACE-BUNNY WITH SMALL

HELMET (IN M)

RMSE ± std. dev.

SL 0.074 ± 0.079

SR 0.049 ± 0.036

Γ 0.073 ± 0.080

ΓMCT 0.030 ± 0.019

ΓiLML 0.029 ± 0.019

% inconsistent points

MCT 23%
iLMLCT 27%

We can see that the accuracy obtained by the fusion methods

with consistency test is comparable with the regular fusion

without the test, which confirms that almost all points were

found consistent. The table also shows that, as expected, only

a very small fraction of L points (2%) were found inconsistent

and excluded from the fusion points by the iLML test.

Fig. 4 shows the Space Bunny. We considered two scenarios,

by varying the dimensions of the helmet. The first case

shown in Fig. 4 is the Space-Bunny-Big-Helmet (a-h), where

the helmet covers the whole top of the bunny. This object

fits in a box of dimensions 1.5× 1.8× 0.8m3. The second

scenario is Space-Bunny-Small-Helmet (i-p). It is even more

challenging, with a smaller helmet that does not cover the ears

completely, and also intersects with the head of the bunny.

The Space-Bunny-Small-Helmet fits in a box of dimensions

1.4× 1.5× 0.7m3.

Table II shows the RMSE results for the Space-Bunny-

Big-Helmet. The objective is to accurately reconstruct the

bunny itself, despite the presence of the helmet. Therefore,

the ground-truth surface in this case was that of the bunny

alone. We can see that the fusion methods with consistency

test are again nearly three times as accurate as what could be

achieved with the virtual radar data alone (RMSE = 0.017m
vs. 0.049m), and 10 times more accurate than the fusion that

integrates all points from both sensing modalities (i.e. without

consistency test). Note that the results obtained with the MCT

and the new iLML method are comparable, but the uncertainty

is slightly lower with the latter. To reach those results, both

methods excluded a significant percentage of the L points from

fusion (close to 40%), as they were found to be inconsistent.

Table III shows the RMSE results for the Space-Bunny-

Small-Helmet. Again both fusion methods with consistency

tests produce an accurate representation of the surface of the

bunny, but in this more challenging situation, the new iLML

method performs better, with slightly lower RMSE, and this

was obtained without hand-tuning any threshold. To reach

those results, the new method excluded more inconsistent

points from fusion than the previous method (27% vs. 23%).

3) Knot-Oval Results: In the second test scenario we con-

sider the task of reconstructing the surface of a knot made

of ϕ2 despite the presence of a polygonal ellipsoid made

of ϕ1, i.e. transparent for sensor L, and with noisier data:

448



(a) Object (full) (b) Object (wire-
frame)

(c) Laser data (d) Radar data

(e) SL (f) SR (g) ΓMCT (h) ΓiLMLCT

(i) Object (full) (j) Object (wire-
frame)

(k) Laser data (l) Radar data

(m) SL (n) SR (o) ΓMCT (p) ΓiLMLCT

Fig. 4. Variants of the Space-Bunny object. (a) and (i): The synthetic object
composed of a spherical helmet made of material ϕ1 (in blue) on top of the
Stanford bunny, made of material ϕ2 (in red, GT). (b) and (j): Wireframe
representation, showing the part of the Bunny occluded by the helmet. 3D
point clouds from the simulated scans are shown in (c) (482 points) and
in (k) (251 points) for sensor L, and in (d) and (l) for sensor R (166
points). (e-h) and (m-p) show reconstructions using GPIS, coloured by
uncertainties, from blue to red, where red is the highest level of uncertainty.
(e) and (m): GPIS reconstruction using only data from sensor L. (f) and
(n): GPIS reconstruction using only data from sensor R. (g) and (o):
GPISDF reconstruction with MCT. (h) and (p): GPISDF reconstruction
after consistency test with LML.

σL = 0.06m and σR = 0.25m. In the first case considered,

the ellipsoid covers the knot entirely, see Fig. 5(a-e). As a

result, modality R only perceives the knot while sensor L only

perceives the ellipsoid around it. This means that effectively

all sensor L data points are inconsistent with sensor R data

points. We name this object Knot-Big-Oval. The object fits in

a box of dimensions 2.99× 3.36× 2.35m3. Table IV reports

the quantified results for the surface reconstructions shown

in Fig. 5(f-h). The RMSEs show that the reconstruction of

the knot by the method using the MCT test is worse than

the surface reconstructed with radar data only (SR), while the

surface obtained with the new test iLML is almost as accurate

as SR. This is most likely due to the fact the MCT method only

(a) Object (full) (b) GT (c) Object (wire-
frame)

(d) Laser Data

(e) Radar Data (f) SR (g) ΓMCT (h) ΓiLMLCT

(i) Object (full) (j) GT (k) Object
(wireframe)

(l) Laser Data

(m) Radar Data (n) SR (o) ΓMCT (p) ΓiLMLCT

Fig. 5. Knot-Oval Results. (a) and (i): Full objects, including a polygonal
ellipsoid made of material ϕ1 (in blue). (b) and (j): The object to reconstruct:
knot made of material ϕ2 (in red, GT). (c) and (k): Wireframe representation
of the full object. 3D point clouds are shown in: (d) (nL = 282 points) and
(k) for (nL = 343 points) for L data, and (e) and (m) for R data (nR = 85
points in both cases). (f-h) and (n-p): Reconstructions using GPIS, coloured
by uncertainties, from blue to red, as shown in the colour bar. (f) and (n):
GPIS reconstruction using only data from Sensor R. (g) and (o): GPISDF
reconstruction using MCT. (h) and (p): GPISDF reconstruction using iLML.

TABLE IV
RMSE OF GPIS OF

KNOT-BIG-OVAL (IN M)

RMSE ± std. dev.

SR 0.055 ± 0.051

ΓMCT 0.069 ± 0.065

ΓiLML 0.058 ± 0.054

% inconsistent points

MCT 92%
iLMLCT 97%

TABLE V
RMSE OF GPIS OF

KNOT-SMALL-OVAL (IN M)

RMSE ± std. dev.

SR 0.055 ± 0.051

ΓMCT 0.089 ± 0.086

ΓiLML 0.037 ± 0.039

% inconsistent points

MCT 78%
iLMLCT 76%

rejected 92% vs. 97% for iLML. In some places the ellipsoid’s

surface is very close to the knot’s, making the consistency test

challenging, especially for MCT considering the high level of

noise in the R data.

The second case is even more challenging: the polygonal
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Fig. 6. The UGV equipped with laser and radar sensors used in this work.

ellipsoid is slightly smaller and its surface intersects with

the knot in many places, see Fig. 5(i-l). Modality R still

perceives the knot only, while sensor L perceives the ellipsoid

and a few sections of the knot (Fig. 5(i)). We name this

object Knot-Small-Oval. Table V quantifies the accuracy of the

surface reconstructions shown in Fig. 5(n-p). Once again the

reconstruction of the knot when using the MCT test is worse

than SR. On the other hand, the RMSEs obtained indicate that

the surface obtained with iLML is significantly more accurate

than SR. Although the shape of SR looks reasonably accurate

in Fig. 5(n), the knot is actually too thin compared with the

ground truth and ΓiLML.

C. Real-World Experiments

1) Experimental Setup: We also tested the proposed ap-

proaches using real experimental data extracted from the

datasets in [26], which were collected using an unmanned

ground vehicle (UGV) (see Fig. 6) equipped with two range

scanners (laser and mm-wave radar) and a cm-accuracy 6-DOF

dGPS/INS localisation unit. The laser was a 2D Sick LMS291,

with a 180◦ field of view (FOV), 0.25◦ angular resolution

and a range resolution of 0.01m. The mm-wave radar was

a 94GHz Frequency Modulated Continuous Wave (FMCW)

radar. Its field of view (FOV) is 360◦, but it was restricted to

the front view in these experiments, to be comparable with the

laser. The radar’s angular resolution is 2◦ and range resolution

is 0.2m. The two sensors were roughly aligned at a fixed tilt

angle, and then calibrated to determine the actual transforma-

tion between them. To acquire the 3D data, the platform was

driven around a rural environment, scanning objects multiple

times from multiple perspectives from distances varying from

2m up to 30m. Dust was introduced into the scene, affecting

the perception of the laser scanner, which consistently detected

airborne dust particles.

2) Data Preparation: Laser and radar data were pre-

processed as described in [9]. The result is a set of 3D

points per scan, similar to the data provided by a multi-echo

laser sensor. Laser and radar raw scans were then cropped

to only keep data where the two sensors’ FOVs overlap.

Laser and radar points were then transformed into a common

global navigation frame. This transformation was obtained by

combining the output of a prior extrinsic sensor calibration

(using the technique in [27]) with the localisation of the UGV.

Fig. 7. The UGV (left) observing the car (right) surrounded by dust.

The object of interest was then manually segmented from the

full point cloud obtained with each sensing modality.

3) Experimental Results: We followed the proposed pro-

cess to perform a robust GPIS data fusion, where individual

laser and radar surfaces (SL and SR, respectively) were first

generated and then subjected to the proposed consistency test.

Since we operated in environments with airborne dust, in these

experiments we considered the radar as the baseline sensing

modality (i.e. modality j in the algorithm described in Sec. IV)

and we used the consistency test to determine which points

from the laser should be fused into the model.

A car covered with airborne dust was scanned by our UGV

(see Fig. 7). The car’s surface was then reconstructed using

GPIS for each sensing modality, and using our proposed

method. Figs. 8(a) and 8(b) show the raw data acquired by

the laser and radar, respectively. Fig. 8(d) shows that GPISDF

without consistency testing generates an unrecognisable shape,

and has high uncertainty levels. This is because many dust

points were fused together with points from the car. On

the other hand, the proposed GPIS robust data fusion (see

Fig. 8(f)) was able to recover the basic shape of the car,

without the inconsistent data from the dust, and also to

dramatically reduce the uncertainty levels of the estimates.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new data fusion method

based on Gaussian Processes that is appropriate for data pro-

vided by distinct sensing modalities. The method introduces

a non-parametric data consistency test based on the iterative

evaluation of the log-marginal likelihood of the data. We

provided experimental analysis comparing the results of 3D

surface reconstructions with other algorithms including single-

modality reconstructions and our previous method based on

the Mahalanobis distance. The proposed method showed a sub-

stantial improvement in the accuracy of surface representations

and a reduction of uncertainty, especially in challenging cases

when conflicting data between different sensing modalities

were spatially close to each other.

In future work, we consider building highly accurate

ground-truth of objects scanned by UGVs in the field to further

evaluate the impact of this method in field robotics scenarii.

We will also extend the experimental analysis by using other

performance metrics such as the negative log probability
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(a) Raw laser data. (b) Raw radar data.

(c) Radar Reconstruction (SR) (d) Data fusion without Consistency
Test (Γ).

(e) ΓMCT (f) ΓiLMLCT

Fig. 8. Experimental results. Estimation of the surface of a car covered with
dust, as shown in Fig. 7. Surface reconstructions are coloured by uncertainties,
from blue to red, where red is the highest level of uncertainty. (a) Raw laser
data. (b) Raw radar data. (c) GPIS Radar Reconstruction surface estimate.
The reconstructed car fits in a box of dimensions 3.25× 1.89× 5.02m3.
(d) GPISDF surface estimate without consistency test, showing parts
of the car and the dust cloud, The reconstructed car fits in a box of
dimensions 4.49× 2.32× 6.93m3. (e) Surface reconstruction obtained with
the GPISDF with the MCT method. (f) Surface reconstruction obtained with
the GPISDF with the proposed iLMLCT method.

(NLP), which takes prediction variance into account [19]. One

of the limitations of the proposed method is that covariance

matrix updates will be more computationally expensive as

more points are added to the reference model. We could

reduce the number of initial points to be tested by performing

a preliminary consistency test such as suggested in prior

work [6], with a very tolerant criteria. Another improvement

can be obtained by using sparse approximations [28]. Finally,

although the results in this paper were obtained using two

sensing modalities, the framework could also be used for

situations with a larger number of sensing modalities.
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