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Abstract—Joint target tracking and classification is a chal-
lenging problem where the class of a target must be estimated
in addition to its kinematic states, such as position and velocity.
This problem is of special importance both in civilian and in
military domain, where target classification plays an important
role in the decisions that an operator makes. Moreover, when
several sensing options are available for performing joint target
tracking and classification then a sensor management problem
arises in addition to the joint tracking and classification problem.
For addressing this sensor management problem, we propose
managing the uncertainty in the threat-level of a target under
observation. Since threat is a context-sensitive quantity, it can
be defined in different operational contexts both civilian and
military. This makes threat-based sensor management for joint
classification and tracking a promising alternative to standard
sensor management schemes that can be found in the literature.
In order to support the latter statement and demonstrate the
potential of our idea, we show simulated examples from both
domains.

Index Terms—Sensor management, operational risk, threat
assessment, target tracking, target classification.

I. INTRODUCTION

In many decision-making problems situation awareness

plays a crucial role. Most commonly, good situation awareness

is necessary when targets (e.g. aircrafts and vessels) are

observed in the context of safety, security, and defense ap-

plications. Example scenarios include maritime traffic control,

counter-piracy operations, and area surveillance and defence.

Good situation awareness implies having good knowledge

about the location and types of targets that are in an area of

interest. In order to obtain this knowledge, the problem of joint

tracking and classification of targets must be solved.

Joint target target tracking and classification is necessary

since the target tracking and classification problems are cor-

related. If one can estimate correctly the kinematic model of

a target then the class of said target can be estimated more

easily and more accurately. Similarly, if the class of a target

is known then a better/more accurate kinematic model can be

used for tracking said target.

Very often different sensors are used for solving these two

problems. A surveillance radar is commonly used for observ-

ing an area of interest and estimating the kinematic properties,

such as position and velocity, of targets in that area. Targets

can then be classified using various passive and active systems

such as the radar itself, Automatic Identification System (AIS),

and cameras. Some targets are co-operative and report their

class via a reporting/communication system, e.g. using AIS.

In other cases, the reporting system might fail or targets can be

non-cooperative, which makes their classification an additional

task for the sensors and the operators. After classifying the

observed targets, it is possible to use the obtained information

(position,velocity, class etc) about these targets in order to

make decisions and take proper actions.

When only a radar is available and the observed targets are

non-cooperative, it is still possible to use its measurements for

solving the joint target tracking and classification problem.

In such case, target classification is usually achieved using

different kinematic and RCS models for different classes of

targets. Some prominent examples from the literature can be

found in [1], [2], [3], [4], [5].

The inference part of this joint problem has received a lot

of attention but much less research effort has been devoted to

sensor control for obtaining improved estimation and classi-

fication results. In fact, one can find several publications that

address the sensor management problem for target tracking

(e.g. [6], [7]) and classification (e.g. [8], [9]) separately but to

the best of our knowledge there are no publications that discuss

the sensor management problem for joint target tracking and

classification, except for [10] where the uncertainty in target

class is mentioned but eventually not modeled. When joint

target tracking and classification is considered, it can be

expected that different sensing options (e.g. waveform param-

eters) can result in better tracking accuracy at the expense of

classification accuracy and vice versa. As a result, the sensor

resources must be allocated such that a good trade-off between

tracking and classification accuracy is achieved.

In this paper we look at the sensor management problem

when joint target tracking and classification is of interest. We

explore the behavior of two task-based and information-driven

criteria and we propose solving this problem on an higher

JDL level, i.e. by performing sensor management such that

the uncertainty in the threat-level of a target of interest is

managed. Accordingly, we enrich the threat models presented

in [11], [12] such that target classification can also be taken

into account. We demonstrate our idea using examples taken

both from civilian and from defence contexts. Asset protection
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serves as an example from a defence context, whereas air-

traffic-control serves as an example from a civilian context.

Section II discusses the system setup and formulates the

joint target tracking and classification problem that we seek

to address using sensor management. Section III presents the

existing approaches to sensor management based on quantities

from a running filter. Section IV presents the proposed threat-

based sensor management scheme. Simulated examples are

shown and discussed in Section V. Finally, the paper is

concluded with Section VI.

II. SYSTEM SETUP AND PROBLEM FORMULATION

The system setup that is considered here is similar to the

setup used in [1].

The state vector of a target at time k is denoted by xk ∈ R
nx

and usually comprises position, velocity, and other kinematic

variables in 2 or 3 dimensions. The class of a target is a time-

invariant and discrete attribute denoted by c and taking values

c ∈ {ci : i = 1, . . . , n}, where i is the class indicator.

Examples of target classes include commercial airplanes,

fighters, bombers, UAVs etc. Different classes of targets have

different motion envelopes, meaning that targets that belong to

the same class have similar maneuverability and speed limits,

which are different from those of targets from another class.

The evolution of the state vector can be described by a

generic state equation:

xk = f(xk−1, ci) +wk(ci) (1)

where f(·) is a possibly non-linear function of state xk−1 and

class ci, wk(ci) is the class-dependent process noise.

The measurement at time k is denoted by zk ∈ R
nz . The

measurement is described by the measurement equation:

zk = h(xk, uk) + vuk,k (2)

where h(·) is a possibly non-linear function of state xk

and depends on the sensor (mode) selection uk, and vuk,k

is the sensor (mode)- dependent measurement noise. The

measurement history up to and including time k is denoted

by Z1:k = {z1, . . . , zk}. The sensor (mode) selection history

up to and including time k is denoted by U1:k = {u1, . . . , uk}.

The Bayes-optimal target and class pdf p(xk, ci|Z1:k) esti-

mator for the above system has been used in [4], [1], [5], [3],

[2]. The prediction step is given by:

p(xk, ci|Z1:k−1) =

∫
p(xk|xk−1, ci)×

p(xk−1, ci|Z1:k−1) dxk−1 (3)

and the measurement update step is given by

p(xk, ci|Z1:k) =
p(zk|xk, ci,Z1:k−1, uk) · p(xk, ci|Z1:k−1)

p(zk|Z1:k−1, uk)
(4)

where p(zk|Z1:k−1, uk) is a normalizing constant given by

p(zk|Z1:k−1, uk) =
n∑

i=1

∫
p(zk|xk, ci,Z1:k−1, uk)×

p(xk, ci|Z1:k−1) dxk (5)

The posterior class probabilities P (ci|Z1:k) can be evaluated

via marginalization of the updated joint pdf, which results in:

P (ci|Z1:k) =
Λi
k∑n

j=1

[
Λj
k · P (cj |Z1:k−1)

]P (ci|Z1:k−1) (6)

where Λi
k = p(zk|ci,Z1:k−1, uk) is the likelihood function of

class i at time k given the sensor selection uk.

The problem that we want to address in this paper is the

selection of the best sensor (or sensing mode) uk at every

time instance k. In other words, we seek to solve at every

time instance the following optimization problem

uk = argmin
u

{J (xk,Z1:k−1, z, u)} (7)

by comparing different criteria J(·).

III. SENSOR MANAGEMENT FOR CLASSIFICATION AND FOR

TRACKING

Here we present and discuss shortly different approaches

to sensor management that can be found in the literature for

taregt tracking and for classification.

A. Sensor management for target tracking

In order to produce Bayes-optimal sensor management

results, it has been suggested to optimize quantities that are

relevant to the sensing tasks and to the operational goal of a

system, hence the name task-based sensor management. One

of the most common approaches when tracking a target is to

select the sensing action such that a covariance-based measure

is optimized, see [13], [14]. The trace of the covariance matrix

is usually considered when tracking a target using a variant of

the Kalman Filter and a sensing action is selected such that

its expected value is minimized.

The second most popular Bayes-optimal approach to sensor

management is to use information theoretic measures of un-

certainty. Accordingly, a sensor manager selects the sensing

action that minimizes the conditional or the Rényi entropy of

the estimated pdf p(xk|Z1:k) at time k given by Eq. (8) and

(9) respectively.

H(Xk|Z1:k) = −

∫
p(zk)

∫
p(xk|Z1:k)×

log (p(xk|Z1:k)) dxk dzk (8)

Hα(Xk|Z1:k) = −

∫
p(zk) log

(∫
pα(xk|Z1:k) dxk

)
dzk

α− 1
(9)

where Xk is a random variable denoting the state at time k,

(xk, zk) are the state and measurement realizations at time k,

and α ∈ (0, 1).
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Another popular information-theoretic criterion is the

Kullback-Leibler divergence (KLD), presented in [15], [16]

and given by Eq. (10).

D [p(Xk|Zk)||p(Xk)] =

∫
p(xk|zk) log

(
p(xk|zk)

p(xk)

)
dxk

(10)

where p(Xk) denotes the predicted pdf before the measure-

ment update step.

In this paper we use the trace of the covariance matrix and

the conditional entropy as measures of uncertainty in a pdf.

We choose the conditional entropy instead of KLD because

the conditional entropy is easier to implement than the KLD,

especially in light of our proposed approach that is discussed

in the following section.

B. Sensor management for target classification

Sensor management for target classification is mostly related

to radar waveform parameter selection such that the RCS (or

scattering characteristics) and/or the kinematic properties of a

target can be estimated accurately. Typical examples include

[8], [9].

Both publications formulate the target classification problem

as a multiple hypothesis testing problem and propose sensor

management schemes in this context. In both papers infor-

mation theoretic notions of uncertainty are used for selecting

the best waveform parameters and compared to selecting a

waveform such that the SNR at the output of the receiver

matched filter is maximized or to a waterfilling approach.

IV. THREAT-BASED SENSOR MANAGEMENT

As it can be seen in the previous section, sensor manage-

ment is considered separately for tracking and for classification

in the literature. This separation can create problems when

joint classification and tracking is of interest. Using sensor

settings that are optimal for tracking might result in poor clas-

sification accuracy and vice versa. Moreover, in both problems

the proposed criteria do not take into account the operational

context but rather focus on the estimation/classification ac-

curacy. In practice, a different tracking versus classification

accuracy trade-off might be optimal in different operational

contexts. For example, classification accuracy might be more

important in a military operation whereas tracking accuracy

might be more important in an ai-traffic-control scenario.

As an alternative to the sensor management approaches

presented in the previous section, we propose managing the

uncertainty in higher level quantities, such as the threat level

of a target. A longer discussion about this approach can be

found in [12], [11].

According to the proposed method, we first evaluate the

threat pdf of a target and then we manage the uncertainty in

the threat pdf. The motivation behind this approach is that

operational decisions are usually based on the results of the

threat assessment process. If there is low uncertainty in the

threat-level of targets then better decisions can be made and

with higher confidence in them.

In this paper we use the same threat definitions as in

[12]. For the sake of completeness we present these threat

definitions here.

From the defense domain, asset protection is considered.

Accordingly, the threat that is posed by a target i to asset j

depends on how close and how fast target i can come to asset

j. These are measured by the time and range to closest point

of approach (CPA), which for a target i and an asset j with

corresponding state vectors x
(i) = [x(i) v

(i)
x y(i) v

(i)
y ]⊺ and

x
(j) = [x(j) v

(j)
x y(j) v

(j)
y ]⊺ are given by:

t
ij
CPA = −

∆ij
x ∆

ij
vx

+∆ij
y ∆

ij
vy√(

∆ij
vx

)2

+
(
∆ij

vy

)2
(11)

d
ij
CPA =

√(
∆ij

x + t
ij
CPA∆

ij
vx

)2

+
(
∆ij

y + t
ij
CPA∆

ij
vy

)2

(12)

where

∆ij
pos = [∆ij

x ∆ij
y ]

⊺
= [x(i) y(i)]

⊺
− [x(j) y(j)]

⊺
(13)

∆ij

vel
= [∆ij

vx
∆ij

vy
]
⊺
= [v(i)x v(i)y ]

⊺
− [v(j)x v(j)y ]

⊺
(14)

In order to move from the time and range domain to the

single-target threat domain T = [0, 1], a sigmoid function can

be utilized for example1:

θt

(
x
(i);x(j)

)
=





1 , |tijCPA| ≤ t1

1− 2
(

|tij
CPA

|−t1
t0−t1

)2

, t1 < |tijCPA| ≤ t0.5

2
(

|tij
CPA

|−t0
t0−t1

)2

, t0.5 < |tijCPA| ≤ t0

0 , t0 < |tijCPA|
(15)

θd

(
x
(i);x(j)

)
=





1 , dCPA ≤ d1

1− 2
(

d
ij
CPA

−d1

d0−d1

)2

, d1 < d
ij
CPA ≤ d0.5

2
(

d
ij
CPA

−d0

d0−d1

)2

, d0.5 < d
ij
CPA ≤ d0

0 , d0 < d
ij
CPA

(16)

where t1 < t0.5 < t0 and d1 < d0.5 < d0 are the points where

the threat is equal to 1, 0.5 and 0.

Since both time and range to CPA have been mapped to the

same domain, i.e. threat, it is meaningful to aggregate these

aspects of threat using a weighted sum and eventually evaluate

the threat level of a target i with respect to asset j:

θ
(
x
(i);x(j)

)
= mtθt

(
x
(i);x(j)

)
+mdθd

(
x
(i);x(j)

)
(17)

where mi is the weight assigned by the operator to

θi
(
x
(i);x(j)

)
such that mt + md = 1. In this way, we have

1The specific choice of sigmoid functions is only for demonstration
purposes. Any other convenient function could be used by the system designer
and the operator.
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simplified what would have been a two-objective optimization

problem to a simpler but still meaningful single objective

problem that consists of the weighted sum of the two aspects

of threat.

From the civilian domain, air traffic control is considered.

Accordingly, threat is now defined by how close and how fast

two aircrafts i, j can come to each other. In this case, the

notions of time and range to CPA can be utilized again. The

difference is that time and range to CPA are now evaluated

among all pairs of targets (i, j), where i, j = 1, . . . , N and

i 6= j instead of between each target and an asset. From the

N − 1 different threat values for a target i, the threat value

θ∗
(
x
(i)
)

is selected such that:

θ∗
(
x
(i)
)
:= θ

(
x
(i);x(j∗(i))

)
(18)

where j∗(i) = argmax
j(...)

θ̂
(
x
(i);x(j)

)

∀i, j ∈ [1, . . . , N ], i 6= j (19)

with θ̂(·) =

∫
θ(·)p (θ(·)) dθ(·) (20)

and N is the number of targets in the scenario. The mean

threat θ̂
(
x
(i);x(j)

)
can be evaluated in a Monte Carlo fash-

ion using samples from the estimated single targets pdfs

p(i)(x(i)), p(j)(x(j)).
According to the threat definitions described above, it is

necessary to specify the time and range to CPA for dif-

ferent target classes in different operational contexts. This

leads to class-conditional threat definitions and eventually to

multimodal threat pdfs, where the modes represent the target

classes considered in a specific context. In other words, the

estimated threat pdf is a sum of class-conditional pdfs and each

class-conditional pdf represents the threat of the corresponding

target class.

Let us consider an asset protection context. A fighter would

have a different threat-level than an airliner at the same

distance. This is reflected by the different resulting threat levels

for a given time and range to CPA with respect to an asset

to be protected. Therefore, the time and range to CPA values

t1 < t0.5 < t0 and d1 < d0.5 < d0 must be defined for each

target class that is of interest in a specific operational context

and they will lead to class-conditional threat definitions.

For quantifying the uncertainty in the threat pdf, we select

measures of uncertainty from the ones described in Section

III. The key difference is that now the uncertainty in the threat

pdf is managed instead of the uncertainty in the states’ pdf.

Because of this change of focus, the operational context is

taken explicitly into account in the sensor (mode) selection

process.

V. SIMULATED EXAMPLES

In order to demonstrate the behavior of the compared sensor

management schemes and demonstrate the feasibility of our

proposed approach, we adopt and expand the experimental

settings of [1]. We seek to track and classify a target denoted
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aircraft A
time-projection of aircraft A
aircraft B
sensor
asset

Fig. 1. The trajectory of the target to be tracked (aircraft A), a target (aircraft
B) that might collide with the target to be tracked, and an asset to be defended.
The sensor is at the origin of the axes.

as Aircraft A in Fig. 1. Aircraft A can belong to one of three

possible classes: fighter, bomber, or airliner. The duration of

the scenario is 80 scans and one scan is performed every 3

seconds.

The trajectory of Aircraft A, the true class (fighter), and the

filters that are used for tracking and classifying Aircraft A in

this paper are the same as in [1], i.e. an EKF for airliner class,

an IMM-EKF with 5 modes for bomber class, and an IMM-

EKF with 13 modes for fighter class. The 5 modes used for

bomber class correspond to 0g acceleration in both axes and

to combinations of 0 and ±2g acceleration in x and y axes.

The 13 modes used for fighter class include the 5 modes used

for bomber class plus combinations of ±2g accelerations in

both axes plus acceleration of 0g and ±4g in each axis. These

modes are shown in Fig. 3 in [1].

Aircraft A moves according to a constant velocity motion

model until scan 25. Between scan 26 and 31 Aircraft A

performs a turn with acceleration ay = 2.1 g, which can only

be performed by a bomber or a fighter according to the chosen

kinematic models. Then it moves again with constant velocity

until scan 52. Between scan 53 and 58 Aircraft A performs

a turn with acceleration ay = −4.2 g, which can only be

performed by a fighter. The second turn reveals the true class

of Aircraft A, which is a fighter.

The difference from [1] is that here a sensor management

aspect is introduced: a sensor with two sensing modes is used

and we need to select the best sensing mode at each time

instance for observing Aircraft A. The first sensing mode can

only measure the position of Aircraft A and has the following

measurement pdf:

ppos(zk|xk, ci,Z1:k−1) = N (zk;xk,Σpos) (21)

where Σpos = diag[1002 (m)2, 0, 1002 (m)2, 0]. The second

sensing mode can only measure the velocity of Aircraft A and

has the following measurement pdf:

pvel(zk|xk, ci,Z1:k−1) = N (zk;xk,Σvel) (22)
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Fig. 2. Threat-levels of considered target classes when asset-protection is
performed. Note that the bomber class has the highest overall threat-levels
followed by fighter class because these two classes are considered the most
dangerous. Naturally, the airliner class has the lowest threat levels because
such an attack is assumed highly unlikely.

where Σvel = diag[0, 102 (m/s)2, 0, 102 (m/s)2].
It is assumed that when the sensor operates in defence mode

then the measurement collection must be optimized for asset

protection. The asset to be protected is located at [0, 97] km, as

shown in Fig. 1. In this operational context, the corresponding

threat definitions from Section IV are used.

On the other hand, when the sensor operates in civilian

mode then the measurement collection must be optimized for

performing air traffic control. Here, for simplicity reasons,

collision between Aircraft A and only one other aircraft,

namely Aircraft B in Fig. 1, is considered. In this operational

context, the corresponding threat definition from Section IV

is used.

For each target class and for each operational context, we

have selected t1 < t0.5 < t0 and d1 < d0.5 < d0 such that the

evolution of threat-level for each potential class of Aircraft A

for the given trajectory is as shown in Fig. 2 and 3.

Figure 2 shows that the most threatening target class in

an asset-protection scenario is the bomber class. The least

threatening target class is the airliner class. The threat-levels

for the fighter class are in-between the levels of the other two

classes. The exact threat-levels can be modeled with the help

of an expert and here reasonable assumptions have been made.

Similarly, Fig. 3 shows that the most threatening target class

in an air traffic control scenario is the airliner class because

we want to prevent collisions among commercial aircrafts. The

least threatening target class is the bomber class. The threat-

levels for the fighter class are in-between the levels of the

other two classes. Once again, here reasonable assumptions

about the threat-levels of each class have been made.

A common denominator in both Fig. 2 and 3 is that the

threat level of Aircraft A increases as it approaches Aircraft B

or the asset. Similarly, the threat level of Aircraft A decreases

as it moves away from Aircraft B or the asset.

The proposed criteria are

A) minimize the expected variance σ2
θ̂,k|k

(·) of the mixed

threat-level estimate θ̂, i.e.

JA(·) = EZ

{
σ2
θ̂,k|k

(θ,Z1:k−1, z, u)
}

(23)

B) minimize the conditional entropy of the posterior threat

pdf, i.e.

JB(·) = EZ{H(p(θk|Z1:k−1, z, u))} (24)
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Fig. 3. Threat-levels of considered target classes when air traffic control
is performed. Note that the airliner class has the highest overall threat-levels
because prevention of collisions is of interest. The second highest threat levels
are attained by the fighter class because such attacks might occur. The lowest
threat levels are attained by the bomber class because such collisions are
assumed highly unlikely.

The following criteria are compared to the proposed criteria

for selecting the best sensing mode:

1) minimize the expected trace of the covariance matrix of

the mixed state estimate produced by mixing the outputs

of the running filters, i.e.

J1(·) = EZ

{
tr
[
Σk|k(x̂k|k−1,Z1:k−1, z, u)

]}
(25)

where Σk|k(·) is the covariance matrix of x̂k|k−1, updated

with a measurement z that resulted from using mode u ∈
{pos, vel};

2) minimize the conditional entropy of the posterior pdf

given by the mixed estimate and its covariance matrix

(i.e. the posterior pdf is approximated as Gaussian pdf)

produced by mixing the outputs of the running filters, i.e.

J2(·) = EZ{H(N (x̂k|k−1(Z1:k−1, z, u),

Σk|k(x̂k|k−1,Z1:k−1, z, u)))} (26)

3) minimize the conditional entropy of the class pdf, i.e.

J3(·) = EZ{H(p(c|Z1:k−1, z, u))} (27)

The mixed estimate and its covariance matrix, as outputs of

an IMM-(E)KF filter, are described in standard textbooks,

see [17]. For implementing criteria 1 and 2, we mix the

outputs of the three filters using the same formulas as when

an IMM is used but instead of mode probabilities we use

the evaluated class probabilities. For all criteria we have

performed 100 Monte Carlo runs in order to compare their

resulting classification and tracking accuracy.

Table I summarizes the obtained classification and tracking

accuracy results. In Table I, classification accuracy is defined

as the percentage of Monte Carlo runs in which the class with

highest probability is the correct one (i.e. fighter) at the end

of the scenario. It can be seen that in both contexts Criterion

2 results always in correct classification of Aircraft A at the

expense of position accuracy. Criterion 1 results always in the

best position accuracy at the expense of classification accuracy.

Criteria A and B achieve a trade-off among classification and

tracking accuracy. It can also be seen that the classification

accuracy is highly correlated with the velocity estimation

accuracy because classification is performed purely based on
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TABLE I
CLASSIFICATION AND TRACKING ACCURACY RESULTS

Context Criterion Classif. RMS pos. RMS vel.

accuracy [%] error [m] error [m/s]

A 89 1324 23.4

Asset B 79 812 45.5

protection 1 66 722 58.5

2 100 1503 14.4

3 92 798 41

A 66 990 24.9

Air B 80 837 42.6

traffic 1 64 718 56.9

control 2 100 1469 14.5

3 89 816 42.4

the maneuverability of Aircraft A. Criterion 3 has similar

performance to Criterion B.

First, we discuss the behavior of Criterion 1, which results

in the best position accuracy among the compared criteria.

Criterion 1 almost always chooses the first sensing mode, i.e.

it chooses to perform position measurements in 98.3% of scans

in both operational contexts. This explains its good localization

accuracy and also why it has so poor classification and velocity

estimation accuracy.

Secondly, we discuss the behavior of Criterion 2, which

results the worse position accuracy among the compared

criteria. These results can be explained by the sensor mode

selection behavior of Criterion 2. It turns out that Criterion

2 always chooses the second sensing mode, i.e. it always

chooses to perform velocity measurements. As a consequence,

it manages to always classify the target correctly because the

classes are defined purely based on the velocity of targets in

each class. This behavior also explains its poor localization

accuracy.

Criteria A and B make a compromise among classification

and tracking accuracy. This is achieved by utilizing both

sensing modes during the duration of the scenario and accord-

ing to the operational context. In asset protection, criterion

A performs a position measurement in 19.6% of scans and

criterion B in 65.9% of scans. On the other hand, in air

traffic control, criterion A performs a position measurement

in 18.8% of scans and criterion B in 60% of scans. The

resulting accuracy trade-off depends on the operational context

and the threat models that are chosen. Furthermore, this trade-

off is achieved without any ad-hoc solutions, such as forcing

a percentage of specific sensor mode selections.

Finally, criterion 3 also makes a compromise among clas-

sification and tracking accuracy. In fact criterion 3 has very

good classification and localization accuracy at the expense

of velocity accuracy. It utilizes both sensing modes during the

duration of the scenario but it does not adapt to the operational

context. In asset protection it performs a position measurement

50.2% of the scans and in air-traffic-control 50.7% of the

scans.

Figures 4 to 8 show the estimated target class probabilities
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Fig. 4. Estimated target class probabilities in the asset protection context
when Criterion A is used.
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Fig. 5. Estimated target class probabilities in the asset protection context
when Criterion B is used.

from a Monte Carlo run for all the criteria. These figures give

a visual impression of the classification accuracy results of the

compared criteria in the asset protection context, as discussed

earlier. In this example all criteria manage to classify the target

correctly at the end of the scenario, after the maneuver that

reveals the true class of the target.

Figures 9 to 13 show the estimated target trajectories from

a Monte Carlo run for all the criteria in the asset protection

context. Here it can be seen that Criterion 1 has the best posi-

tion accuracy performance, Criterion 2 has the worst position

accuracy performance, and the performance of Criteria A and

B is somewhere in between the performances of the previous

two criteria.

Figures 14 to 18 show the estimated target velocities from

a Monte Carlo run for all the criteria in the asset protec-
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Fig. 6. Estimated target class probabilities in the asset protection context
when Criterion 1 is used.
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Fig. 7. Estimated target class probabilities in the asset protection context
when Criterion 2 is used.

440



0 10 20 30 40 50 60 70 80
0

0.5

1

scan

C
la

ss
 p

ro
b

ab
il

it
y

 

 

airliner
bomber
fighter

Fig. 8. Estimated target class probabilities in the asset protection context
when Criterion 3 is used.
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Fig. 9. Estimated target trajectories in the asset protection context when
Criterion A is used.
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Fig. 10. Estimated target trajectories in the asset protection context when
Criterion B is used.
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Fig. 11. Estimated target trajectories in the asset protection context when
Criterion 1 is used.
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Fig. 12. Estimated target trajectories in the asset protection context when
Criterion 2 is used.
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Fig. 13. Estimated target trajectories in the asset protection context when
Criterion 3 is used.
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Fig. 14. Estimated target velocities in the asset protection context when
Criterion A is used.

tion context. These figures demonstrate why each criterion

achieves its corresponding classification accuracy, which is

highly correlated with the velocity estimation accuracy in this

experimental setting.

VI. CONCLUSIONS

The sensor selection problem was considered in the context

of joint target tracking and classification. Standard approaches

to sensor management that are proposed in the literature were

compared to a newly developed method by the authors, i.e.

threat-based sensor management. Via simulated examples it

was shown that the standard approaches focus either only on

localizing the target with high accuracy or only on classifying

it with high accuracy. On the other hand, the proposed method

results in sensor control that balances the tasks of tracking

and classification. The exact trade-off among localization

and classification performance depends on the experimental

0 10 20 30 40 50 60 70 80
100

200

300

400

v
x

[m
/s

]

 

 
aircraft A - true vx
aircraft A - estim. vx

0 10 20 30 40 50 60 70 80
−500

0

500

v
y

[m
/s

]

scan

 

 

aircraft A - true vy

aircraft A - estim. vy

Fig. 15. Estimated target velocities in the asset protection context when
Criterion B is used.
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Fig. 16. Estimated target velocities in the asset protection context when
Criterion 1 is used.
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Fig. 17. Estimated target velocities in the asset protection context when
Criterion 2 is used.

settings, the operational context, and the threat models that

are chosen.

In this paper we present a first step towards a complete

system that includes target search, tracking, classification, and

sensor management. To confirm that this is the right direction,

more research and simulations are needed, especially towards

threat definitions and the performance of such a system. In

fact, threat could be part of a value metric that includes more

components in order characterize targets.

Furthermore, the processing time requirements of such

system are expected to pose an added challenge when im-
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Fig. 18. Estimated target velocities in the asset protection context when
Criterion 3 is used.

plementing it.
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