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Abstract—Obtaining informative measurements is a funda-
mental problem when inadequate models are used to guide the
design of experiments. A comprehensive approach to experi-
mental design for inadequate physics-based models is proposed
by focusing on the coupling between the structural uncertainty
modeling and the adaptive data collection process. First, by
taking advantage of the structure of physics-based models, unlike
current approaches, rigorous structural uncertainty models are
created to yield solutions, which satisfy physical constraints such
as conservation of mass. Second, new adaptive data collection
strategies are proposed by combining two current approaches,
model driven and model free experimental design, to optimally
trade off between model exploitation and design space explo-
ration. The applicability and feasibility of these new ideas will
be demonstrated on dispersion models, which are widely used
in practice from regulatory applications to emergency response
in chemical, nuclear, biological and radiological releases. These
dispersion models are polluted by structural errors due to various
assumptions (e.g. diffusion coefficients) that can only be informed
using limited experimental data.

I. INTRODUCTION

This study addresses an open fundamental problem in the

scientific literature, namely how to obtain informative mea-

surements when models with structural errors are guiding the

design of experiments. Lindley [1] introduced model-driven

data strategies based on maximization of information gain

in 1956 and fueled a large body of work predominantly on

applications to various fields and development of approximate

algorithms to speedup the optimization problem [2].

However the “the Achilles’ heel of these methods is that

they estimate the utility of a measurement assuming that the

model is correct. This might lead to undesirable results. The

search for ideal measures of data utility is still open”, David

MacKay [3]. In such situations, conflicting information arises

between model predictions and measurements yielding biased

estimates and underestimated uncertainties, which undermines

the whole experimental design process, as shown by the author

and collaborators in Ref. [4].

To address this fundamental problem, the main approach

taken here is to develop a basic understanding of the impact

of modeling errors on data collection strategies. This will

inform the development of novel adaptive methods for ex-

perimental design using physics-based models in the presence

of structural uncertainty. Here, “physics-based models” are

formulated based on well established physical principles or

theories (e.g. conservation of mass) whose applicability to the

problem at hand is not questioned, but which also include

various less reliable modeling approximations or auxiliary

inadequate models, see Fig.1. This is the common structure of

computational models and it will be studied in the context of

experimental design. The ultimate goal is to devise novel adap-

tive strategies through coupling of Bayesian optimal design [2]

with space filling design [5] to provide an optimal trade-off

between model exploitation and design space exploration.

Papers on experimental design can be found in geo-

science [6], neuroscience [7], biomedical applications [8], [9],

[10], engineering [11], systems biology [12], [9], combustion

kinetics [13], and electrochemical systems [14] just to name a

few. Furthermore, active research is currently done in develop-

ing approximate methods to speedup the calculations needed

for experimental design [15], [13], [16], [10], [17], [18].

Nonetheless, the application of Bayesian design principles to

actual experiments lags behind theoretical advancements [2].

A more efficient learning can be accomplished by using exper-

imental design strategies that tightly couple the computational

modeling, experimental endeavors and data analysis. However,

there are research issues that need to be addressed in the

design of experiments in the presence of model errors.

The central challenge in using computational models for

scientific discovery, engineering design, or decision support is

that the process follows a path contaminated with errors and

uncertainties, see Fig.1. One of the key concepts is that the

physics-based models in this study are defined as composite

models with separable highly reliable theory and less reliable

embedded models. This goes beyond constrained estimation of

parameters related to physical laws [19]. Here, the focus is on

understanding two specific processes along this path, namely

structural uncertainty modeling and adaptive data collection.

The starting point is a mathematical model with known

structural error, for which uncertainty models need to be

constructed. Structural uncertainty is one of the most im-

portant and challenging issues in uncertainty quantification

and experimental design. Many models used in engineering

practice (e.g., Gaussian plume models, RANS turbulence

models) are known to be deficient, in that model predictions

do not accurately represent experimental observations. A key

innovation proposed in this work is a general formulation

based on internal discrepancy models to deal with modeling

errors by exploiting the structure of composite models.

There is no agreement in the scientific community today

on the experimental design strategy that can consistently

provide informative measurements for inadequate models. In
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Fig. 1: Active data collection is based on a deep integration of theory, experimentation and computation. Contributions of this

paper are in the areas of structural uncertainty modeling and experimental design strategies with applications to dispersion

models for contaminant transport.

this work, new adaptive data collection strategies are proposed

by combining two current approaches, model driven and model

free experimental design to effectively trade off between model

exploitation and design space exploration. The view here is

that in the presence of model error, the information provided

by the structural uncertainty model has to be exploited to

inform the data collection process.

To facilitate the development of an experimental design

process in the presence of model error and understand the

impact of structural error on the data collection process, it is

necessary to have a realistic application on which to test new

ideas. The proposed framework is tested on Gaussian plume

dispersion models [20], which are widely used in practice from

regulatory applications to emergency response in chemical,

biological, radiological, and nuclear (CBRN) releases [21].

These dispersion models are polluted by structural errors due

to various assumptions (e.q. diffusion coefficients) that can

only be informed using limited experimental data.
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The remainder of the paper begins with an overview of

relevant background material on physics-based models in

Section II, and continues with proposed approaches contrasted

by state-of-the-art structural uncertainty, Section III, and in se-

quential experimental design, Section IV. Finally, preliminary

results are presented in Section V and conclusions and future

work in Section VI.

II. PHYSICS-BASED MODELS AND MODEL CALIBRATION

(BACKGROUND)

Consider the following mathematical model for a physical

system of interest:

R(u, τ ; ξ) = 0, (1)

y = f(u) (2)

q = g(u) (3)

where R is some operator, u is the solution or state variable, τ

is a quantity for which a physical model is required, and ξ is

a set of scenario variables needed to precisely define the case

being considered, such as boundary conditions. Here, R would

be a partial differential equation expressing conservation of

mass, momentum, and energy. For example, it could be

advection-diffusion equation, with u being the contaminant

mass concentration and τ being the eddy diffusivities. In

addition, we require maps from the solution to the observable

quantities y as well as the quantities of interests (QoIs) q.

In general, the QoIs will be different from the observable

quantities.

If τ were known in terms of u and ξ, the system would

be closed, and Eq.(1) would implicitly define a mapping from

the scenario variables ξ to the solution variables u. Thus, a

physical model for τ is needed. Often, this embedded model

for τ is not based on first principles, leading to structural

uncertainty due to model m, which is presumed to depend on

the solution and a set of model parameters θ, as follows.

τ ≈ m(u, ξ;θ) (4)

In this context, the goal of experimental design is to identify

the experimental scenarios ξ that can provide informative

measurements d to learn about model parameters θ, or have ac-

curate prediction of either the observable y or the QoI q. After

performing the experiment ξ and obtaining data d the next step

is to calibrate the model. In the Bayesian model calibration,

one seeks a complete statistical description, in the form of a

probability density function (pdf), of the parameters that make

the model consistent with the experimental data. This pdf is

defined by the simple but powerful Bayes’ Theorem [22], [23],

p(θ|d) ∝ p(θ)π(θ;d), where p(θ|d) is the posterior pdf (the

solution of the inverse problem), p(θ) is the prior pdf, and

π(θ;d) is the likelihood function, which accounts for both

experimental uncertainty and structural uncertainty.

III. STRUCTURAL UNCERTAINTY MODELING (CURRENT

AND PROPOSED APPROACHES)

The main challenge of model calibration and hence ex-

perimental design, is that there is always some discrepancy

between the output of the physical model and the values of

the real process due to the inadequacy of the embedded model

for τ , namely m(u, ξ;θ). In this section a new formulation is

proposed to deal with this structural uncertainty, which is a

key contribution of this work.

A. External Discrepancy (Current Approach)

A common approach for specifying the structural uncer-

tainty model is that of Kennedy and O’Hagan [24]. In this

approach, the true (but unknown) value of the observables,

dtrue, is assumed to be related to the model output by

dtrue = f(u(θ)) + ǫmodel,

where ǫmodel is a Gaussian process [25] representing the

structural uncertainty (also referred to as model inadequacy

or model discrepancy). Note that additive error is not the

only option, multiplicative error is possible as well. When

coupled with a model of the experimental error, this statement

defines the likelihood function and Bayes rule can be used to

update knowledge of θ and ǫmodel. Since this approach, called

here external discrepancy formulation, is formulated in terms

of the observable quantity, it is appropriate only when three

conditions are satisfied.

(1) Physical constraints on the modeling error should be

formulated in terms of the observable, so that the combined

model (i.e., f + ǫmodel) does not violate known physical laws.

However, if the observable is a concentration field, blindly

adding Gaussian random fields to the observable would lead

to a vector random field model where individual realizations

do not satisfy conservation of mass. Since mass is certainly

conserved, such a model is inadmissible. Furthermore, due to

confounding of model parameters and discrepancy parameters,

the calibration results for parameters can be biased and the

uncertainty under-estimated. The importance of constrain-

ing the discrepancy model has been recently addressed by

Brynjarsdottir and O’Hagan [26]. However, given that the

constraints are imposed at the observable level, there is no

guarantee that the conservation of mass is satisfied.

(2) Predictions of the observable at a scenario of interest

should be executed only when the measurement scenarios

are “near” the scenario of interest so that the structural

uncertainty model is not extrapolated. In this formulation, the

structural uncertainty is a purely statistical model, and thus,

it contains only information extracted from the calibration

data. Thus, the validity of its extrapolated predictions is

questionable.

(3) Predictions of the QoI should be executed only when

the QoI is uniquely defined by the observable, such that the

structural uncertainty for the observable can be propagated

to the QoI. Otherwise, the predicted uncertainty of the QoI

will only account for parametric uncertainty because the

structural uncertainty cannot be propagated to the QoI. The

last two issues have been recently addressed by the author

and collaborators [27].

These conditions severely limit the application of this tech-

nique. Thus, overcoming these drawbacks is a major focus of
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the proposed effort. The proposed work aims to remove the

constraints associated with this approach by formulating the

structural uncertainty model wherever known modeling errors

are introduced.

B. Internal Discrepancy (Proposed Approach)

In the defined composite models based on physics, structural

uncertainties arise from imperfections in the various function-

als involved (m, g, and f ), as defined in (1) through (3). For

simplicity, consider the case where the structural uncertainty is

restricted to the model m for the quantity τ . This uncertainty

could be represented by introducing an additive or multiplica-

tive error, ǫmodel, into the model for τ , which has been recently

proposed by the author and collaborators [27].

R(u,m(u, ξ,θ) + ǫmodel; r) = 0 (5)

y = f(u) (6)

q = g(u). (7)

By introducing a stochastic model for ǫmodel to represent

incomplete knowledge, this new system becomes a stochas-

tic model governing the state u, which is random as well.

While (6) and (7) are formally unchanged from (2) and (3),

respectively, y and q become random variables because the

input to the functions f and g is random.

This internal discrepancy formulation promises to remove

the constraints associated with the external discrepancy ap-

proach. The impact of the structural uncertainty on the QoI

can be computed by simply propagating the random solution

u through the operator g. Known physical constraints on

the model form are either automatically enforced or can be

easily checked (e.g., it would be impossible to develop a

model, like that described in III-A, that violated conservation

of mass). Finally, when informed by data in the calibration

phase, this representation is expected to be more generalizable

than the external discrepancy approach since the structural

uncertainty model represents directly the uncertainty in the

physical model, rather than its effect on other quantities.

While the location where uncertainty is introduced and

should be modeled is often clear, the most appropriate form

of probabilistic model generally is not. Multiple uncertainty

model forms will be explored in the future in the context

of the dispersion models, which opens the opportunity to

explore experimental design strategies with the goal of model

discrimination.

IV. SEQUENTIAL EXPERIMENTAL DESIGN (CURRENT AND

PROPOSED APPROACHES)

There are two ways to perform experiments: batch strategies

that select all designs before experiments are performed, and

sequential strategies where the selection of experimental con-

ditions are performed in sequence. Given that the focus of this

study is the development of design strategies in the presence of

model error, sequential design is adopted as it takes advantage

of information obtained from previous experiments [28] and

allows for the adaptation of the data collection process.

The objective of any experimental design can be grouped in

three categories: calibration, model selection and prediction,

all of which can be subject to additional physical or financial

constraints. For calibration the aim is to identify the exper-

imental conditions ξ that provide informative measurements

to learn model parameters θ that carry physical meanings.

When alternative models are available, the goal of model

selection is to determine the experimental conditions capable

to discriminate the models. And for prediction, the aim is to

identify the designs that can provide accurate predictions of

either the observable y or the QoI q.

Overall there are two main strategies used to determine

experimental conditions, namely model driven strategies and

model free strategies, which are briefly described in the follow-

ing sections. Nonetheless, experimental design in the presence

of model error is a challenging task seldom mentioned in the

literature, and it is argued that neither model driven or model

free strategies can consistently provide desired results in this

context. In this study, a couple of investigations are used to

develop adaptive hybrid approaches (model driven + model

free) capable to deal with data selection in the presence of

model error.

A. Model Driven Strategies - Model Exploitation (Current)

Model driven strategies determine experimental conditions

by exploiting the information contained in the model. Strate-

gies in this category are mainly given by Bayesian optimal de-

signs such as D-optimal design or any alphabetic criteria [29],

and information theoretic measures [30] such as maximum

entropy [31], maximum mutual information [2], which take

advantage of Shannon’s measure of information [32]. For

illustration purposes consider a model driven strategy given

by maximizing the mutual information [1]. It is specifically

targeted at reducing the entropy of model parameters at time

k + 1 given all the previous k observations collected, Dk.

ξ
∗

k+1 = arg max
ξk+1

Jmd(ξk+1) (8)

Jmd(ξk+1) =

∫
p(y, θ|ξ

k+1, Dk) log
p(y, θ|ξ

k+1, Dk)

p(y|ξ
k+1, Dk)p(θ|Dk)

dydθ (9)

The advantage of this type of strategy is that it targets

directly any of the objectives of the experimental design.

However, the challenge with using a model driven strategy

to select experimental conditions in the presence of model

error comes from the fact that it inherently uses inadequate

simulations, yielding undesirable results [3]. This is due to

structural uncertainty models that contain limited information

about the overall model error distribution in the design space.

This has already been shown by the author and collaborators

in Ref. [4], and the current study attempts to formalize an

adequate design strategy in this type of situations.

B. Model Free Strategies - Design Space Exploration (Cur-

rent)

Model free strategies are independent of model simulations,

and they explore the design space well by providing designs

that maximize a coverage criteria [33], [34]. These type of
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strategies have been used in computer experiments with the

goal to build simulators to replace the real data generating

process. They have been used with external discrepancy

formulation [35], however their main objective is providing

accurate predictions only for the observable. For illustration

purposes consider a model free strategy given by maximin

distance [36], which spreads the design points uniformly

across the whole design space.

ξ∗k+1 = argmax
ξ
k+1

Jmf (ξk+1) (10)

Jmf (ξk+1) = min
ξ′

k+1

||ξk+1 − ξ′k+1|| (11)

Compared with model driven, the advantage of model free

strategies is that by throughly exploring the design space one

can infer the overall distribution of model error. However, the

drawback is that by not using the information contained in the

model it may yield inefficient designs that provide very little

information for the particular objective of the experimental

design, increasing this way the overall cost of experimentation.

C. Adaptive Hybrid Strategies - Exploitation vs Exploration

(Proposed)

To address the challenges of the previous two approaches,

an adaptive hybrid strategy is proposed by combining model

driven and model free strategies. This new strategy will

adaptively trade off between exploitation and exploration to

achieve the goal of the sequential experimental design in

the presence of model error. One way to combine these two

strategies is by creating a new cost function which is a linear

combination of the individual cost functions.

ξ∗k+1 = argmax
ξ
k+1

[

Jmd(ξk+1) + αJmf (ξk+1)

]

(12)

Here α is a tunable coefficient. If α is assigned with a large

value then model free will play a dominant role. A small α will

make the strategy more model driven. The main question then

becomes: How to tune α to achieve the goal of experimental

design? Here are some examples of how to set alpha.

1) Set α = 1 so that both strategies will have equal weight.

2) First explore the space (α large) to learn as much about

the model error as possible, then exploit the model

(α small) to further reduce the uncertainty about the

parameters or predictions according to the goal of the

experiment.

3) Decrease α gradually as more experiments are performed

in order to smoothly transition from exploration to ex-

ploitation.

4) Make the selection of α adaptive, by monitoring the

rate of learning. If the rate of learning is significantly

decreased then switch to exploration to open additional

opportunities for learning, otherwise exploit the model.

Promising preliminary results point in the direction of

adaptively choosing α, see Section V. However, it is not

clear at this point the strategy and the factors that will yield

desirable and consistent results across models, which motivates

a comprehensive future investigation.

V. PRELIMINARY RESULTS

This section describes a preliminary application of exper-

imental design approach to a simple steady-state Gaussian

plume model with the goal of identifying a sequence of sensor

locations {(xk, yk)}, Fig.2(c), capable to provide information

about the release height H .

Two investigations are compared in this section that cor-

respond to modeling the structural uncertainty using both

external and internal discrepancy - previously introduced. The

true model in Eq. (14) - used to generate synthetic data

- involves a physical phenomenon that is not represented

in the approximate physical model used for calibration and

experimental design, see Fig.2(a,b). Thus model inadequacy

is important.

Both the true model and the approximate model are given

by the steady-state Gaussian plume solution to the advection-

diffusion equation under assumptions of isotropic diffusion

and constant wind velocity, u = 1, which is sufficiently large

such that the longitudinal diffusion term can be neglected [37].

The release mass in both models is Q = 1.

The difference between the true and approximate model

comes from assumptions regarding the eddy diffusivity K.

In the true model the diffusivity is linearly dependent on

the downwind distance, while in the approximate model is

assumed to be constant. In both cases the same Gaussian

plume solution is obtained [38] to calculate the concentration

at a specific location c(x, y). Eq. (15) depicts the treatment

of structural uncertainty using Kennedy and O’Hagan formu-

lation [24] and the proposed internal discrepancy formulation

is given in Eq. (16).

• True model:

c(x, y) =
Q

2πKx
exp

(

−
u(y2 +H2)

4Kx

)

(13)

K =
1

12
ux (14)

• External discrepancy formulation:

c(x, y) =
Q

2πKx
exp

(

−
u(y2 +H2)

4Kx

)

ǫmodel (15)

• Internal discrepancy:

c(x, y) =
Q

2πKǫmodelx
exp

(

−
u(y2 +H2)

4Kǫmodelx

)

(16)

• Discrepancy model:

ǫmodel ∼ logN (0, σ2
ǫ ) (17)

• Prior distributions:

p(H) = U [0, 10] (18)

p(K) = logN (−0.35, 0.72) (19)

p(σ2
ǫ ) = logN (−4, 1) (20)

Four different strategies are tested for both formulations.

A model-driven strategy given by mutual information maxi-

mization (MI), Eq.(8), a model-free strategy given by max-

imin distance (DIST), Eq.(10), a hybrid strategy (MIXED)
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Fig. 2: Preliminary results: (a) Simulation using the true model with eddy diffusion coefficient as a linear function of downwind

distance, (b) Simulation using the approximate model which assumes constant eddy diffusion coefficient (here K = 1), (c)

The complete set of possible sensor locations to be chosen by the design strategies, (d/g) External/Internal discrepancy: the

evolution of the Kullback-Leibler divergence between subsequent posterior distributions and the switching between model-

driven (α small) and model-free (α large) as it is produced by the adaptive strategy (e/h) External/Internal discrepancy: the

entropy of the release height after each new measurement (results averaged over 30 runs), (f/i) External/Internal discrepancy:

posterior pdf of the release height after 10 observations (one sensor provides just one observation).

obtained by setting α = 1 in Eq.(12), and an adaptive hybrid

strategy (ADAPT) where α is set to a high value when the

Kullback-Leibler divergence between consecutive posteriors

is significantly decreased, see Fig.2(d,g). In other words, if

the rate of learning has significantly decreased then switch to

design space exploration to find new opportunities for learning,

otherwise exploit the model.

In both formulations the adaptive hybrid strategy obtains

overall a faster reduction in the uncertainty of the release

height, see Fig.2(e,h). In contrast to the external discrepancy

formulation, the true height is better captured by the internal

discrepancy formulation as it satisfies the physical constraints

imposed by the advection-diffusion equation (conservation of

mass), see Fig.2(f,i).

VI. CONCLUSIONS

The focus of this work is to develop a basic understanding

of the impact that modeling errors have on experimental design

strategies. These strategies are used to select experimental

conditions that provide critical observations to reduce uncer-

tainties in computational models. Through a rigorous mod-

eling of structural errors, new adaptive experimental design

strategies can be obtained by exploiting structural uncertainty.
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This is significant in applications where physical and financial

constraints impede exhaustive data collection.

While preliminary results are promising, a number of ques-

tions need to be answered to refine the proposed methodology:

(1) Will this adaptive strategy provide consistent and better

performance for various dispersion models? (2) The example

only addresses the calibration goal. Does it also meet the

model selection and prediction goals? and (3) Along the same

lines, is one adaptive strategy suitable for both discrepancy

formulations in general? The answer to all these questions is

planned to be investigated next.
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