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Abstract—In real clustering applications, proximity data, in
which only pairwise similarities or dissimilarities are known,
is more general than object data, in which each pattern is
described explicitly by a list of attributes. Medoid-based clus-
tering algorithms, which assume the prototypes of classes are
objects, are of great value for partitioning relational data sets.
In this paper a new prototype-based clustering method, named
Evidential C-Medoids (ECMdd), which is an extension of Fuzzy
C-Medoids (FCMdd) on the theoretical framework of belief
functions is proposed. In ECMdd, medoids are utilized as the
prototypes to represent the detected classes, including specific
classes and imprecise classes. Specific classes are for the data
which are distinctly far from the prototypes of other classes,
while imprecise classes accept the objects that may be close
to the prototypes of more than one class. This soft decision
mechanism could make the clustering results more cautious and
reduce the misclassification rates. Experiments in synthetic and
real data sets are used to illustrate the performance of ECMdd.
The results show that ECMdd could capture well the uncertainty
in the internal data structure. Moreover, it is more robust to the
initializations compared with FCMdd.

Index Terms—Credal partitions; Relational clustering; Eviden-
tial c-medoids; Imprecise classes.

I. INTRODUCTION

Clustering is a useful technique to detect the underlying

cluster structure of the data set. The goal of clustering is

to partition a set of objects X = {x1, x2, · · · , xn} into

c small subgroups Ω = {ω1, ω2, · · · , ωc} based on a well

defined measure of similarities between patterns. To measure

the similarities (or dissimilarities), the objects are described by

either object data or relational data. Object data are described

explicitly by a feature vector, while relational data arise

from the pairwise similarities or dissimilarities. Among the

existing approaches to clustering, the objective function-driven

or prototype-based clustering such as C-Means (CM) and

Fuzzy C-Means (FCM) is one of the most widely applied

paradigms in statistical pattern recognition. These methods are

based on a fundamentally very simple, but nevertheless very

effective idea, namely to describe the data under consideration

by a set of prototypes. They capture the characteristics of the

data distribution (like location, size, and shape), and classify

the data set based on the similarities (or dissimilarities) of the

objects to their prototypes.

The above mentioned clustering algorithms, CM and FCM

are for object data. The prototype of each class in these

methods is the center of gravity of all the included patterns.

But for relational data set, it is difficult to determine the

centers of objects. In this case, one of the objects which is

most similar to the center could be the most rational choice

to be setting as the prototype. This is the idea of clustering

using medoids. Some clustering methods, such as Partitioning

Around Medoids (PAM) [1] and Fuzzy C-Medoids (FCMdd)

[2], produce hard and soft clusters where each of them is

represented by a representative object (medoid).

Belief functions have already been applied in many fields,

such as data classification [3], data clustering [4], [5], social

network analysis [6], [7] and statistical estimation [8], [9].

Evidential C-means (ECM) [4] is a newly proposed clustering

method to get credal partitions for object data. The credal par-

tition is a general extension of the crisp (hard) and fuzzy ones

and it allows the object to belong to not only single clusters,

but also any subsets of the set of clusters Ω = {ω1, · · · , ωc}
by allocating a mass of belief for each object in X over the

power set 2Ω. The additional flexibility brought by the power

set provides more refined partitioning results than those by the

other techniques allowing us to gain a deeper insight into the

data [4]. In this paper, we introduce an extension of FCMdd

on the framework of belief functions. The evidential clustering

algorithm for relational data sets, named ECMdd, using a

medoid which is assumed to belong to the original data set to

represent a class are proposed to produce the optimal credal

partition. The experimental results show the effectiveness of

the methods and illustrate the advantages of credal partitions.

The rest of this paper is organized as follows. In Section

II, some basic knowledge and the rationale of our method

are briefly introduced. In Section III the proposed ECMdd

clustering approach is presented in detail. In Section IV we

test ECMdd using various data sets and compare it with several

other classical methods. Finally, we conclude and present some

perspectives in Section V.

II. BACKGROUND

A. Theory of belief functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X , called

the discernment frame. The belief functions are defined on the

power set 2Ω = {A : A ⊆ Ω}.
The function m : 2Ω → [0, 1] is said to be the Basic Belief

Assignment (bba) on 2Ω, if it satisfies:
∑

A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element.

The credibility and plausibility functions are defined as in

Eq. (2) and Eq. (3).

Bel(A) =
∑

B⊆A,B 6=∅

m(B) ∀A ⊆ Ω, (2)
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Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A,

while Pl(A) represents potential amount of support to A.

A belief function on the credal level can be transformed

into a probability function by Smets method [10]. In this

algorithm, each mass of belief m(A) is equally distributed

among the elements of A. This leads to the concept of pignistic

probability, BetP , defined by

BetP (ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (4)

where |A| is the number of elements of Ω in A.

B. Evidential c-means

Evidential c-means [4] is a direct generalization of FCM

in the framework of belief functions based on the concept

of credal partitions. The credal partition takes advantage of

imprecise (meta) classes to express partial knowledge of

class memberships. In ECM, the evidential membership of an

object xi is represented by a bba mi = (mi (Ak) : Ak ⊆ Ω)
(i = 1, 2, · · · , n) over the given frame of discernment Ω. The

set {Ak | Ak ⊆ Ω, k = 1, 2, · · · , 2c} contains all the focal ele-

ments. The optimal credal partition is obtained by minimizing

the following objective function:

JECM =
n
∑

i=1

∑

Ak⊆Ω,Ak 6=∅

|Ak|
αmi(Ak)

βd2ik +
n
∑

i=1

δ2mi(∅)
β

(5)

constrained on
∑

Ak⊆Ω,Ak 6=∅

mi(Ak) +mi(∅) = 1, (6)

and

mi (Ak) ≥ 0, mi (∅) ≥ 0, (7)

where mi(Ak) , mik is the bba of xi given to the nonempty

set Ak, while mi(∅) , mi∅ is the bba of xi assigned to

the empty set. Parameter α is a tuning parameter allowing

to control the degree of penalization for subsets with high

cardinality, parameter β is a weighting exponent and δ is

an adjustable threshold for detecting the outliers. Here dik
denotes the distance (generally Euclidean distance) between xi

and the barycenter (i.e. prototype, denoted by vk) associated

with Ak:

d2ik = ‖xi − vk‖
2, (8)

where vk is defined mathematically by

vk =
1

|Ak|

c
∑

h=1

shkvh, with shk =

{

1 if ωh ∈ Ak

0 else
. (9)

The notation vh is the geometrical center of points in cluster

h. The update process with Euclidean distance is given by the

following two alternating steps.

• Assignment update, ∀i, ∀k/Ak ⊆ Ω, Ak 6= ∅:

mik =
|Ak|

−α/(β−1)d
−2/(β−1)
ik

∑

Ah 6=∅

|Ah|−α/(β−1)d
−2/(β−1)
ih + δ−2/(β−1)

,

(10)

and for Ak = ∅

mi∅ = 1−
∑

Ak 6=∅

mik, ∀i = 1, 2, · · · , n. (11)

• Prototype update: The prototypes (centers) of the classes

are given by the rows of the matrix vc×p, which is the

solution of the following linear system:

HV = B, (12)

where H is a matrix of size (c× c) given by

Hlk =
∑

i

∑

Akk{ωk,ωl}

|Ak|
α−2mβ

ik, (13)

and B is a matrix of size (c× p) defined by

Blq =

n
∑

i=1

xiq

∑

Ak∋ωl

|Ak|
α−1mβ

ik. (14)

C. Fuzzy c-medoids

Fuzzy C-Medoids (FCMdd) is a variation of classical

c-means clustering designed for relational data [2]. Let

X = {xi | i = 1, 2, · · · , n} be the set of n objects and

τ(xi, xj) , τij denote the dissimilarity between objects xi and

xj . Each object may or may not be represented by a feature

vector. Let V = {v1, v2, · · · , vc}, vi ∈ X represent a subset

of X . The objective function of FCMdd is given as

JFCMdd =

n
∑

i=1

c
∑

j=1

uβ
ijτ(xi, vj) (15)

subject to
c

∑

j=1

uij = 1, i = 1, 2, · · · , n, (16)

and

uij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , c. (17)

In fact, the objective function of FCMdd is similar to that of

FCM. The main difference lies in that the prototype of a class

in FCMdd is defined as the medoid, i.e., one of the object in

the original data set, instead of the centroid (the average point

in a continues space) for FCM. FCMdd is preformed by the

following alternating update steps:

• Assignment update:

uij =
τ
−1/(β−1)
ij

c
∑

k=1

τ
−1/(β−1)
ik

. (18)

• Prototype update: the new prototype of cluster j is set to

be vj = xl∗ with

xl∗ = arg min
{vj :vj=xl(∈X)}

n
∑

i=1

uβ
ijτ(xi, vj). (19)
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III. EVIDENTIAL c-MEDOIDS CLUSTERING

Here we introduce evidential c-medoids clustering algorithm

using medoids in order to take advantages of both medoid-

based clustering and credal partitions. This partitioning ev-

idential clustering algorithm is mainly related to fuzzy c-
medoids. Like all the prototype-based clustering methods, for

ECMdd, an objective function should first be found to provide

an immediate measure of the quality of partitions. Hence our

goal can be characterized as the optimization of the objective

function to get the best credal partition.

A. The objective function

As before, let X = {xi | i = 1, 2, · · · , n} be the set of n
objects and τ(xi, xj) , τij denote the dissimilarity between

objects xi and xj . The pairwise dissimilarity is the only

information required for the analyzed data set. The objective

function of ECMdd is similar to that in ECM:

JECMdd(M ,V ) =

n
∑

i=1

∑

Aj⊆Ω,Aj 6=∅

|Aj |
αmβ

ijdij +

n
∑

i=1

δ2mβ
i∅,

(20)

constrained on
∑

Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, (21)

where mij , mi(Aj) is the bba of xi given to the nonempty

set Aj , mi∅ , mi(∅) is the bba of xi assigned to the empty

set, and dij , d(xi, Aj) is the dissimilarity between xi and

focal set Aj . Parameters α, β, δ are adjustable with the same

meanings as those in ECM. Note that JECMdd depends on the

credal partition M and the set V of all prototypes.

Let vΩk be the prototype of specific cluster (whose focal

element is a singleton) Aj = {ωk} (k = 1, 2, · · · , c) and as-

sume that it must be one of the objects in X . The dissimilarity

between object xi and cluster (focal set) Aj can be defined

as follows. If |Aj | = 1, i.e., Aj is associated with one of the

singleton clusters in Ω (suppose to be ωk with prototype vΩk ,

i.e., Aj = {ωk}), then the dissimilarity between xi and Aj is

defined by

dij = d(xi, Aj) = τ(xi, v
Ω
k ). (22)

When |Aj | > 1, it represents an imprecise (meta) cluster.

If object xi is to be partitioned into a meta cluster, two

conditions should be satisfied [7]. One condition is the dissim-

ilarity values between xi and the included singleton classes’

prototypes are small. The other condition is the object should

be close to the prototypes of all these specific clusters. The

former measures the degree of uncertainty, while the latter

is to avoid the pitfall of partitioning two data objects irrele-

vant to any included specific clusters into the corresponding

imprecise classes. Therefore, the medoid (prototype) of an

imprecise class Aj could be set to be one of the objects

locating with similar dissimilarities to all the prototypes of

the specific classes ωk ∈ Aj included in Aj . The variance

of the dissimilarities of object xi to the medoids of all the

included specific classes of Aj could be taken into account to

express the degree of uncertainty. The smaller the variance is,

the higher uncertainty we have for object xi. Meanwhile the

medoid should be close to all the prototypes of the specific

classes. This is to distinguish the outliers, which may have

equal dissimilarities to the prototypes of some specific classes,

but obviously not a good choice for representing the associated

imprecise classes. Let v2
Ω

j denote the medoid of class Aj
1.

Based on the above analysis, the medoid of Aj should set to

v2
Ω

j = xp with

p = arg min
i:xi∈X

{

f
(

{τ(xi, v
Ω
k );ωk ∈ Aj}

)

+η
1

|Aj |

∑

ωk∈Aj

τ(xi, v
Ω
k )

}

, (23)

where ωk is the element of Aj , vΩk is its corresponding

prototype and f denotes the function describing the variance

among the corresponding dissimilarity values. The variance

function could be used directly:

Varij =
1

|Aj |

∑

ωk∈Aj

[

τ(xi, v
Ω
k )−

1

|Aj |

∑

ωk∈Aj

τ(xi, v
Ω
k )

]2

.

(24)

In this paper, we use the following function to describe the

variance ρij of the dissimilarities between object xi and the

medoids of the involved specific classes in Aj :

ρij =
1

choose(|Aj |, 2)

∑

ωx,ωy∈Aj

√

(

τ(xi, vΩx )− τ(xi, vΩy )
)2
,

(25)

where choose(a, b) is the number of combinations of the given

a elements taken b at a time.

The dissimilarity between objects xi and class Aj can be

defined as

dij =

τ(xi, v
2Ω

j ) + γ 1
|Aj |

∑

ωk∈Aj

τ(xi, v
Ω
k )

1 + γ
. (26)

As we can see from the above equation, the dissimilarity

between object xi and meta class Aj (|Aj | > 1) is the

weighted average of dissimilarities of xi to the all involved

singleton cluster medoids and to the prototype of the imprecise

class Aj with a tuning factor γ. If Aj is a specific class with

Aj = {ωk} (|Aj | = 1), the dissimilarity between xj and Aj

degrades to the dissimilarity between xi and vΩk as defined

in Eq. (22), i.e., v2
Ω

j = vΩk . And if |Aj | > 1, its medoid is

decided by Eq. (23).

It is remarkable that although ECMdd is similar to Median

Evidential C-Means (MECM) [7] algorithm in principle, but

they are very different in dealing with the imprecise classes

and the way of calculating the dissimilarities between objects

and imprecise classes. Although both MECM and ECMdd

1The notation vΩ
k

denotes the prototype of specific class ωk , thus it is

in the framework of Ω. Similarly, v2
Ω

j is defined on the power set 2Ω,

representing the prototype of the focal set Aj ∈ 2Ω. It is easy to see

{vΩ
k

: k = 1, 2, · · · , c} ⊆ {v2
Ω

j : j = 1, 2, · · · , 2c − 1}.
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consider the dissimilarities of objects to the prototypes for

specific clusters, the strategy adopted by ECMdd is more

simple and intuitive. Moreover, there is no representative

medoid for imprecise classes in MECM.

B. The optimization

To minimize JECMdd, an optimization scheme via an

Expectation-Maximization (EM) algorithm can be designed,

and the alternate update steps are as follows:

Step 1. Credal partition (M ) update.

The bbas of objects’ class membership for any subset

Aj ⊆ Ω and the empty set ∅ representing the outliers are

updated identically to ECM [4]:

• ∀Aj ⊆ Ω, Aj 6= ∅,

mij =
|Aj |

−α/(β−1)d
−1/(β−1)
ij

∑

Ak 6=∅

|Ak|−α/(β−1)d
−1/(β−1)
ik + δ−1/(β−1)

(27)

• If Aj = ∅,

mi∅ = 1−
∑

Aj 6=∅

mij (28)

Step 2. Prototype (V ) update.

The prototype vΩi of a specific (singleton) cluster

ωi (i = 1, 2, · · · , c) can be updated first and then the

prototypes of imprecise (meta) classes could be determined

by Eq. (23). For singleton clusters ωk (k = 1, 2, · · · , c), the

corresponding new prototype vΩk (k = 1, 2, · · · , c) could be

set to xl ∈ X such that

xl = argmin
v
′

k







n
∑

i=1

∑

Aj={ωk}

mβ
ijdij(v

′

k) : v
′

k ∈ X







. (29)

The dissimilarity between object xi and cluster Aj , dij , is a

function of v
′

k, which is the potential prototype of class ωk.

The bbas of the objects’ class assignment are updated

identically to ECM [4], but it is worth noting that dij has

different meanings as that in ECM although in both cases it

measures the dissimilarity between object xi and class Aj . In

ECM dij is the distance between object i and the centroid

point of Aj , while in ECMdd, it is the dissimilarity between

xi and the most “possible” medoid. For the prototype updating

process the fact that the prototypes are assumed to be one of

the data objects is taken into consideration. Therefore, when

the credal partition matrix M is fixed, the new prototype

of each cluster can be obtained in a simpler manner than

in the case of ECM application. The ECMdd algorithm is

summarized as Algorithm 1.

We discuss here about the convergence of ECMdd. The

assignment update process will not increase JECMdd since

the new mass matrix is determined by differentiating of the

respective Lagrangian of the cost function with respect to M .

Also JECMdd will not increase through the medoid-searching

scheme for prototypes of specific classes. If the prototypes of

specific classes are fixed, the medoids of imprecise classes

determined by Eq. (23) are likely to locate near to the

“centroid” of all the prototypes of the included specific classes.

If the objects are in Euclidean space, the medoids of imprecise

classes are near to the centroids found in ECM. Thus it will

not increase the value of the objective function also. Moreover,

the bba M is a function of the prototypes V and for given

V the assignment M is unique. Because ECMdd assumes

that the prototypes are original object data in X , so there is

a finite number of different prototype vectors V and so is the

number of corresponding credal partitions M . Consequently

we can conclude that the ECMdd algorithm converges in a

finite number of steps.

Algorithm 1 : ECMdd algorithm

Input: Dissimilarity matrix [τ(xi, xj)]n×n for the n objects

{x1, x2, · · · , xn}.
Parameters:

c: number clusters 1 < c < n
α: weighing exponent for cardinality

β > 1: weighting exponent

δ > 0: dissimilarity between any object to the empty set

η > 0: to distinguish the outliers from the possible medoids

γ ∈ [0, 1]: balance of the contribution for imprecise classes

Initialization:

Choose randomly c initial prototypes from the object set

repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (27), Eq. (28) and Vt−1

(3). Compute the new prototype set Vt using Eq. (29)

and (23)

until the prototypes remain unchanged.

Output: The optimal credal partition.

C. The parameters of the algorithm

As in ECM, before running ECMdd, the values of the

parameters have to be set. Parameters α, β and δ have the

same meanings as those in ECM. The value β can be set to

be β = 2 in all experiments for which it is a usual choice. The

parameter α aims to penalize the subsets with high cardinality

and control the amount of points assigned to imprecise clusters

for credal partitions. The higher α is, the less mass belief is

assigned to the meta clusters and the less imprecise will be

the resulting partition. However, the decrease of imprecision

may result in high risk of errors. For instance, in the case of

hard partitions, the clustering results are completely precise

but there is much more intendancy to partition an object to

an unrelated group. As suggested in [4], a value can be used

as a starting default one but it can be modified according to

what is expected from the user. The choice δ is more difficult

and is strongly data dependent [4]. In ECMdd, parameter

γ weighs the contribution of uncertainty to the dissimilarity

between objects and imprecise clusters. Parameter η is used

to distinguish the outliers from the possible medoids when

determining the prototypes of meta classes. It could be set 1

by default and it has little effect on the final partition results.
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For determining the number of clusters, the validity index

of a credal partition defined by [4] could be utilised:

N∗(c) ,
1

n log2(c)
×

n
∑

i=1

[

∑

A∈2Ω\∅

mi(A) log2 |A|

+mi(∅) log2(c)

]

, (30)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized to get

the optimal number of clusters.

IV. EXPERIMENTS

In this section some experiments on various data sets

will be performed to show the effectiveness of ECMdd. The

results are compared with FCMdd and MECM to illustrate the

effectiveness and merits of the proposed method.

The c-means type clustering algorithms are sensitive to the

initial prototypes. In this work, we follow the initialization

procedure as the one used in [2] and [11] to generate a set

of c initial prototypes one by one. The first medoid, σ1, is

randomly picked from the data set. The rest of medoids are

selected successively one by one in such a way that each one

is most dissimilar to all the medoids that have already been

picked. Suppose σ = {σ1, σ2, · · · , σj} is the set of the first

chosen j (j < c) medoids. Then the j + 1 medoid, σj+1, is

set to the object xp with

p = arg max
1≤i≤n;xi /∈σ

{

min
σk∈σ

τ(xi, σk)

}

. (31)

This selection process makes the initial prototypes evenly

distributed and locate as far away from each other as possible.

The popular measures, Precision (P), Recall (R) and Rand In-

dex (RI), which are typically used to evaluate the performance

of hard clusterings are also used here. Precision is the fraction

of relevant instances (pairs in identical groups in the clustering

benchmark) out of those retrieved instances (pairs in identical

groups of the discovered clusters), while recall is the fraction

of relevant instances that are retrieved. Then precision and

recall can be calculated by

P =
a

a+ c
and R =

a

a+ d
(32)

respectively, where a (respectively, b) be the number of

pairs of objects simultaneously assigned to identical classes

(respectively, different classes) by the stand reference partition

and the obtained one. Similarly, values c and d are the

numbers of dissimilar pairs partitioned into the same cluster,

and the number of similar object pairs clustered into different

clusters respectively. The rand index measures the percentage

of correct decisions and it can be defined as

RI =
2(a+ b)

n(n− 1)
, (33)

where n is the number of data objects.

For fuzzy and evidential clusterings, objects may be par-

titioned into multiple clusters with different degrees. In such

cases precision would be consequently low [12]. Usually the

fuzzy and evidential clusters are made crisp before calculating

the measures, using for instance the maximum membership

criterion [12] and pignistic probabilities [4]. Thus in this work

we will harden the fuzzy and credal clusters by maximizing

the corresponding membership and pignistic probabilities and

calculate precision, recall and RI for each case.

The introduced imprecise clusters can avoid the risk to

group a data into a specific class without strong belief. In other

words, a data pair can be clustered into the same specific group

only when we are quite confident and thus the misclassification

rate will be reduced. However, partitioning too many data

into imprecise clusters may cause that many objects are not

identified for their precise groups. In order to show the

effectiveness of the proposed method in these aspects, we

use the indices for evaluating credal partitions, Evidential

Precision (EP), Evidential Recall (ER) and Evidential Rank

Index (ERI) [7] defined as:

EP =
ner

Ne
, ER =

ner

Nr
, ERI =

2(a∗ + b∗)

n(n− 1)
. (34)

In Eq. (34), the notation Ne denotes the number of pairs par-

titioned into the same specific group by evidential clusterings,

and ner is the number of relevant instance pairs out of these

specifically clustered pairs. The value Nr denotes the number

of pairs in the same group of the clustering benchmark, and

ER is the fraction of specifically retrieved instances (grouped

into an identical specific cluster) out of these relevant pairs.

Value a∗ (respectively, b∗) is the number of pairs of objects

simultaneously clustered to the same specific class (i.e., single-

ton class, respectively, different classes) by the stand reference

partition and the obtained credal one. When the partition

degrades to a crisp one, EP, ER and ERI equal to the classical

precision, recall and rand index measures respectively. EP and

ER reflect the accuracy of the credal partition from different

points of view, but we could not evaluate the clusterings from

one single term. For example, if all the objects are partitioned

into imprecise clusters except two relevant data object grouped

into a specific class, EP = 1 in this case. But we could not say

this is a good partition since it does not provide us with any

information of great value. In this case ER ≈ 0. Thus ER could

be used to express the efficiency of the method for providing

valuable partitions. ERI is like the combination of EP and

ER describing the accuracy of the clustering results. Note that

for evidential clusterings, precision, recall and RI measures

are calculated after the corresponding hard partitions are got,

while EP, ER and ERI are based on hard credal partitions [4].

A. Karate Club network

Graph visualization is commonly used to visually model

relations in many areas. For graphs such as social networks, the

prototype of one group is likely to be one of the persons (i.e.,

nodes in the graph) playing the leader role in the community.

Moreover, a graph (network) of vertices and edges usually

describes the interactions between different agents of the

complex system and the pair-wise relationships between nodes

are often implied in the graph data sets. Thus medoids-based
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relational clustering algorithms could be directly applied. In

this section we will evaluate the effectiveness of the proposed

methods applied on community detection problems. Here we

test on a widely used benchmark in detecting community

structures, “Karate Club”, studied by Wayne Zachary. The

network consists of 34 nodes and 78 edges representing the

friendship among the members of the club (see Figure 1.a).

There are many similarity and dissimilarity indices for net-

works, using local or global information of graph structure. In

this experiment, different similarity metrics will be compared

first. The similarity indices considered here are listed in Table

I. It is notable that the similarities by these measures are from

0 to 1, thus they could be converted into dissimilarities simply

by dissimilarity = 1 − similarity. The comparison results

for different dissimilarity indices by FCMdd and ECMdd are

shown in Table II and Table III respectively. As we can

see, for all the dissimilarity indices, for ECMdd, the value

of evidential precision is higher than that of precision. This

can be attributed to the introduced imprecise classes which

enable us not to make a hard decision for the nodes that

we are uncertain and consequently guarantee the accuracy of

the specific clustering results. From the table we can also see

that the performance using the dissimilarity measure based on

signal prorogation is better than those using local similarities

in the application of both FCMdd and ECMdd. This reflects

that global dissimilarity metric is better than the local ones for

community detection. Thus in the following experiments, we

only consider the signal dissimilarity index.

TABLE I
DIFFERENT LOCAL AND GLOBAL SIMILARITY INDICES.

Index Global metric Ref. Index Global metric Ref.

Jaccard No [13] Zhou No [14]
Pan No [15] Signal Yes [16]

TABLE II
COMPARISON OF DIFFERENT SIMILARITY INDICES BY FCMDD.

Index P R RI EP ER ERI

Jaccard 0.6364 0.7179 0.6631 0.6364 0.7179 0.6631
Pan 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866

Zhou 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866
Signal 0.8125 0.8571 0.8342 0.8125 0.8571 0.8342

TABLE III
COMPARISON OF DIFFERENT SIMILARITY INDICES BY ECMDD.

Index P R RI EP ER ERI

Jaccard 0.6458 0.6813 0.6631 0.7277 0.5092 0.6684
Pan 0.6868 0.7070 0.7005 0.7214 0.6923 0.7201

Zhou 0.6522 0.6593 0.6631 0.7460 0.3443 0.6239
Signal 1.0000 1.0000 1.0000 1.0000 0.6190 0.8146

The detected community structures by different methods

are displayed in Figure 1.b – 1.d. FCMdd could detect the

exact community structure of all the nodes except nodes 3,

14, 20. As we can see from the figures, these three nodes

have connections with both communities. They are partitioned

into imprecise class ω12 , {ω1, ω2}, which describing the

uncertainty on the exact class labels of the three nodes, by the

application of ECMdd. The medoids found by FCMdd of the

two specific communities are node 5 and node 29, while by

ECMdd node 5 and node 33. The uncertain nodes found by

MECM are node 3 and node 9.

From this experiment we can see that the introduced im-

precise classes by credal partitions could help us make soft

decisions for the uncertain objects which may lie in the

overlapped area. This could avoid the risk of making errors

simply by hard partitions.

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω22

1

●

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω22

1

●

a. Original network b. Results by FCMdd

1

2

4

5
6

7

8

10

11

12

13

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω2

3

14

20

ω
112

9

●

1

2

4

5
6

7

8

10

11

12

13

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω2

3

14

20

ω
112

9

●

c. Results by MECM d. Results by ECMdd

Fig. 1. The Karate Club network. The parameters of MECM are α =

1.5, β = 2, δ = 100, η = 0.9, γ = 0.05. In ECMdd, α = 0.05, β =

2, δ = 100, η = 1, γ = 1, while in FCMdd, β = 2.

B. Countries data

In this section we will test on a direct relational data

set, referred as the benchmark data set Countries Data [1],

[11]. The task is to group twelve countries into clusters

based on the pairwise relationships as given in Table IV,

which is in fact the average dissimilarity scores on some

dimensions of quality of life provided subjectively by stu-

dents in a political science class. Generally, these coun-

tries are classified into three categories: Western, Developing

and Communist. We test the performances of FCMdd and

ECMdd with two different sets of initial representative coun-

tries which are ∆1= {C10: USSR; C8: Israel; C7: India} and

∆2 = {C6: France; C4: Cuba; C1: Belgium}. The three coun-

tries in ∆1 are well separated. On the contrary, for the

countries in ∆2, Belgium is similar to France, which makes

two initial medoids of three are very close in terms of the given

dissimilarities. The parameters are set as β = 2 for FCMdd,

and β = 2, α = 0.95, η = 1, γ = 1 for ECMdd.

The results of FCMdd and ECMdd are given in Table V

and Table VI respectively. It can be seen that FCMdd is very

sensitive to initializations. When the initial prototypes are well

418



TABLE IV
COUNTRIES DATA: DISSIMILARITY MATRIX.

Countries C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1 C1: Belgium: 0.00 5.58 7.00 7.08 4.83 2.17 6.42 3.42 2.50 6.08 5.25 4.75
2 C2: Brazil 5.58 0.00 6.50 7.00 5.08 5.75 5.00 5.50 4.92 6.67 6.83 3.00
3 C3: China 7.00 6.50 0.00 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.50 6.08
4 C4: Cuba 7.08 7.00 3.83 0.00 5.83 6.92 6.00 6.42 7.33 2.67 3.75 6.67
5 C5: Egypt 4.83 5.08 8.17 5.83 0.00 4.92 4.67 5.00 4.50 6.00 5.75 5.00
6 C6: France 2.17 5.75 6.67 6.92 4.92 0.00 6.42 3.92 2.25 6.17 5.42 5.58
7 C7: India 6.42 5.00 5.58 6.00 4.67 6.42 0.00 6.17 6.33 6.17 6.08 4.83
8 C8: Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17 0.00 2.75 6.92 5.83 6.17
9 C9: USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 0.00 6.17 6.67 5.67
10 C10: USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 0.00 3.67 6.50
11 C11: Yugoslavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67 0.00 6.92
12 C12: Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 0.00

set (the case of ∆1), the obtained partition is reasonable.

However, the clustering results become worse when the initial

medoids are not ideal (the case of ∆2). In fact two of the

three medoids are not changed during the update process of

FCMdd when using initial prototype set ∆2. This example

illustrates that FCMdd is quite easy to be stuck in a local

minimum. For ECMdd, the credal partitions are the same with

different initializations. The pignistic probabilities are also

displayed in Table VI, which could be regarded as membership

values in fuzzy partitions. The country Egypt is clustered into

imprecise class {1, 2}, which indicating that Egypt is not so

well belongs to Developing or Western alone, but belongs to

both categories. This result is consistent with the fact shown

from the dissimilarity matrix: Egypt is similar to both USA

and India, but has the largest dissimilarity to China. From this

experiment we could conclude that ECMdd is more robust to

the initializations than FCMdd.

From Table VI we can also see the medoid of each class.

For instance, China is the medoid of its cluster (Communist

countries) no matter which initial prototype set is used. This

reflects the important role of China in communist countries

and it has significant communist characters.

C. UCI data sets

Finally the clustering performance of different methods

will be compared on two benchmark UCI relational data

sets: “Cat cortex” data set and “Protein” data set. The given

information for these data sets is pair-wise relationship values.

For the former it is a matrix of connection strengths between

65 cortical areas of the cat brain, while for the latter is

a dissimilarity matrix measuring the structural proximity of

213 proteins sequences. The comparison results by different

evaluation indices are displayed in Figure 2. For ECMdd

and MECM, the classical Precision (P), Recall (R) and Rand

Index (RI) are calculated based on the pignistic probabilities,

and the corresponding evidential indices are obtained from

the hard credal partition [4]. As it can be seen, the three

classical measures are almost the same for all the methods.

This reflects that pignistic probabilities play a similar role

as fuzzy membership. But we can see that for ECMdd and

MECM, EP is significantly high. Such effect can be attributed

to the introduced imprecise clusters which enable us to make a

compromise decision between hard ones. But as many points

are clustered into imprecise classes, the evidential recall value

is low. The performance of ECMdd is slightly better than

MECM. But we know the expression of imprecise classes

of ECMdd is more simple than that of MECM and from the

experiment it proves that ECMdd is more efficient than MECM

in terms of executing time.
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Fig. 2. The clustering results for two UCI data sets.

V. CONCLUSION

In this paper, the evidential c-medoids clustering is proposed

as a new medoid-based clustering algorithm. The proposed

approach is the extensions of crisp c-medoids and fuzzy c-
medoids on the framework of belief function theory. By the

introduced imprecise clusters, we could find some overlapped

and indistinguishable clusters for uncertain patterns. This

results in higher accuracy of the specific decisions. The ex-

perimental results illustrates the advantages of credal partitions
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TABLE V
CLUSTERING RESULTS OF FCMDD FOR COUNTRIES DATA. THE PROTOTYPE (MEDOID) OF EACH CLASS IS MARKED WITH *.

FCMdd with ∆1 FCMdd with ∆2

Countries ui1 ui2 ui3 Label Medoids ui1 ui2 ui3 Label Medoids

1 C1: Belgium 0.4773 0.2543 0.2685 1 - 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4453 0.2719 0.2829 1 - 0.0000 1.0000 0.0000 2 *
3 C8: Israel 1.0000 0.0000 0.0000 1 * 0.4158 0.3627 0.2215 1 -
4 C9: USA 0.5319 0.2311 0.2371 1 - 0.4078 0.4531 0.1391 2 -

5 C3: China 0.2731 0.3143 0.4126 3 - 0.2579 0.2707 0.4714 3 -
6 C4: Cuba 0.2235 0.2391 0.5374 3 - 0.0000 0.0000 1.0000 3 *
7 C10: USSR 0.0000 0.0000 1.0000 3 * 0.2346 0.2312 0.5342 3 -
8 C11: Yugoslavia 0.2819 0.2703 0.4478 3 - 0.2969 0.2875 0.4156 3 -

9 C2: Brazil 0.3419 0.3761 0.2820 2 - 0.3613 0.3506 0.2880 1 -
10 C5: Egypt 0.3444 0.3687 0.2870 2 - 0.3558 0.3493 0.2948 1 -
11 C7: India 0.0000 1.0000 0.0000 2 * 0.3257 0.3257 0.3485 3 -
12 C12: Zaire 0.3099 0.3959 0.2942 2 - 0.3901 0.3321 0.2778 1 -

TABLE VI
CLUSTERING RESULTS OF ECMDD FOR COUNTRIES DATA. THE PROTOTYPE (MEDOID) OF EACH CLASS IS MARKED WITH *. THE LABEL {1, 2}

REPRESENTS THE IMPRECISE CLASS EXPRESSING THE UNCERTAINTY ON CLASS 1 AND CLASS 2.

ECMdd with ∆1 ECMdd with ∆2

Countries BetPi1 BetPi2 BetPi3 Label Medoids BetPi1 BetPi2 BetPi3 Label Medoids

1 C1: Belgium 1.0000 0.0000 0.0000 1 * 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4932 0.2633 0.2435 1 - 0.5149 0.2555 0.2297 1 -
3 C8: Israel 0.4144 0.3119 0.2738 1 - 0.4231 0.3051 0.2719 1 -
4 C9: USA 0.4503 0.2994 0.2503 1 - 0.4684 0.2920 0.2396 1 -

5 C3: China 0.2323 0.2294 0.5383 3 * 0.0000 0.0000 1.0000 3 *
6 C4: Cuba 0.2778 0.2636 0.4586 3 - 0.2899 0.2794 0.4307 3 -
7 C10: USSR 0.2509 0.2260 0.5231 3 - 0.3167 0.2849 0.3984 3 -
8 C11: Yugoslavia 0.3478 0.2488 0.4034 3 - 0.3579 0.2526 0.3895 3 -

9 C2: Brazil 0.0000 1.0000 0.0000 2 * 0.0000 1.0000 0.0000 2 *
10 C5: Egypt 0.3755 0.3686 0.2558 {1, 2} - 0.3845 0.3777 0.2378 {1, 2} -
11 C7: India 0.3125 0.3650 0.3226 2 - 0.2787 0.3740 0.3473 2 -
12 C12: Zaire 0.3081 0.4336 0.2583 2 - 0.3068 0.4312 0.2619 2 -

by ECMdd. In real applications, using only one medoid may

not adequately model different types of group structure and

hence limits the clustering performance on complex data

sets. Therefore, we intend to include the feature of multiple

prototype representation of classes in our future research work.
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