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Abstract—Data fusion is a major task in data management.
Frequently, different sources store data about the same real-world
entities, however with conflicts in the values of their features.
Data fusion aims at solving those conflicts in order to obtain
a unique global view over those sources. Some solutions to the
problem have been proposed in the database literature, yet they
have a number of limitations for real cases: for example they
leave too many alternatives to users or produce biased results.
This paper proposes a novel algorithm for data fusion actually
addressing conflict resolution in databases and overcoming some
existing limitations.

I. INTRODUCTION

Data fusion is the task of merging multiple representations

of the same real-world entities in order to obtain a single and

unified view of them. [1]. As the various representations in

different data sources are likely to have disagreeing values

for corresponding features, data fusion involves detecting and

solving such conflicts.

The problem has an increasingly significant industrial rel-

evance, because of the massive proliferation of redundant

and often contradictory data. Moreover, the complexity of the

most recent data management scenarios (genomic data, linked

open data, statistical microdata), together with the always

increasing volumes of data, cause quality loss and reduced

trustworthiness of the data. [2].

One of the most common settings for data fusion is database

fusion, where the entities are memorized in a relational

database system (RDBMS). Entities are modeled as relations,

with their features being the attributes.

As a concrete example, think of the data about companies

collected by many different national business registers that

need to be integrated at a federal level, as in the example

in Figure 1. Local registers collect information about both

domestic and foreign companies, therefore different registers

store information about the same company, with unavoidable

conflicts. This is the case, in the example, for SIEMENS

where the number of employees is 360K in the Italian register

and 100 in the German one. Thus, a reconciliation of all the

features of each company is needed.

Data fusion has been considered a major problem in the

database literature, which has however provided only partial

results, working for specific cases. Several algorithms simply

ignore the conflicts (conflict-ignoring), leaving the choice to

the final users; other approaches adopt a preference strategy

(conflict-avoiding), taking the value from the most trustworthy

sources. Finally, some others actually try to solve the conflict

(conflict-solving), but with techniques that are limited to

simple algebraic approximations [3].

These approaches have a number of limitations. Ignoring or

avoiding conflicts is not practical, especially with the recent

explosion of available sources and features for each entity.

Users would be exposed to hundreds or even thousands of

alternatives for each conflict. Algorithms based on algebraic

approximation only lead to local bests, since the specific kind

of approximation depends on each user’s sensitivity, overall

resulting in a biased global view.

This work proposes BP-fuse (Belief Propagation fusion), a

novel algorithm for solving conflicts in database fusion. The

technique relies on knowledge about the domain of interest,

deriving either from domain experts or from data analysis. It

leverages the probabilistic dependencies among the attributes:

non-conflicting values are used to discover what the “true”

values are.

Such knowledge is compactly represented in a specific

data model, SSM, (simple sensor model), based on Bayesian

networks and the technique actively queries them to take

decisions about conflicts.

ITALIAN BUSINESS REGISTER

ID L NAME EMP NO GEO AREA NACE PROFIT

526 FCA 100k Ur AUTO 20M

114 SIEMENS 360k Co ICT 700M

834 Ferrari 9k - AGRI 200M

GERMAN BUSINESS REGISTER

ID L NAME REV GEO AREA EMP NO FORM

38 FCA - Ur 200 SPA

73 SIEMENS 6.14G Ur 100 Gmbh

714 LVMH 3.06G Co 83k -

Fig. 1. Sample tables from European business registers

The remainder of the paper is organized as follows. In

Section II some related work on the topic is presented. We

begin with a motivating case study in Section III. Some

background about Bayesian networks is recalled in Section IV.

Section V illustrates the adopted data model and Section VI

presents BP-fuse. Section VII discusses some properties of the

approach, and in Section VIII, some future work on the topic

is envisaged.

II. RELATED WORK

Database fusion problem aims at achieving a unified view

of the same entity represented by a number of sources, by
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solving the conflicts among the disagreeing features. In order

to fuse databases, some preliminary tasks are needed, which

in the literature are typically grouped in the data integration

problem [4], [5]. It involves schema integration [6], [7] and

data matching [8]. The former aims at fusing the databases at a

schema level, hence achieving the same logical representation

of entities, that is, the same name for relations and features; the

latter concerns the identification of the same real-world entities

in the different sources, as it is often the case that common

identifiers (such as social security numbers for individuals,

VAT code for companies) are not present.

Once the schemas have been integrated and the correspond-

ing entities matched with a unique identifier, algorithms for

database fusion can apply. In the literature some techniques

for fusion have been provided, with the mentioned limitations.

Some solutions rely on elementary relational algebra opera-

tions available in relational systems and provide the users with

all the possible alternatives [9], [10], [11], [12], unaffordable

in many real cases. Others actually try to solve the conflicts

and propose a combination of the disagreeing values based on

simple arithmetics [3]. Their results are not always acceptable,

as, for instance, the average of two conflicting values may be

out of the acceptable domain or, in any case, tightly coupled

to each user’s sensitivity.

The problem of conflict resolution has been also studied

in the field of Web information extraction. Some approaches

try to exploit the different reputation of sources and choose

values from the most reliable ones: this is sometimes done

within a classical probability theory approach [13], [14], or

in a purely Bayesian way [15]. Basically, these studies take

into consideration the dependencies among sources to establish

their trustworthiness and solve conflicts accordingly. In the

Web context, this is meaningful, as the sources are highly

interrelated and copy data from one another. Other studies

in the Web literature assume that all the sources are equally

reliable and delegate the decision to the users on the large

scale (crowdsourcing) [16], [17].

All these approaches are not effective for databases, which

are typically independent from one another. In addition, the

crowdsourcing approach has modest applications in the fi-

nancial or statistical fields, where precise and quantitative

knowledge of the amount of the features are needed. Finally,

none of these approaches exploits the dependencies among the

features, which are indeed relevant in the database context. In

the following sections we will show how BP-fuse overcomes

these limitations.

Bayesian networks have been used at length in a variety

of scenarios, supporting both causal reasoning and predic-

tion [18]. While they are widespread in many contexts, such

as expert systems, to the best of my knowledge Bayesian

Networks have never been used in database fusion.

III. A CASE STUDY FOR DATABASE FUSION

This section illustrates the approach to the problem of data

fusion by referring to a real application of BP-fuse algorithm.

Let us consider two European company registers, which are

collections of records about multinational enterprises in EU,

held, for example, by two different national statistical institu-

tions of the respective member states, Italy and Germany.

The registers are modeled as two relational tables. Figure 1

shows a fragment of those tables. For one single company

some characteristics are known in the Italian register and

unknown in the German one and viceversa. Besides, for one

company, the two registers have conflicting values for the

corresponding attributes.

The goal is obtaining a unified business register, fusing the

information coming from the two in such a way that for each

company the largest number of features is obtained and the

data quality is enriched. For each of the registers, ID is the

primary key of the relation and uniquely identifies a record

about a company in the system and L NAME is the legal

identifier of the company.1

Both the registers store the geographical area (GEO AREA)

of production and the number of employees (EMP NO). There

are also differences in the two database schemas: the Italian

register is interested in maintaining the primary economic

activity classification (NACE), and the yearly amount of the

income, which is the result of enterprise after accounting

all costs (PROFIT), whereas the German one ignores it, but

contains the yearly sales revenue (REV) of the company, which

is the gross amount for PROFIT, and the particular legal form

of enterprise differing on the basis of national jurisdiction

(FORM).

Here we assume that schema integration and data matching

have already been performed with appropriate algorithms.

Hence, the corresponding attributes in the two relations have

the same names, as a result of the schema integration; the cor-

responding companies have the same value for the L NAME

attribute, as the assignment of an identifier to a real world

entity is the result of the data matching.

The approach presented in this paper relies on knowledge

about the domain of interest and models it in Bayesian net-

works. For the domain in the example, a simple net is shown

in Figure 2. It represents some kind of causal dependency

relating G and N with E.

G N

E

Fig. 2. A simple Bayesian network for business registers

The geographical area where the production site of the

company resides, together with the economic classification of

its business are reported to influence the number of employees

as shown in the probability table in Figure 3. For instance,

automotive enterprises (AUTO) situated in the country (Co)

tend to have between 10 and 49 employees, while construction

1Notice that L NAME is not part of the primary key in the relation, since
different records referring to the same company may exist with different ID.
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enterprises (CONST) in urban centers (Ur) have about 70

employees with a probability of 0.33.

GEO by NACE by EMP NO

AGRI AUTO CONST ICT

Ur Co Ur Co Ur Co Ur Co

< 10 0.6 0.01 0.2 0.23 0.25 0.19 0.01 0.75

10-49 0.34 0.1 0.03 0.4 0.3 0.34 0.01 0.21

50-249 0.03 0.32 0.12 0.07 0.33 0.43 0.2 0.03

> 249 0.03 0.57 0.65 0.3 0.12 0.04 0.78 0.01

Fig. 3. Relations among GEO, NACE and EMP NO

Let us consider the fusion of the two records referring to

the FCA in Figure 1. FCA is present in both the registers, the

attributes NACE and PROFIT are present only in the Italian

register: therefore values AUTO and 20M are directly in the

result. REV and FORM, which are present only in the German

register, appear with their values in the result as well. The two

relations agree on the GEO AREA, but show a conflict for

EMP NO: 100k for the Italian one, 200 for the German one.

BP-fuse solves conflicts of this kind, by evaluating the

plausibility of the candidate values, given certain ones. Using

the simple Bayesian net in Figure 2 with only three variables,

the algorithm calculates P (100k | Ur,AUTO), which is 0.65;

it also calculates P (200 | Ur,AUTO), yielding 0.12. The

most plausible value is 100k and it is assigned to EMP NO

in the fused record. The case for SIEMENS is quite similar,

however particular attention must be paid as both GEO AREA

and EMP NO disagree. The final two records, Ferrari and

LVMH, appear only in one relation and so they are directly

part of the result.

In the following sections, with some elaborations on the

running example, it will be showed how richer and more

expressive networks are effectively exploited by the proposed

algorithm.

EUROPEAN BUSINESS REGISTER

ID L NAME EMP NO GEO AREA NACE REV PROFIT FORM

1 FCA 100k Ur AUTO - 20M SPA

2 SIEMENS 360k Ur ICT 6.14G 700M GMBH

3 Ferrari 9k Co AGRI - 200M -

4 LVMH 83k Co - 3.06G - -

Fig. 4. The result of BP-fuse algorithm

IV. PRELIMINARIES

Let us first recall the concept of Bayesian Network (BN).

They are essentially DAGs (Directly Acyclic Graphs) that

specify a multivariate joint probability distribution over a set

of random variables used to represent knowledge of variable

relationships in an uncertain domain.

The nodes represent the random variables that are concerned

in the reality of interest. In Figure 2, random variables are the

geographical area, the economic classification and the number

of employees in a company. Probabilistic dependencies among

variables are graphically expressed by directed edges in the

network.

Each node is labelled with a condition dependency prob-

ability distribution (CPT) table. It contains the distribution

of such variable, as it is conditioned by all the variables

corresponding to incoming edges. It encodes the quantitative

knowledge about the domain. CPTs of root nodes directly

contain the a priori distribution of the corresponding variables

as reported, since no conditioning variables are present.

Fitting graphical models is called learning, a term borrowed

from artificial intelligence theory, and in general requires a

two-step process. The first step consists in finding the graph

structure that encodes the conditional independencies present

in the data. The second step is called parameter learning

and deals with the estimation of the values of the CPTs of

the network. Both structure and parameter learning are often

performed using a combination of algorithms (a big variety

exists indeed2 and prior expert knowledge of the data [18].

The CPT in Figure 3 shows how the number of employees,

which is the variable the table refers to, varies depending on

the geographical area and the economic classification of the

company.

In this example the involved variables are discrete or dis-

cretized according to the knowledge of the domain experts.

In general, for continuous variables, any automatic (or knowl-

edge based) discretization technique may as well be adopted.

Clearly, techniques yielding a thorough definition of the reality

of interest result into finer intervals and thus better represent

the levels of the variables. This produces a network that is

more reliable and precise.

We call evidence set, the collection of all the observed

certain variables with their value. Given an evidence set, the

Bayesian network allows to calculate the probability distribu-

tion of every variable. More formally, the network supports

the computation of the probabilities of any subset of variables

given evidence about any other subset [22].

The network provides an efficient way to compute the joint

probability distribution of all the variables, since every joint

or conditional probability can be then derived. With reference

to Figure 2, consider the joint probability distribution of all

the involved variables, which can be calculated through the

chain rule: P (G,N,E) = P (G)P (N |G)P (E|N,G). The

structure of a BN implies that the value of a particular node is

conditional only on the values of its parents. In the example,

the network shows that the economical activity classification

(N) and the geographical location (G) are independent. This

reduces the chain to P (G,N,E) = P (G)P (N)P (E|N,G).
This simplification becomes more useful as the dimension of

the network grows.

In general, in a BN containing k nodes, N1 to

Nk, a value in the joint distribution is represented

by P (N1=n1, N2=n2, . . . , Nk=nk), or more compactly,

P (n1, n2, . . . , nk). Factorizing with the chain rule, we obtain:

P (n1, n2, . . . , nk) =
∏

i P (ni | Parents(Ni)).

2For example: maximum likelihood estimation, Bayesian estimation [19],
regularized estimation [20] [21].)
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Although the simplification BNs introduce is very effective,

it works well only with respect to small networks, since the

evaluation of the simplified chain requires a non-polynomial

algorithm. This causes the computation time to grow exponen-

tially as the network complexity grows 3.

In practice, more efficient algorithms, based on a message-

passing strategy, have been proposed. They all are variations

on Pearl’s belief propagation algorithm, which has been proven

to have polynomial complexity when applied to particular

network topologies [23]. Belief propagation allows to calculate

and update a belief status vector (BEL) for every node in

a Bayesian network as the algorithm converges. BEL vector

is the posterior probability distribution of the corresponding

random variable, given the a priori evidence. Nodes have a

causal support vector π and an evidential support vector λ,

representing the probability distribution of the corresponding

variable, given all the evidential information coming from their

ancestors or descendants.

Every node V receives all messages πV (Ui) from its

parents and λYj
(V ) from its children and then calculates its

belief vector as follows: BEL(V )=π(V )λ(V ), where π(v) =∑
u P (v | u) πV (u) and λ(v) =

∏
j λYj

(v). The node, using

the received λ messages, computes a new message λX(U),
which is sent to its parents U and computes new π messages to

be sent to each of its children. λV (u) =
∑

v λ(v) P (v | u) and

πYj
(v) = α π(v)

∑
k 6=j λYk

(v), where α is a normalization

factor.

V. SIMPLE SENSOR MODEL

Simple sensor model (SSM) is the data model envisaged

to support data fusion in this paper. This model uses a

terminology that is typical of the multi-sensor fusion context

and data to be fused are modeled as the measures in a physical

sensor. We introduce a generic data model to allow for a

solution that is independent of the specific data representa-

tion. Indeed, the correspondence with the relational model is

quite straightforward: relations correspond to sensors, with the

attributes being their variables; real-world keys in the relations

correspond to the sensor identifier. For the other models, for

example XML, the approach works as well with a mapping of

the respective constructs into SSM. For instance, XML nodes

would be also mapped into sensors and their attributes into

the variables.

Specifically, a sensor S(I,V) is characterized by an identi-

fier I and a set of variables V = V1, . . . , Vn. The identifier and

the variables represent the attributes of the entity measured by

the sensor, in particular the identifier is the real-world name.

The instances of each sensor are the measures m(i, v), where

each one is an assignment i for I and v = (v1, . . . , vn) for V.

SSM comprises the information about the causal dependencies

among the variables of the sensors, which is the perceived

logical implications behind the real-world entities, and adopts

constructs from Bayesian networks to model them.

3Network complexity is not measured by the number of nodes, but by a
quantity that is related to the connectivity of the network and to the numbers
of possible values for the attributes.

The identifiers are also the link between different sensors,

because they allow to tell what measures refer to the same

entity. Measures can be incomplete, either because they miss

some values for certain variables or because in a particular

point in time all the variables are missing. A useful summary

of the SSM model is depicted in Figure 5 in the form of a

UML domain model.

A. The data fusion problem

Let us give some definitions to build techniques for

database fusion. Given three sensors S1(I,V1), S2(I,V2) and

S3(I,V3 = V1 ∪V2), with the same identifier I , where V1

and V2 are two sets of variables with a possibly non empty

intersection, V3 is the union set of V1 and V2, S3 is a fusion

for S1 and S2 and we write S3 = fuse(S1, S2) if for each pair

of measures m1(i, v1) ∈ S1, m2(i, v2) ∈ S2, there exists a

measure m3(i, v3) in S3, where:

v3 = (v11, v12, . . . , v1n, vc1, v2, . . . , vcr, v21, v22, . . . , v2m),
v11, . . . , v1n is an assignment for V1 − V2 variables with

values from S1; v21, . . . , v2m is an assignment for V2 −V1

variables with values from S2; vc1, . . . , vcr is an assignment

for V1 ∩V2 variables where each value vi is derived with a

conflict-solving strategy.

VI. BP-FUSE ALGORITHM

Let us introduce BP-fuse algorithm. It is formulated with

reference to the simple sensor model introduced in Section V,

and deals with the data fusion problem defined in Section V-A.

BP-fuse takes as input a number of sensors

S1(I,V1), . . . , Ss(I,Vs) with the same identifier I,

where variable sets V1 . . .Vs can be overlapping and a

Bayesian network defined on such variables. It returns a

sensor Sr(I,Vr) such that Sr = fuse(S1, . . . , Ss).
BP-fuse has two phases: the former, emission, is devoted

to the extraction of the measures from the input sensors;

the latter, unification, has the responsibility to actually solve

conflicts among the values of the variables in all the sensors.

For every sensor and for every measure m(i, v1, . . . , vk),
the emission phase produces a set of triples (i, V1, v1), . . . ,

(i, Vk, vk). The triples are then grouped by identifier i into

candidate entities (CE) which are collections of triples refer-

ring to the same real world entity. In a candidate entity the

triples are in turn grouped by Vi into candidate sets (CS).

A candidate set collects for each variable and entity, all the

possible values coming from different measures and sensors 4.

The unification phase has the responsibility to produce from

every candidate entity a measure for Sr. To achieve this, BP-

fuse needs to reduce every candidate set to a unique value.

Four cases are possible with respect to candidate set reduction:

i) there is only one non null value in the candidate set: BP-

fuse chooses the non null candidate value; ii) null set: the

candidate set only contains the null value, BP-fuse chooses

the null value; iii) no conflict: the candidate set has exactly

one value, BP-fuse chooses this value; iv) conflict: there are

4Notice that for a given i, different candidates for a variable can also derive
from the same sensor, in case of duplicate measures.
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Fig. 5. A graphical representation of SSM: Domain Model

different values in the candidate set. Case iv) is indeed very

common and, moreover, several variables are likely to be

contemporaneously conflicting in a measure.

For every candidate entity, BP-fuse considers all the con-

flicting variables at the same time. Let V1, . . . , Vt,
5 be

such variables. BP-fuse generates all the possible assignments

a = (v1, . . . , vt), where vi is chosen from candidate set Vi.

Then the algorithm investigates the plausibility of each as-

signment a as follows. Let Vt+1, . . . , Vq be the other variables

of the measure, the ones for which the respective candidate

sets have already been reduced by applying cases i-iii. For

each assignment a, BP-fuse estimates the plausibility with

the support of the associated Bayesian net. It generates and

evaluates queries such as:

P (v1, . . . , vt | vt+1, . . . , vq). (1)

In order to efficiently compute 1 for a, BP-fuse applies some

basic manipulations. Query 1 is turned into the ratio between

two conjunctive forms:

P (v1, . . . , vt, vt+1, . . . , vq)

P (vt+1, . . . , vq)
(2)

Each conjunctive form is factorized into

P (v1)P (v2 | v1) . . . P (vn | vn−1, . . . , v1) by applying

the chain rule. Now, BP-fuse orderly calculates each factor

P (vi | v1, . . . , vj) by applying belief propagation. It starts

from initial factors P (vi) of the chain and then uses each

vi in the evidence set for the following factors. It eventually

extracts the belief BEL(Vi = vi) for the conditioned variable

vi. BP-fuse calculates the plausibility of a by replacing

previously calculated factors in ratio 2.

At this step, BP-fuse chooses for the candidate entity under

consideration the assignment a with the highest plausibility.

It reduces every candidate set to a unique value and, as a

consequence, produces a measure for Sr. The application of

5We should distinguish between the variables and the respective sets to be
reduced and adopt a different symbol for the two; however, here, for shortness
the same letter will be used.

the explained steps to all the candidate entities results in the

generation of all the fused measures for Sr.

Let us now come again over the running example introduced

in Section III in order to see a fully detailed application of BP-

fuse algorithm. To this end, let us consider the two business

registers in Figure 1 and the related support network depicted

in Figure 6.

It contains the supplementary nodes FORM, REV and

PROFIT, modeling the legal form, the revenue and the net

profit of the company. These three nodes correspond to

attributes of the tables. The network relates the involved

attributes also with other concepts of the domain of interest

that are not present in the tables. They are J LABOUR COST

and EXPORT VOL, modeling the yearly workforce cost and

percentage of export for every company. Like GEO and NACE,

FORM is deemed to have some relation with the number

of employees EMP NO. The geographical location of the

production plant influences the workforce cost, which, in turn,

affects the PROFIT together with REV. The economic activity

classification NACE has some implication on the volume of

export EXPORT VOL.

Let us consider the two records referring to SIEMENS,

which are in conflict both on GEO AREA and on EMP NO.

In BP-fuse terms, we have two sensors, SI and SG, with their

measures:

mI = (L= SIEMENS, E=360k, G=Co, N=ICT, P=700M)

mG = (L= SIEMENS, E=100, G=Ur, R=6.14G, F=Gmbh)

A. Emission phase

The emission phase produces the following triples:

CE(SIEMENS) = {(SIEMENS, E, 360k)(SIEMENS, G,

Co),(SIEMENS, N, ICT), (SIEMENS, P, 700M),(SIEMENS,

E, 100), (SIEMENS, G, Ur), (SIEMENS, R, 6.14G),

(SIEMENS, F, Gmbh)}

These triples refer to the same entity (SIEMENS), so

BP-fuse maps them into the same candidate entity. Then,

403



Fig. 6. Example of Bayesian network describing the involved variables and the respective belief vectors

within the entity, the algorithm constructs the candidate sets

referring to the triples, so for each variable, a set is built:

CS(E) = {360k, 100}, CS(G) = {Co, Ur},

CS(N) = {ICT}, CS(R) = {6.14G},

CS(P) = {700M}, CS(F) = {Gmbh}

Candidate sets CS(N), CS(R), CS(P), CS(F) contain a single

value; hence, they are reduced to the value itself by applying

case iii. Now, CS(E) and CS(G) show conflicts.

B. Unification phase

BP-fuse proceeds to generate all the possible assignments

in order to estimate the most plausible.

a1 = (E=360k, G=Co, N=ICT, R=6.14G, P=700M, F=Gmbh)

a2 = (E=360k, G=Ur, N=ICT, R=6.14G, P=700M, F=Gmbh)

a3 = (E=100, G=Co, N=ICT, R=6.14G, P=700M, F=Gmbh)

a4 = (E=100, G=Ur, N=ICT, R=6.14G, P=700M, F=Gmbh)

For each assignment, the calculation reduces, with some

algebraic simplifications on formula 2, to the product of

the the factors: P (E|N,R, P, F ) P (G|N,R, P, F,E). The

factors are calculated as the belief of the conditioned variable,

extracted from the associated Bayesian network after belief

propagation convergence. Thus, with the appropriate evidence

sets, we obtain:

a1: BEL(E=360k) BEL(G=Co) = 0,

a2: BEL(E=360k) BEL(G=Ur) = 0.24,

a3: BEL(E=100) BEL(G=Co) = 0.18,

a4: BEL(E=100) BEL(G=Ur) = 0.

BP-fuse returns the measure corresponding to a2, the assign-

ment with the highest plausibility, solving both the conflicts

together.

VII. ALGORITHM DISCUSSION

The major novelty of BP-fuse is the fact it exploit the

dependencies among the attributes to solve the conflicts.

Also, these dependencies may include features that are neither

modeled in the database nor measured, yet are however part

of the domain of interest. It is the case, for instance, of

J LABOUR COST and EXPORT VOL in Figure 6.6 Once

it has been captured by the Bayesian network, the knowledge

can be used independently of the data. In this sense BP-fuse

is context independent but domain aware.

Let us make some informal considerations about the cor-

rectness of BP-fuse. The unification generates all the possible

assignments, taking into account, all the candidate solutions

for the conflicts. The plausibility of each of them is estimated

by extracting the belief value after the belief propagation

convergence. BP-fuse converges under the constraint that the

Bayesian network is a singly connected graph, also known as

polytree [23]. This is a direct consequence of the termination

conditions of belief propagation [24].

Also the complexity of BP-fuse can be easily derived from

the one of belief propagation. For each conflict, we need

the equilibrium of the belief propagation algorithm over the

used Bayesian network. Such convergence is guaranteed to be

reached in time proportional to the network diameter [24]7.

6Indeed, it can be referred to as a latent variable, since it is not measured
but helps relate geographical location to profit.

7The diameter of a network is the length of the longest path between a pair
of nodes.
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A. Quality of data fusion answer in BP-fuse

Let us evaluate the quality of BP-fuse result by means of

completeness and conciseness, two indicators introduced in [3]

to study fusion techniques with an approach recalling the more

usual terms of precision and recall.

The two indicators can be easily defined on sets: com-

pleteness of a set is the ratio between the number of unique

elements in the set and the number of unique elements in the

universe
|S|
|U| ; conciseness is the ratio between the number of

unique elements in a set and the number of all the elements in

the set
|S|

|SET| . The two indicators are used here to estimate the

quality of data fusion algorithms, by comparing the represen-

tativity and the redundancy of the input sensors with the ones

of the data fusion answer. A good fusion algorithm would

be expected to increase the completeness and, at least, not

to decrease the conciseness with duplicates. In our context,

the extensional completeness of a sensor is the ratio between

the number of unique entities referred to by the measures

and the total number of entities in the universe (that is all

the available sensors together). This indicator expresses how

widely the sensor covers the reality: the higher the value, the

larger the coverage. In our running example in Figure 1, both

SI and SG have extensional completeness 3/4. The intensional

completeness of a sensor is the ratio between the number of

variables and the total number of unique variables measured

by all the available sensors. In the example, both the sensors

have an intensional completeness of 5/7. Conciseness can be

extensional and intensional as well, amounting the number of

unique entities or variables in a sensor. This indicator conveys

the idea of how compact the sensor is: the higher the value the

more compact the sensor. For both the sensors in the example,

conciseness values are 1, since there are no duplicates either in

the measures or in the variables. The fused sensor, returned by

BP-fuse, has the best value for intensional completeness (the

ratio is 1) as it contains the union of the variables from all

the operands by definition (Section V-A); BP-fuse maximizes

extensional completeness as well (the ratio is 1), since the

key-value pairs are generated for all the involved sensors and

no measures are discarded during the unification phase.

BP-fuse also maximizes the conciseness of the result. The

fusion answer is intensionally concise by construction, since

we assume that the schema matching has already been per-

formed, associating semantically equal variables to the same

name, and that the fused sensor contains the union of the

variables, where duplicates are not allowed. Also, extensional

conciseness is 1. In facts, BP-fuse emission produces a key-

value pair for each measure and variable, and the unification

phase collects all the pairs with the same real-world key into

a single fused measure.

VIII. CONCLUSIONS

This paper presented BP-fuse as a novel algorithm to solve

conflicts in database fusion. The major result is the possibility

to exploit the dependencies among the features to solve

the conflicts. These dependencies are modeled in Bayesian

networks that represent domain knowledge deriving from

experts or data analysis. Dependencies among the variables

and non-conflicting values are used in conjunction in a global

perspective, to tell which values are more plausible in the

result.

Furthermore, the technique that has been described is off-

line, in the sense that it considers the present data and applies

transformations to obtain the result. Successive extensions to

the system would also include the possibility to perform the

algorithm in streaming and at runtime.

A critical goal, especially in finance and statistics, is keeping

the lineage of data. This aspect is even more important with

respect to data fusion, where conflict resolution may hide the

relationship between the original data sources and the fused

ones. BP-fuse partially addresses this issue though requiring

some specific extensions. The original values are not lost, once

they are merged into their fused version.
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