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Abstract – A daylight harvesting system can produce al-

most 60% energy saving by using daylight to satisfy illu-

mination requirements. In this paper we study the prob-

lem of daylight harvesting for an indoor office which has

adjustable electric lights and blinds. There are two main

problems with such a system namely; a) photo sensor should

ideally be placed on the work desk to measure illumination.

However such a sensor can be accidently covered by pa-

per or occluded by user leading inaccurate measurements b)

changing daylight distribution inside the room due to move-

ment of sun and window blinds. New data fusion algorithms

are proposed in this paper that employ machine learning

and radiosity theory to compute the electric light and day-

light component (hence total illuminance) on the work plane

using ceiling mounted sensor. Experimental results from a

real test bed are provided at the end to highlight the perfor-

mance of each algorithm.

Keywords: Daylight Harvesting, Intelligent Lighting Sys-

tems, Energy Savings.

1 Introduction

The problem of daylight harvesting is well-known and

well-researched in lighting community [1, 2, 3, 4]. The goal

of the problem is to maximize the use of daylight to satisfy

illumination demands and thereby minimize the use of elec-

tricity. In this paper we study the daylight harvesting prob-

lem for an office environment as shown in Fig. 1(a) where

the goal is to maintain constant illumination on the work

desk (a.k.a. work plane). A general daylight harvesting

system consists of photo sensor which measures the illumi-

nation, and a controller which uses the measurements from

photo sensor to adjust the electric light. One can basically

have two types of controllers in this set up: a) Open-loop

controller: In case of an open-loop controller, the system

adjusts the luminance inside the room based on some exter-

nal parameters or sensors. Generally, a sensor is placed out-

side the room (such as on the window) which measures the

daylight falling on the window. The controller adjusts the

artificial (electric) light based on luminance on the window

and it does not have any information about the illuminance

inside the room, and b) Closed-loop controller: In case of

closed-loop controller, a sensor is placed inside the room.

As expected, the presence of the sensor inside the room pro-

vide illuminance inside the room and is more accurate to

control the artificial light [5, 6].

Ideally, in case of a closed-loop controller, the sensor

should be placed on the work desk to measure the true illu-

mination. This information can then be fed to the controller

to adjust the artificial light to meet the illuminance demand.

However a sensor on the work desk can be accidently cov-

ered by files, paper, or user himself leading to inaccurate

measurement [8]. These measurements are fed to the con-

troller which adjust the artificial light incorrectly resulting

in a failed system. Hence, as largely accepted by the light-

ing community, sensor should be mounted on the ceiling or

on the wall. With the sensor mounted on the roof and not on

the area of interest (work desk), it requires advanced algo-

rithms to estimate the illumination on the work plane based

on these ceiling/wall mounted sensors.

Fig. 1(b) shows a office set up with ceiling mounted sen-

sor. The sensor measures the illumination due to daylight

and artificial light in the room. While artificial light is rel-

atively static and can be computed accurately, daylight is

more dynamic and varies a lot. The amount of light falling

on the work plane is not only dependent on the outside light

but also on the status of blinds, i.e., blind height and blind

angle. For instance, even if there is lot of daylight falling on

the window and blinds are positioned to block sunlight, the

amount of daylight in the room will be minimal and vice-

versa. In initial work, researchers tried to develop an illumi-

nation ratio to correlate external daylight to the illumination

on the work plane [2, 3]. However, one correlation ratio was

unable to model changing dynamics of the sunlight in the

room. Therefore, other researchers in [7] developed multi-

ple illumination ratios for different blind angles (30, 40, 50

and 60 degrees). The discrete limits imposed by these au-

thors prevents the system from exploiting overall range of

blinds. This drawback was addressed in [8] wherein authors

have developed a clustering technique to model the daylight
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inside the room more accurately. Consequently, the number

of ratios developed in this case is not determined a priori

but is dependent on the location of the window and status of

the blinds. We shall employ their clustering technique and

develop new data fusion algorithms to better estimate the

illuminance falling on the work plane.

The paper is organized as follows: Section 2 details the

experimental set and the problem statement for this research.

Section 3 develops relation between the illumination be-

tween work plane and measurements by the sensors. These

relations are employed to develop several data fusion algo-

rithms in Section 4. Section 5 has experimental results to

highlight the performance of different algorithms and the

paper ends with conclusion and directions for future work

in Section 6.

2 Problem Set Up
In this section, we shall describe the experimental set up

for our daylight harvesting system and then formulate the

estimation problem.

2.1 Experiment Set Up

The experimental set up for a private office is shown in

Figure 2. The set up consists of the following components:

1. Sensors: We shall employ three sensors in this system

to measure illumination. Two sensors (C0 and C1) are

mounted on ceiling inside the room while one sensor

(C2) is placed on the window facing outward (towards

the sky). Note that ceiling sensors are not necessarily

located directly over the work plane. It only measures

the illumination in the room while window sensor only

measures daylight falling on the window and cannot

measure illumination in the room.

2. Light Fixtures: There are two light fixtures (L0,L1)

with adjustable ballast. Ballast level for each light fix-

ture can be varied between 0 to 255.

3. Blinds: Room has one large window that is fitted with

moveable blinds. Height (bh) and tilt (angle)(bθ ) of the

blinds can be adjusted to maximize the amount of light

falling in the room without causing glare to the user.

Therefore, the light falling on the window as measured

by window sensor may not be equal to daylight illumi-

nation on the work plane.

4. Controller: In our current set up, we have one open-

loop and one closed-loop controller running. The

open-loop controller adjusts the blind height (bh) and

blind angle (bθ ) based on direction of the window

and movement of sun. The open-loop controller ad-

justs the blinds to maximize the daylight in the room

without causing discomfort (glare) to the user [9, 8].

The closed-loop controller adjusts the ballast level for

light fixtures (L0,L1) to satisfy the illumination require-

ments. Since controller is not the focus of this paper,

we shall not delve into details of controller. We shall

consider it as a black box which outputs the adjustable

ballast levels given the sensor measurements.

Notation: In order to eliminate excessive notations, we

shall abuse the notation slightly. We shall use Ci to indi-

cate ith sensor (i ∈ {0,1}). It will also be used to indicate

its measurements. The reference will be clear from the con-

text. We shall use a similar strategy for artificial lighting

(L j, j ∈ {0,1}). Ci(L1,L2) indicates measurement of ith ceil-

ing sensor in presence of artificial lights which are set at

level L1 and L2. Ci(L j) indicates measurement of ith ceiling

sensor in presence of jth light fixture which is set at level L j.

The other light is assumed to be turned off. Ci(C2,bh,bθ )
indicates measurements of ith ceiling sensor in presence of

daylight where daylight falling on window is C2, and blind

status is (bh,bθ ). Ci(C2,bh,bθ ,L1,L2) indicates measure-

ments of ith ceiling sensor in presence of artificial light and

daylight. We wish to emphasize that Ci(x) is not a function.

It only indicates ceiling sensor measurements in presence of

x (x can be daylight parameters (C2,bh,bθ ) or ballast levels

for artificial lights (L1,L2)).

2.2 Problem Formulation

The total illuminance (IW ) on work plane is given as:

IW = f (L0,L1,C2,bh,bθ ) (1)

where f is some unknown function. However from theory

of radiosity [8], we know that total illumination on the plane

is linear combination of light emitted from different light

sources. Therefore,

IW = fe(L0,L1)+ fd(C2,bh,bθ )

= IE + ID (2)

where fe is a function that maps the given ballast levels to il-

lumination (IE , i.e., electric light component) on work plane,

and fd is a function that maps the outside light and status of

blinds to illumination (ID, i.e., daylight component) on work

plane. The overall five dimensional function approximation

problem reduces to two function approximation problem of

smaller size. The dimension reduction is critical not only

for reducing computation load but also provides better un-

derstanding of the system for fault detection and diagnosis.

Hence, the goal of this estimation problem is to estimate

daylight ( fd) and electric light ( fe) component based on the

available sensor measurements.

3 Relationship between work plane

illumination and sensor measure-

ments
In this section we shall define relationships (to be em-

ployed in next section) to address the challenge of estimat-

ing the illuminance on the work plane without placing a sen-

sor on it. In particular, we shall we place an auxiliary sensor

(called as hobo sensor and shall be denoted by h) on the
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(a) (b)

Figure 1: Workplane illumination estimation set up (a) using a sensor on the desk (b) using ceiling mounted sensors

Figure 2: Experiment Set Up.

work plane during data collection phase and then perform

supervised learning [10, 11] to estimate the relation between

illuminance falling on the work plane (as measured by hobo)

and measured by the ceiling sensors. As mentioned earlier,

the illuminance falling on the work plane is a combination

of daylight and electric light. Therefore, we shall estimate

the aforementioned relationships for both.

We wish to highlight that hobo sensor is only used during

the learning phase of the set up and is not foreseen to be part

of the final product. For hobo sensor, we shall the notation

similar to ceiling sensor where h(x) will indicate reading by

hobo sensor in presence of x (x can be daylight parameters

(C2,bh,bθ ) or ballast levels for artificial lights (L0,L1)).

3.1 Relationship for artificial light

First, we shall derive relationships for artificial light, i.e.,

electric lights. In particular, given the status of ballast levels

for each light fixtures, we shall develop its relationship to

true illumination on the work plane (as measured by hobo

sensor) and measurement by ceiling sensors. Before we de-

fine the experimental details, we shall outline some relation-

ships that are used in computations later.

Note that total illuminance on the work plane as measured

by hobo sensor will be given as:

fe(L0,L1) = h(L0,L1)

Again using radiosity theory, we further reduce two-

dimensional function to one-dimensional as follows:

h(L0,L1) = h(L0)+h(L1) (3)

i.e., the total illumination on the work plane (as measured

by hobo) for given ballast levels of light fixtures is equal

additive in nature. Hence, it is equal to sum of illuminance

contributed by each luminaries. Further, one can develop

similar relationship for ceiling sensors as given below:

C0(L0,L1) = C0(L0)+C0(L1) (4)

C1(L0,L1) = C1(L0)+C1(L1) (5)

We shall describe the procedure for function approximation

h(L0) and h(L1), i.e, illuminance on the work plane (as mea-

sured by hobo sensor) for given ballast level (L1,L2) of the

light fixtures. Similar process can be repeated for ceiling

sensors as well (i.e., for Ci(L j),∀i, j ∈ {0,1}). The function

approximation is performed in three steps:

1. Data Collection: Data collection process is performed

at night (in absence of daylight). Set L1 = 0 (switch
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off). Vary L0 from 0 to 255 in steps of 5 and col-

lect measurements for hobo sensor for each ballast

level. Therefore, we have {hm
0 ,L

m
0 }

M
m=1, M measure-

ments where Lm
0 indicates the ballast level and hm

0 indi-

cates the corresponding illuminance on the work plane

as measured by hobo sensor. Then repeat the exper-

iment for L1 with L0 = 0 and collect {hm
1 ,L

m
1 }

N
m=1 N

data points.

2. Clustering: A manual review of collected data shows

that hobo measurements form piecewise linear func-

tion of ballast levels. There will be three linear links

as shown in Fig 3) and shall be parameterized using

following equations:

h(L0) = ur
00L0 + vr

00 (6)

h(L1) = ur
01L1 + vr

01 (7)

where

r =







1 if L0 ≤ n1;

2 if n1 < L0 ≤ n2;

3 if L0 > n2.

The parameters ur
00,v

r
00,u

r
01,v

r
01 will be estimated us-

ing data collected in Step 1. We select n1 = 30 and

n2 = 210. Although n1 and n2 are selected manually,

it can be easily automated. Based on the given thresh-

olds (n1 and n2), the cluster the data into three groups

as follows:

Figure 3: Example for relation between true illumination

between on work plane for given ballast level

{hm
0 ,L

m
0 }

M1
m=1 if Lm

0 < n1

{hm
0 ,L

m
0 }

M2
m=1 if n1 ≤ Lm

0 ≤ n2

{hm
0 ,L

m
0 }

M3
m=1 if n2 ≥ Lm

0

{hm
1 ,L

m
1 }

N1
m=1 if Lm

1 < n1

{hm
1 ,L

m
1 }

N2
m=1 if n1 ≤ Lm

1 ≤ n2

{hm
1 ,L

m
1 }

N3
m=1 if n2 ≥ Lm

1 .

where M1 +M2 +M3 = M and N1 +N2 +N3 = N

3. Regression: Perform linear regression to estimate the

unknown parameters in Eqn. (6) and (7).

(ur
00,v

r
00) = argmin

a,b

Mr

∑
m=1

{hm
0 − (aLm

0 +b)}2

(ur
01,v

r
01) = argmin

a,b

Nr

∑
m=1

{hm
1 − (aLm

1 +b)}2

Therefore, Eqn. (6) and (7) maps the given ballast level

of light fixtures to illumination on the work desk.

Additionally, one can also find relation between given bal-

last level and light measured by ceiling sensors, i.e., one can

estimate following relationships:

C0(L0) = ar
00L0 +br

00 (8)

C0(L1) = ar
01L1 +br

01 (9)

C1(L0) = ar
10L0 +br

10 (10)

C1(L1) = ar
11L1 +br

11 (11)

3.2 Relationship for daylight

Similar to previous subsection, we shall derive the rela-

tion between illumination on work plane and ceiling sensor

for daylight in the room. The amount of daylight in the room

is determined by daylight falling on the window (C2) and

blind status (bh,bθ ).

1. Data Collection: Large number of measurements were

collected for {Cm
0 ,C

m
1 ,C

m
2 and hm}M

m=1 for various com-

binations of (bh,bθ ). bh is varied using solar position

and bθ is some control to maximize the amount of sun-

light in the room and yet avoiding glare. The electric

lights were switched off during data collection. Subse-

quently we perform clustering and regression analysis.

2. Clustering: Cluster the observed data based

on various combinations of (bh,bθ ,C2), i.e.,
{

{Cm
0 ,C

m
1 ,C

m
2 ,h

m}Mc
m=1

}K

c=1
where there are K clusters

such that cth cluster has Mc data points. Interested

readers are referred to work of [9] for details about

clustering.

3. Regression: We assume that there exists a linear rela-

tionship between the following quantities:

C0(C2,bh,bθ ) = αc
0C2 +β c

0 (12)

C1(C2,bh,bθ ) = αc
1C2 +β c

1 (13)

h(C2,bh,bθ ) = αc
hC2 +β c

h (14)

h(C2,bh,bθ ) = αc
mC0(C2,bh,bθ )

+β c
mC1(C2,bh,bθ ) (15)

where superscript c indicates the cluster index.

C0(C2,bh,bθ ),C1(C2,bh,bθ ),h(C2,bh,bθ ) represent

the daylight measurement by ceiling sensor and

hobo sensor respectively. Note that for given cluster,
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Eqn. (12)-(15) maps the window sensor measurements

to ceiling sensors, Eqn. (14) maps it to illumination

on work plane. Eqn. (15) maps the ceiling sensor

measurements to true illumination on the work plane.

The regression parameters for the above equation can

be computed using simple linear least square. For in-

stance, Eqn. (12) parameters can be computed using

equation below:

(αc
0 ,β

c
0 ) = argmin

a,b

Mc

∑
m=1

{Cm
0 − (aCm

2 +b)}2

Similar optimization can be performed for Eqns.(13)-

(15). Next, we rewrite Eqn. (15) in matrix form

h(C2,bh,bθ ) = ID = kc
2

T
CD (16)

where kc
2 =

[

αc
m

β c
m

]

and CD =

[

C0(C2,bh,bθ )
C1(C2,bh,bθ )

]

4 Algorithms
Under the normal working conditions, the ceiling sensor

measurements will be a combination of contribution due to

artificial light and daylight, i.e

Ci(C2,bh,bθ ,L0,L1) =Ci(C2,bh,bθ )+Ci(L0,L1) (17)

where i ∈ {0,1}. Now we shall employ different relation-

ships developed in earlier section to fuse information from

different sensor and estimate the illumination on the work

plane.

4.1 Algorithm I

In this algorithm, we determine illumination due to elec-

tric light (IE ) using relation in Eqn. (6)-(7). The daylight

component (ID) is a two step process: first we compute

the daylight component in ceiling sensor measurement us-

ing Eqn. (17), then Eqn. (15) is used to compute daylight

illumination on work plane. Since artificial light estimation

is based on training, there is no feedback mechanism to de-

termine a faulty bulb (in which case there is zero illuminance

for any ballast level). This is the main drawback of this al-

gorithm. The steps for Algorithm I are given in Table 1.

4.2 Algorithm II

In Algorithm II, we compute the electric light component

using relation in (6), (7) and employ window sensor to com-

pute the daylight component as in (14). The main advantage

of this algorithm is that daylight and electric light compo-

nent are computed independently. Hence the estimation er-

ror in one is not propagated. There are two drawbacks on

this algorithm, i.e., similar to Algorithm 1, it is unable to de-

termine a faulty bulb in the room and since this algorithms

is not using ceiling sensor at all, true illuminance of room is

unknown. The steps for Algorithm II are given in Table 2.

1. Given Ci(C2,bh,bθ ,L0,L1),Li,C2,bh,bθ , i ∈ {0,1}.

2. Compute IE using (6), (7) and (3).

3. Compute C0(L0,L1) using Eqns.(8), (9), (4), and C1(L0,L1) using

Eqns.(10), (11), (5).

4. Compute

C0(C2,bh,bθ ) =C0(C2,bh,bθ ,L0,L1)−C0(L0,L1)

C1(C2,bh,bθ ) =C1(C2,bh,bθ ,L0,L1)−C1(L0,L1)

5. If Ci(C2,bh,bθ )< 0 then set it equal to zero ∀i ∈ {0,1}.

6. Compute current cluster index c using C2,bh,bθ .

7. Compute ID using Eqn. (15).

8. IW = IE + ID.

Table 1: Steps for Algorithm I

1. Given L0,L1,C2,bh,bθ .

2. Compute IE using Eqns.(6), (7) and (3).

3. Compute current cluster index c using C2,bh,bθ .

4. Compute ID using Eqn. 14.

5. IW = IE + ID.

Table 2: Steps for Algorithm II

4.3 Algorithm III

Before we go into details of this algorithm, we rewrite

Equations (6)-(11) using matrix notations:

[

C0(L0,L1)
C0(L0,L1)

]

=

[

ar
00 ar

01

ar
10 ar

11

][

L0

L1

]

+

[

br
00 +br

01

br
10 +br

11

]

h(L0,L1) =
[

ar
0 ar

1

]

[

L0

L1

]

+
[

br
0 +br

1

]

Define

CE =

[

C0(L0,L1)
C0(L0,L1)

]

,L =

[

L0

L1

]

,Vs =

[

ar
00 ar

01

ar
10 ar

11

]

p =

[

br
00 +br

01

br
10 +br

11

]

a =
[

ar
0 ar

1

]T
,b =

[

br
0 +br

1

]

Therefore rewriting the earlier equation we get,

CE = VsL+p

h(L0,L1) = aT L+b

= aT Vs
−1(CE −p)+b

= kT (CE −p)+b

= kT CE −kT p+kT b

Therefore, the electric light illuminance on the work plane

can be expressed in terms of ceiling sensor values. For the

given experiment, we find the −kT p+kT b is very small and

hence will be neglected. Therefore,

h(L0,L1) = IE = kT CE (18)

In this algorithm, the daylight component is computed using

the window sensor. The electric light computation is a three

step process: first compute the daylight sensed by the ceiling

sensor, next compute the electric component of the ceiling
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1. Given Ci(C2,bh,bθ ,L0,L1),Li,C2,bh,bθ , i ∈ {0,1}.

2. Compute current cluster index c using C2,bh,bθ .

3. Compute ID using (14).

4. Compute C0(C2,bh,bθ ) using Eqn. (12) and C1(C2,bh,bθ ) using

Eqn. (13).

5. Compute

C0(L0,L1) =C0(C2,bh,bθ ,L0,L1)−C0(C2,bh,bθ )

C1(L0,L1) =C1(C2,bh,bθ ,L0,L1)−C1(C2,bh,bθ )

6. Compute IE using (18).

7. IW = IE + ID.

Table 3: Steps for Algorithm III

1-5. The Step 1 to 5 are similar to Algorithm III as given in Table 3.

6. Compute C′
0(L0,L1) and C′

1(L0,L1) using (4) and (5), respectively.

7.

C0(L0,L1) =

{

C′
0(L0,L1) if X is satisfied;

C0(L0,L1) otherwise.

X = 0.8×C′
0(L0,L1)≤C0(L0,L1)≤ 1.1×C′

0(L0,L1). Similarly for

C1(L0,L1).

8. Compute IE using (18).

9. IW = IE + ID.

Table 4: Steps for Algorithm IV

sensor measurement and use (18) to compute IE . The main

advantage of this algorithm is that ceiling sensors provide

feedback about the true illuminance in the room. Hence,

it is able to resolve the issue of faulty bulb. The steps for

Algorithm III are given in Table 3.

4.4 Algorithm IV

The last algorithm is similar to Algorithm III but with

the additional feature of outlier rejection. Algorithm III is

highly prone to error in ceiling sensor measurements espe-

cially around noon on the sunny day. The steps for Algo-

rithm IV is given in Table 4.

5 Experiments
In this section, we shall present experimental results for

the theory proposed for artificial light relationship in Section

III A, daylight relationship in Section III B, and estimation

algorithms in Section IV.

5.1 Artificial Light Experiments

Fig. 4(a), (b) and (c) show performance of regression

analysis for the data collected at night for C0, C1 and hobo

sensor (h) respectively. In these plots, for time instants

T = 40 to 240, L1 = 0 and L0 is varied while for time instants

T = 260 to 460, L0 = 0 and L1 is varied and corresponding

ceiling sensors and hobo sensor measurements are recorded.

As shown, the data was collected on 1, 5, 7 and 12 December

and regression coefficients were estimated. We then applied

the regression coefficients of each day and to the last day

(12 December) data. The regression functions matches true

data with minor variations. Hence, one can select any data

parameters for electric light illuminance. The coefficients

are tabulated in Table 5.

An important point to note in all three figures is the piece-

wise linear relation of ballast levels to the illumination. The

three linear links are as follows:

1. r = 1 indicates the low ballast level region. In this re-

gion, illumination is almost zero for zero ballast level

and remain constant for ballast levels less than n1, i.e.,

even though ballast level is increased from 0 to n1, there

is no increase in illumination. The low illuminance in

this region can be attributed to either ambient light in

the room or residual reading of sensor.

2. r = 2 indicates the region between n1 and n2 wherein

illumination on work plane is directly proportional to

the ballast levels, i.e., there is increase in illumination

with increase in ballast level and vice versa. This is the

most important region for operation of light fixtures.

3. r = 3 indicates the high ballast region and similar to re-

gion 1 (r = 1), the illumination is constant even though

there is increase is ballast level beyond n2.

Hence for most practical purposes, Region 2 (r = 2) is most

important.

5.2 Daylight Experiments

Fig. (5) show plots for relation between sensor on the ta-

ble (hobo) and window sensor (C2). This gives us relation

between daylight falling on the work plane (measured using

hobo sensor) and daylight on the window. As we see, data is

divided into five clusters and linear regression is performed

for each cluster. Similar plots can be generated for C0 and

C2 (see Fig. 6), and C1 and C2 (see Fig. 7) to understand the

relation between daylight falling on the window and sensed

by the ceiling sensors. Note from the plots that use of lin-

ear function is justified for the daylight models. It performs

well for all the clusters. The daylight coefficients are listed

in Table 6. The experimental results for daylight estimation

are provided for completeness of the paper. More details can

be found [8].

5.3 Estimation Experiments

We ran experiment for multiple days and show perfor-

mance of algorithms for Dec 6, 2012 and Dec 9, 2012. For

each day, we show estimation results, outside daylight, com-

parison between computed ceiling sensor and estimated ceil-

ing sensor measurements, and changes in cluster ID. The

ground truth for estimation is measured by placing a hobo

sensor on the work plane. For Dec 6, all the algorithms

have similar performance except Algorithm I as in Fig. 8(a).

The performance of Algorithm I is mainly affected between

12:30-2:15pm. During this time, the algorithm is mainly in

cluster 2 which has higher multiplier for C0. As result, the

large error measured in the C0 for artificial light gets prop-

agated to computations of daylight and hence overall large

estimation error. One sees a small rise in the illumination on
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Sensor Parameters r = 1 r = 2 r = 3

C0

(

a00 b00

a01 b01

) (

0 8

0 6

) (

1.146 −27.847

0.726 −15.847

) (

0.022 195

0 127

)

C1

(

a10 b10

a11 b11

) (

0 4

0 10

) (

0.496 −11.194

1.052 −22.513

) (

−0.031 93.59

0 184

)

h

(

u00 v01

u01 v01

) (

0.033 13.22

0.033 34.49

) (

1.745 −40.568

3.231 −66.604

) (

−0.031 303.71

−0.060 580.35

)

Table 5: Relationship Coefficients for various sensors with respect to ballast levels

the work plane around 2pm even though outside daylight is

reducing. This is due to change in cluster index. The blinds

are fully raised in this cluster which causes some more light

to enter the room. Notice in this case that this light was also

sensed by ceiling sensors in Fig. 8(b).

Similar behavior is observed for Algorithm I for the ex-

periment on Dec 9 as seen in Fig. 9. As seen from outside

lux values, Dec 9 was a relatively sunnier day. Therefore

around the lunch time, there was large amount of daylight in

the corridor of the set up. This extra daylight was read by the

ceiling sensor (C1) which is mounted near the door. Hence,

this large C1 reading, affected the artificial light estimation

(also seen in 9(b)). Hence, we see a large spike in estimation

with algorithm III. However, this gets fixed in Algorithm IV

as we have included a naive algorithm for outlier rejection

which accounts for these large deviations. Note that Algo-

rithm II, which does not depend on ceiling sensor measure-

ment, has performed well in all the experiments. Algorithm

II is in some sense an open loop controller and is completely

dependent on the window sensor. Hence it will not be able

to adapt to the daylight changes in the room.

6 Conclusion and Future Work
In this paper we present a daylight harvesting system that

employs two ceiling mounted sensors inside the room, one

window mounted sensor outside the room, and adjustable

light fixtures and blinds. The current system has two inde-

pendent controllers running, open loop controller that con-

trols the position of blinds dependent on the solar move-

ment, and a closed-loop controller that controls the arti-

ficial light to maintain required illumination on the work

plane. We present many new algorithms to fuse informa-

tion from different sensor to estimation illumination on the

work plane. The proposed algorithms exploits the theory of

radiosity to reduce the dimension of function approximation

which leads to reduced computational demands and more

accurate estimations. The proposed algorithms eliminate the

need of the sensor on the work plane and therefore the sensor

measurements are not affected by users. Current research

can be extended in many interesting directions. First, most

of the proposed algorithms have an in-built causality, i.e.,

estimate daylight prior to artificial light and vice versa. This

leads to propagation of error. Therefore, new algorithms

should be considered to eliminate it. Second, the data for

daylight relationship is collected in a constrained environ-

ment (door was closed). This leads to large estimation er-

ror around noon. Therefore, data collection should be per-

formed in a more general environment to account for various

scenarios of daylight entering the room.
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(a) (b)

(c) (d)

Figure 8: Simulations for 6th December 2011 (a) Estimation Results (b) Sensor Measurements (c) Window Sensor Mea-

surements (d) Cluster ID

(a) (b)

(c) (d)

Figure 9: Simulations for 9th December 2011 (a) Estimation Results (b) Sensor Measurements (c) Window Sensor Mea-

surements (d) Cluster ID
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