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Abstract - The overall goal of the research presented in 

this paper is to design an intelligent system to aid 

geologists in processing complex rock characteristics for 

interpreting eruption patterns, and thereby to aid eruption 

forecasting for volcanic chains and fields. The objective 

of this paper is to introduce a belief-based partially 

supervised classification method designed to deal with 

high uncertainty of geological data. A case study 

developed to show the feasibility of the presented method 

for correlation of tephra layers based on geochemical 

characteristics is also described. This method is not 

specific to geological data and can be used in other 

applications. 
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1 Introduction 

Volcanoes erupt mixtures of gas and rocks (generically 

known as tephra) [1]. The tephra settles to the earth’s 

surface and leaves a record of the eruption.  By looking at 

the separate tephra layers preserved within the soil layers, 

we are able to understand the history of eruptions of a 

volcano.  Because volcanoes are creatures of habit, they tend 

to act in the future as they did in the past.  Thus we are able 

to forecast future behaviour by observing the features of the 

tephra layers. It is necessary to match (correlate) the same 

tephra layer from one locality to another to characterize the 

layer thoroughly and understand its story. Tephra correlation 

is also key in other sciences, such as archeology and 

paleoenvironmental reconstruction [2], as marker tephra 

layers indicate a unique time-stratigraphic horizon.  

Tephra layer correlation from one locality to another can 

be performed using two main sets of data: the physical set 

(called lithostratigraphic) and the geochemical. Physical 

features include such variables as layer thickness, size of 

grains of different types, arrangement of the grains within 

the layer, and relative abundance of the different grain types. 

Geochemical composition of a layer is represented by the 

concentrations of different elements found within samples 

obtained from the layer. Thus lithostratigraphic features 

characterize a layer as a whole by one feature vector, while 

geochemistry requires consideration of geochemical make-

up of multiple samples taken from each layer.  

The correlation process is rarely straightforward owing to 

uncertainties about specific tephra layer identity.  Variability 

within the tephra grains, and insufficient sampling often 

result in relatively large variances and imprecisions in the 

dataset. Another source of uncertainty and ambiguity in 

correlation is the inability to identify a primary fall deposit 

layer from a reworked or mixed tephra layer. This 

distinction is not always apparent [3], and can result in 

errors in the characterization of what would be believed to 

be one single tephra layer. Another source of uncertainty is 

that the preservation of the tephra layers is not complete. 

Erosion removes the tephra from many locations, and 

eventually the tephra is buried under enough younger layers 

that it is difficult to reach by excavation. In addition, 

collecting information at a large number of sites as well as 

conducting thorough lithostratigraphic and geochemical 

analyses of the tephra collected at these sites comes at quite 

a cost. As a result, often only very sparse data are available. 

Most of the tasks related to correlating tephra layers are 

currently performed manually. At the same time, dealing 

with extreme uncertainty, ambiguity, and imprecision 

inherent in the processes of tephra layer correlation requires 

designing an intelligent data fusion system utilizing and 

combining all available layer information to serve as a 

second opinion to a geologist. 

This paper presents progress in developing such a system. 

It introduces a new, partially supervised classifier for tephra 
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correlation based on geochemical rock composition 

designed in the framework of the Transferable Belief Model 

(TBM) [4].  The TBM,  a two-level model, in which 

quantified beliefs into hypotheses about an object or state of 

the environment, are represented and combined at the credal 

level while decisions are made  based on probabilities 

obtained from the combined belief by the pignistic 

transformation at the pignistic level. Beliefs represented in 

the TBM “do not ask for an explicit underlying probability 

functions.” They are sub-additive, which permits for 

numerically expressing uncertainty and ignorance. Within 

the TBM, the unnormalized Dempster rule can combine 

basic belief masses based on multiple pieces of evidence, 

and allow for incorporation of belief reliability. Moreover, 

the TBM works under the open world assumption, i.e. it 

does not assume that the set of hypotheses under 

consideration is exhaustive. This property of the TBM is 

very important for tephra layer correlation, since in certain 

cases an unknown layer may not match to any of the layers 

selected by a geologist. 

Some preliminary results showing the feasibility of 

utilizing the belief models and decision fusion for tephra 

layer correlation are presented in [5-7]. In [5], recognition of 

layers based on lithostratigraphic features was performed by 

combining two neural network classifiers within the 

framework of the TBM. In [6,7], an evidential combination 

of the clustering of geochemical characteristics of tephra  

layers showed promising results for  defining which batch of 

magma is responsible for the layer into the system. 

The paper is organized as follows. Section 2 gives an 

overview of an intelligent system for tephra characterization 

designed to support geologists in interpretation of eruption 

patterns. Section 3 introduces an evidential classifier for 

tephra correlation based on geochemical composition of 

rocks. Section 4 discusses the results of utilization of the 

classifier described in Section 3, for correlation of tephra 

layers discovered at Burney Spring Mountain, Northern 

California. Section 5 contains conclusions. 

2 Intelligent system for tephra layer 

correlation 

The complexity of geologic data is ever increasing and it 

is becoming more and more necessary to provide geologists 

with an aid in processing the information. An intelligent 

system of rock characterization designed to support 

geologists in interpretation of eruption patterns is presented 

in Figure 1. This system represents the first attempt to 

develop a systematic approach to processing complex 

geologic characteristics for interpreting eruption patterns. 

This processing utilizes machine learning and decision 

fusion techniques designed in the framework of the 

Transferable Belief Model. 

. 

 

 

Fig. 2. Information flow in the intelligent system for 

interpreting eruption pattern (from [6]) 
 

Information processing in this system loosely follows the 

major steps of geological data analysis performed by 

geologists: 

• Defining groups of vents (magma chambers) by 

utilizing geochemical data. 

• Tephra layer correlation based on combination of 

lithostratography and layer geochemical make-up. 

• Vent position estimation and refinement of the 

lithostratigraphic characteristics. 

• Refinement of thephra layer correlation by utilizing 

the refined lithostratigraphic characteristics. 

The system is not supposed to replace a geologist. In fact, 

geologists are deeply integrated into the proposed 

processing. They utilize their domain knowledge to: 

• select a relevant set of chemical elements to be 

considered.  

• constrain the number of vent groups to be consider 

for layer correlation 

• provide subjective opinion about qualitative 

stratigraphic layer attributes 

• supply a limited training set (correlated layers) for 

the layer recognition process 
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The remainder of this paper will concentrate on the 

description of the belief-based, partially supervised classifier 

for tephra layer correlation based on geochemical 

characteristics although it is applicable to other types of 

geological data considered for tephra layer correlation and 

broadly to other application domain 

3 Evidential partially supervised 

classifier  

3.1 Transferable Belief Model 

The TBM [4] is a two-level model for representing and 

combining quantified beliefs.  

Formally let Θ  be a set of atomic hypotheses about the 

state of the environment or an identity of an 

object: { }
1
,..., .

k
θ θΘ =  Let 2

Θ
denote the power set. A 

function m is called a basic belief assignment (bba) if: 

 

[ ]2 0 1 1

A

m : , , m(A) .
Θ

⊆Θ

→ =∑                  (1)
     

 

In the majority of belief models, ( )m ∅ (uncommitted 

belief) is defined as zero (closed world assumption) while 

the TBM is the only belief model in which uncommitted 

belief can be non-zero. The function, Bel is derived from the 

basic belief assignment:  

 

1
( ) ( ).  

1 ( ) B A

Bel A m A
m ⊆

=
− ∅

∑
 
                         (2)                

 

There is a one to one correspondence between basic belief 

assignments and beliefs defined by (2). 

If m
1

 and m
2

are basic belief assignments defined on ,Θ  

they can be combined at the credal level with TBM by 

conjunctive combination or unnormalized Dempster’s rule, 

defined as: 

 

      
1 2

( ) ( ) ( ),
B D A

m A m B m D A
Θ

∩ =

= ∀ ⊆ Θ∑                  (3)                          

There are special types of belief functions, which are 

especially suitable for representing evidence coming from 

multiple sources, i.e., simple and separable support 

functions. Bel is a simple support function with focus A with 

support s, if A∃ ⊆ Θ such that  ( ) 0Bel B s= ≠  

if A B⊆ , 0B ≠ , and ( ) 0Bel B = otherwise. Separable 

support function is a combination of simple support 

functions. If Bel is a simple support function with 

focus A ≠ Θ , then:  

 

( ) , ( ) 1 ,m A s m s= Θ = − and 0m = otherwise.                (4) 

Belief combination at the credal level in the TBM follows 

by decision making at the pignistic level by using pignistic 

probability BetP . 

 

| | ( )
( ) ,

| | 1 ( )B

A B m B
BetP A A

B m

Θ

Θ

⊆Θ

∩
= ∀ ⊆ Θ

− ∅
∑  ,          (5)                   

 

where | |A is the number of elements of Θ  in .A  

The TBM allows for declining with variable reliability of 

sources by considering “discount rules,” which are the 

methods of transforming credibility of each source 

represented by basic belief assignments to account for their 

reliability and then use these transformed beliefs in the 

Dempster’s rule of combination. In general these methods 

use reliability coefficients to redistribute the degree of 

support for different hypotheses based on reliability of 

beliefs into these hypotheses.   

 There are several ways of building discounted basic 

probability assignments (
disc

m ).  One of them is defined for 

simple support functions m with atomic hypothesis as a 

focal element to “discount” beliefs into this hypothesis 

by
i

R .  

In this case for each source I we will have:  

 

disc
i i im ( A) R m ( A ), A ,= ∀ ⊂ Θ                         (6) 

                   1disc
i i im ( ) R R m( )Θ = − + ⋅ Θ . 

3.2 The problem 

Tephra layer correlation based on geochemistry is 

performed by considering a geochemical composition of the 

samples comprising both known and unknown layers. As it 

was mention before certain samples representing one layer 

can be erroneously attributed to a different layer due to 

tephra mixing when samples assumed to be a part of a 

certain layer actually represents a different layer [7] and 

sample identity can be ambiguous. Because of the 

complexity and subjectivity of sample processing 

geochemical make-up can be imprecise and vary from one 

subset of data characterizing a layer to the other if obtained 

by different workers and/or by different techniques. In 

addition the number of samples considered is limited.    

Traditionally machine learning mostly deals with two 

different problems: supervised learning, in which all the 

class labels are known with certainty and unsupervised 

learning, which does not assume any a priori information 

about a pattern class. To meet the challenge of insufficient 

number of labeled and much larger set of unlabeled patterns 

a semi-supervised learning paradigm [8] has recently 

appeared in the field of machine learning. Usually it 

combines clustering along with the knowledge of crisp labels 
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of “known” patterns to improve the recognition result. This 

method will not provide much improvement for layer 

correlation since even unknown data often, limited and crisp 

labels rarely exist.  

A more general paradigm, so-called partially supervised 

learning representing learning under uncertainty and/or 

imprecision has emerged to deal with “soft” labels of the 

training patterns [9-15]. Partially supervised learning 

assumes that each element of the training set
1

{ ,..., }
N

X x x=  

belongs to a subset of classes: 
n n
x S⊂  Depending on the 

power of sets 
k

S and the type of labels (“soft” or crisp"), it 

can represent different learning paradigms. Thus if the labels 

of the training patterns are certain and | | 1,
n

S n= ∀ , the 

partially supervised learning is reduced to the supervised 

learning  while in unsupervised learning any class in 
n

S  is 

possible. Semi-supervised learning corresponds to the case, 

in which the training sat comprises two 

subsets
1 2

X X X= ∪ such that all 
1
: | | 1

i i
x X S∀ ∈ =  while 

for 
2i

x X∀ ∈ any class is possible. The existing partially 

supervised methods either assume the existence of 

probability, possibility or belief that a learning pattern has a 

specific label (learning under uncertainty) or only the subsets 

of classes for each patters , 1,
n

S n N= are defined (leaning 

under imprecision) [14]. 

Some existing partially supervised methods (learning 

under uncertainty) assume the existence of possibility, 

probability, or belief that each training pattern can belong to 

a certain class. In the majority of methods these distributions 

are assumed to be supplied by experts [9-11] when crisp 

assignments do not exist.  The problem with experts 

supplying an uncertainty distribution over the labels is that 

the distribution is subjective and may differ from one expert 

to another. In other papers these probability, belief, and 

possibility distribution are estimated. Thus in [12] logistic 

regression is considered to model a probability distribution 

and although it showed promising result, sparseness of data 

may be a problem.  In [13, 14] the solution of the partially 

supervised learning under both impression and/or 

uncertainty is based on an assumption that the feature 

vectors are generated from a mixture model. A belief-based 

variant of the expectation minimization algorithm is used for 

model parameter estimation. This method demonstrated 

improved recognition result for both real and experimental 

data. However this method can perform poorly when the 

dimension of the feature vectors is high or actual distribution 

differs from the best fit mixture model. Besides it suffers 

from the problem of local maxima and computational 

complexity.  

In this paper we present a simple partially supervised 

classifier under uncertainty based on clustering and 

evidential consensus matrix [6]. This model is designed to 

deal with the problem of insufficient number of training 

patterns with uncertain class labels and imprecise values of 

features as well as the problem of non-exhaustive set of 

hypotheses about possible identity of an unknown layer. The 

next section will describe the model in detail. 

3.3 The model 

Let 
1

{ ,..., }
N

X x x= be an ordered set of labeled 

multidimensional patterns, { }, 1,
i

S i I=  be a set of class 

labels (I a number of classes), and { }
i
n
x is a set of patterns 

belonging to class 
i

S  with the number of patterns in each 

class ,

i
N where , 1,

i

i

N N i I= =∑ . In the case of layer 

correlation based on geochemistry, class labels represent 

identity of the layers while a set of training patters for each 

class is a set of samples comprising each “known” layer. 

While each training pattern is assigned to a single class we 

assume that certain training patterns are mislabeled and 

belong to any class from the set or may represent an 

unknown class (open world assumption). We consider the 

case, in which the number of labeled as well as unlabeled 

patterns is small. We also consider an ordered set of patterns 

1
{ ,..., },

M
Y y y= which we need to be recognized 

(“unknowns’). Thus in the case of geochemical layer 

representation Y is a conjunction of subsets 

1
{ ,..., }

j jj L
Y y y=  representing the geochemical composition 

of the samples comprising layer j, where 

1,

| | ,  and .
j j j

j J

Y L L L

=

= =∑  

 Because of the characteristics of the training set we 

cannot employ supervised learning. Instead we introduce an 

evidential partially supervised classifier utilizing a belief-

based consensus matrix built upon partitioning C obtained as 

the result of fuzzy k-mean clustering of both labeled and 

unlabeled patterns.
1 1 1

{ ,..., } { ,..., , ,..., }
K N M

P p p x x y y= = .  

As it was shown by the outcome of multiple experiments 

with clustering of volcanic rock attributes characterized by 

highly uncertain pattern class assignment and imprecision in 

feature values, known patterns are scattered between most of 

clusters from C, which make it impractical to utilize 

clustering results directly. 

Following [6], we consider a frame of discernment 

Θ = {θ
1
,θ

2
} , where 

 
θ
1

and 
 
θ
2

are the hypotheses that each 

pair of patterns 
 
p
i
and 

 
p
j
 belongs to the same or different 

clusters of partitioning C.  Let { }
ij

U u= be a membership 

matrix for partitionC . The values of U are employed for 

defining a belief structure overΘ .  The beliefs over Θ have 
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to preserve the assignment of a pattern to a cluster based on 

the maximum membership. 

Let argmax( )
im

m

t u= and argmax( )
jm

m

l u= . If t l=  then 

patterns 
 
p
i
and 

 
p
j
 are assigned to the same cluster and 

degree of support for this assignment can be represented by  

 
2

1 | | ,
it jl
u u− − which reflects our belief that the smaller is the 

difference between the respective values of the membership 

matrix, the higher is the evidence that 
 
p
i
and 

 
p
j
belong to 

the same cluster. 

The reliability of this assignment for each partition can be 

variable, and we need to use a discounted degree of support 

with reliability coefficients 
i

R and 
j

R for patterns 
 
p
i
and

 
p
j
, 

respectively: 

 

( 1) / ( 1) 

 ( 1) / ( 1),

i it

j jt

R K u K

R K u K

= ⋅ − −

= ⋅ − −

                       (7)                                    

 

where K is the dimension of feature vectors. The reliability 

coefficients are represented by the difference between the 

maximum coefficient defining the assignment of 
 
p
i
and 

 
p
j
to the cluster and an average of the rest of the 

membership coefficients, and reflect the level of confidence 

in this assignment. The discounted degree of support defines 

a simple support function with focus 
 
θ
1

: 

 
2

1 1

1 1 1

( ) (1 | | ) R  R

( ) 1 ( )

ij it jl i j

ij ij

m u u

m m

θ

θ

= − − ⋅ ⋅

Θ = −

                     (8) 

 

Similarly, if t l≠  , we can define degrees of support for 

assigning 
 
p
i
 and 

 
p
j
 to different clusters: 

| |
it jt
u u− and | |

il jl
u u− . The corresponding discounted 

separable support function with focus
2

θ : 

 

2 2

2 2

( ) 1 (1 | |) (1 | |)

( ) 1 ( )

ij i it jt j il jl

ij ij

m R u u R u u

m m

θ

θ

= − − − ⋅ − −

Θ = −

          (9) 

 

The combination of these simple support functions by the 

normalized Dempster rule is the separable support function 

1 2ij ijij
m m m= ⊕ defining the evidential consensus 

matrix { }
ij

E e= .  

Elements of { }
ij

E e= represent a belief structure over :Θ   

1 2
( ( ), ( ), ( ))

ij ij ij ij
e m m mθ θ= Θ , which is used further for 

computing beliefs that an unknown layer is correlated with 

any other layer under consideration.  

Due to the uncertainty related to the labels of the training 

patterns (identity of the samples) and imprecision of the 

feature values we do not consider all the samples for 

correlation. Selection of an appropriate subset of the training 

patterns for each class is the result of the following 

procedure. First the evidential consensus matrix E  is 

employed to define matrix ( )
ij

BetP BetP= , where 
ij

BetP  are 

the corresponding pignistic probabilities: 

1
( ) ( ) / 2

ij ij ij
p e eθ= + Θ . The similarity matrix BetP is used 

to obtain a set of clusters by employing a selected 

hierarchical algorithm based on the similarity matrix BetP 

[6]. Then for each known class i we consider a subset of 

training patterns 
i i

Z X⊆ defined by the cluster with 

maximum percentage of pattern from this class. If there is 

more than one cluster with maximum percentage of patterns 

from a certain class we select patterns from the cluster 

containing the maximum number of patters of this class. 

Selected subsets of training patterns 

1

{ ,..., }
Z

i i i
x xΖ = comprising patterns form class i with indices 

z Z
i I∈ are used for layer correlation.  

The correlation decision for each unknown layer 
j

y  and 

known layer i is based on the belief structure over Θ :  

 

1
.

| |
Z

j tj

t Ii

m e
Z

Θ

∈

= ∑                                   (10) 

 

Let 
1

{ ,..., }
I

ω ωΩ = be a frame of discernment, where 
i

ω  is a 

hypothesis that an unknown layer is correlated with a known 

layer i . Selection of one of these hypotheses is based on a 

belief structure over Ω obtained as the result of combination 

of all 
i

m
Θ

with unnormalized Dempster rule:  

 

1,

.

i

i I

m m
Ω Θ

=

=⊕                                    (11) 

 

In general, in order to make a final decision, these beliefs 

are supposed to be subsequently fused with corresponding 

beliefs based on hard and soft lithostratigraphic features in 

an intelligent voter procedure [6]. However if there is no 

lithostratigraphic data on this layer, for example, if this layer 

is found too far from the vent, the following decision rule is 

used.  

If 
2

( ) ( ),
A

m m A
Ω

Ω

⊆

∅ > ∑  we can assume that the layer is not 

correlated with any layers under consideration. At the same 

time this inequality can be, for example, the result of high 

imprecision of the values of chemical composition or low 

reliability of the person doing sample analysis. Thus the 

decision is left to the expert based on his domain knowledge 

who will be informed of this option by the automatic 

process. Otherwise, the selection of a correlation hypothesis 

is based on pignistic probability: 
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The next section presents experiments with the partially 

supervised classifier described above. 

4 Experiments and results 

Two unknown tephras were found in a trench on the flank of 

Burney Spring Mountain (BSM), California (Fig. 2). One 

(12575) of estimated Middle to Late Quaternary age, <1 Ma, 

was found in the north end of a research trench, and the 

second one (12574), was found in the south end, with an age 

estimate at 1 Ma. The two samples were analyzed at the 

University of Edinburgh on a Cameca SX100 Electron 

Microprobe. Microprobe settings were carefully fixed and 

tested on the samples to avoid loss of volatile elements. 

Given the location of BSM, tephra layers to which the two 

BSM layers might correlate were considered for comparison, 

given their known area of dispersal, proximity to the location 

and similarity in silica content. Most of the tephra layers 

found at Tule Lake, California, and Pyramid Lake, Nevada 

were considered as potential candidates [16-18]. Ashes from 

these sites include the Mazama ash and the Wn and We 

tephras from Mount St Helens; the geochemistry of these 

layers was analyzed in the same laboratory with the same 

microprobe and methodology as the two unknowns.  Other 

tephras fulfilling the basic criteria outlined above include 

Wono, Bishop, Loleta, Huckleberry Ridge, Little Glass 

Mountain, Lava Creek, Rio Dell, Mono, Trego Hot Springs 

and Rockland (Figure 2). 

 

 
 

Figure 2. Location of Burney Spring Mountain where 

samples 12575 and 12 574 were removed relative to 

potential volcanic sources of tephra (from [7]). 

In these experiments, we considered six-dimensional 

feature vectors corresponding to the percentage of the 

following oxides: Al2O3, Na2O, K2O, TiO2, FeO2, and 

CaO.  The number of samples representing tephra 12575 

was 22, and representing tephra 12574 was 24.  The 

numbers of samples representing layers of known eruptions 

(training set) are presented in table 1 

 

Table 1. Number of samples of known 

tephras considered. 

Name of the layer Number of samples 

Bishop 7 

Huckleberry Ridge 7 

Loleta 7 

Lava Creek 10 

Mazama 21 

Medicine Lake 11 

Mono  33 

Trego Hot Springs 10 

Rockland 14 

Wono 5 

Rio Del 7 

Mount St. Helens 17 

 

In determining potential matches for the two unknown 

tephras, we built an evidential consensus matrix 
comb

E  

resulted from fusion of three consensus matrices obtained by 

partitioning all samples with fuzzy K-mean algorithm with a 

degree of fuzziness m=2, as used in the majority of practical 

applications [19],  and different initialization points [6]. 

Each K-mean algorithm was run 25 times with different 

initialization points and a clustering result corresponding to   

the optimum value of one of three cluster validity measures 

was selected for combination.  The well-known cluster 

validity measures were employed:  the Xie-Beni and 

Fukuyama-Sugeno indices optimizing different functions of 

cluster compactness and separation (see, e.g. [20]), and the 

Rezaee index based on measures of the degree of variance 

within each cluster [21]. Utilization of validity measures 

helped to avoid inclusion of very weak partitionings in the 

combination.  The results of the partitioning were used for 

building evidential consensus matrices { }, 1,3
h

ij
E e h= = (see 

Section 3.3), which were fused to produce a combined 

evidential consensus matrix 
comb

E  and the corresponding 

matrix 
comb

BetP . 
comb

BetP  was then employed for building a 

combined partition by applying the single-link method over 

matrix 
comb

BetP is by using a fixed threshold of 0.5 over 

pignistic probability.  

Several experiments were conducted on the dataset. First 

experiment was designed to test performance of the designed 

classifier on samples from known tephra (training samples). 

In this experiment we conducted Monte Carlo simulations 

with the samples of Mono Tephra to test whether samples 

380



randomly selected from this layer and considered as an 

unknown are correlated with the layer they were taken from. 

Mono Tephra was selected because it has the most numbers 

of samples as compared with other known layers. The results 

showed the feasibility of the introduced method for use in 

tephra correlation. 

We experimented further with utilization of the method 

for correlation of unknown layers by running three other 

experiments. In the first two experiments, we divided known 

and unknown layers into two groups based on age and 

employed the correlation method for layers 12575 and 

12574 each with layers of similar age. As a result, most of 

the samples from layer 12575 were correlated with Trego, 

and those from 12574 with Rockland, which is consistent 

with the current state of domain knowledge. The third 

experiment was designed to learn the benefits of considering 

the age for correlation. In this experiment all known and 

unknown layers were considered together. The experiment 

resulted in counterintuitive correlation for older layer 

12574, which was correlated with younger tephra.  The 

latter experiment showed that the additional information 

based on domain knowledge is imperative. 

5 Conclusion 

This paper reports recent progress on designing an 

intelligent system to support geologists in processing 

complex rock characteristics for interpreting eruption 

patterns. 

In particular, the paper presents application of fusion 

techniques and the Transferable Belief Model to tephra 

layer correlation based on geochemistry. It introduces a new 

evidential partially supervised method for dealing with a 

very small number of training patterns with uncertain labels 

and imprecise feature values.  The experiments conducted 

for correlation of unknown tephra layers with the layers to 

which they may correlate given their location, showed the 

potential of this method. It is important to note that the 

method is not data specific, and with slight modification can 

be used for recognition of data with similar characteristics 

of the training patterns. In particular this method can be 

used for correlation of layers based on lithostratigraphy.  

The research reported in the paper further demonstrates the 

utility of application of information fusion and belief 

theories in designing a system supporting geologists in 

eruption forecasting for volcanic chains and fields, areas 

that would otherwise be difficult, perhaps impossible to 

characterize and understand. 
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