
 

 

Generalizations to the Track-Oriented MHT 

Recursion 

Stefano Coraluppi and Craig Carthel 

Systems & Technology Research 

600 West Cummings Park, Suite 6500, Woburn, MA 01801 USA 

Stefano.Coraluppi@STResearch.com, Craig.Carthel@STResearch.com 

 
Abstract—This paper addresses some aspects of multi-target 

tracking (MTT) with a specific focus on track-oriented 

multiple-hypothesis tracking (TO-MHT). First, we address the 

time-discretization of birth-death statistics, and propose an 

aggregation approach that is useful in low detection 

probability settings. A target stationarity assumption is 

required for use of aggregated statistics as part of the MTT 

solution. Second, we generalize the TO-MHT recursion to 

allow for redundant target measurements, and suggest a two-

stage processing approach that can exploit the recursion while 

maintaining computational feasibility. 

Keywords—multi-target tracking (MTT); multiple-hypothesis 

tracking (MHT); track-oriented MHT (TO-MHT); undetected 

target births; redundant measurements.  

I. INTRODUCTION 

Multi-target tracking (MTT) poses significant technical 
challenges principally due to the unknown time-varying 
number of targets as well as to measurement provenance 
uncertainty, i.e. which measurement originates from which 
target, and which measurements are false alarms [1]. These 
challenges are generally not found in classical detection, 
estimation, and nonlinear filtering problems. Many 
approaches have emerged over the years; among labelled-
tracking approaches, track-oriented multiple-hypothesis 
tracking (MHT) is generally acknowledged as the most 
powerful paradigm [2]. Recently, we have extended the 
MHT formulation to allow for undetected target births. 
Crucially, this is achieved without increasing the number of 
track hypotheses and shows promising performance 
improvements in some multi-sensor settings [3-4]. 

Allowing for undetected target births enables more 
relevant track hypotheses to be considered, by identifying the 
maximum a posteriori (MAP) birth and death interval for 
each track. More generally, we may consider an aggregate 
track hypothesis that accounts for all possible birth and death 
intervals for a sequence of associated detections. Doing so 
requires that we first determine aggregate birth and death 
statistics; this is the topic of Section II, with further 
discussion in Section III. 

The use of aggregate birth-death statistics as part of the 
MTT solution requires an assumption of target statistical 
stationarity. For example, stable motion models based on the 
Ornstein Uhlenbeck (OU) process admit stationary statistics; 
a more detailed discussion of 1st

 and 2
nd

 order OU models 
may be found in [5-6]. 

MTT with redundant measurements poses a significant 
challenge. For simplicity, most paradigms adapt a Bernoulli 
measurement model. There are some exceptions, e.g. the 
probabilistic MHT (PMHT) and its non-generative sensor 
model, for which a nice discussion may be found in [7]. A 
complementary difficulty – merged measurements due to 
more than one target – also is not considered in most MTT 
treatments.  

Redundant measurements induced by multipath 
phenomena or multiple emissions have been analyzed; see 
[8-10] and references therein. While these papers are of 
interest, they do not address the same problem that we 
consider here, where all redundant measurements are 
characterized by the same measurement equation. A recent 
treatment of redundant measurement in the context of 
probability hypothesis density (PHD) research is discussed in 
[11]. Both merged and redundant measurements are 
addressed using a Markov Chain Monte Carlo (MCMC) 
approach in [12], and in [13] in the context of multi-
dimensional assignment algorithms; however, neither work 
appears to introduce likelihood adjustments consistent with 
an explicit measurement model for these phenomena.  

In Sections IV-V, we provide an explicit derivation from 
first principles of the MHT recursion with a Poisson 
measurement model. The recursion for the general case is in 
Section VI. The Poisson case in particular takes a simple and 
appealing form that has significant similarities with the 
Bernoulli case. 

We suggests a practical means to exploit the generalized 
MHT recursion via two-stage tracking whereby the 
computational complexity associated with redundant-
measurement updates are deferred to the second, track-fusion 
stage, where the number of association hypotheses is greatly 
reduced. Conclusions and directions for future work are in 
Section VII. 

II. GENERALIZED BIRTH AND DEATH STATISTICS  

Our starting point is a continuous time birth-death 
process with exponentially distributed target inter-arrival 
(birth) times with parameter ߣ௕, and exponentially 
distributed target lifetime with parameter ߣఞ. Discrete-time 

statistics may be readily obtained, leading to a Poisson 
distributed number of births with mean ߤ௕ሺݐሻ and death 
probability ݌ఞሺݐሻ over an interval of duration ݐ. The 

expressions are given in equations (1-2). 
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ሻݐ௕ሺߤ ൌ ఒ್ఒഖ ൫ͳ െ ݁ିఒഖ௧൯,  (1) ݌ఞሺݐሻ ൌ ͳ െ ݁ିఒഖ௧.   (2) 

Letting ݐ଴ denote the initial time at which no targets are 
present, and assuming sensors scans at time ሺݐ௜ǡ ݅ ൒ ͳሻ with 
detection probability ݌ௗ, we have the following aggregate 
birth rate ߤƸ௕ሾ݇ሿ that accounts for all previously unobserved 
targets for the scan at time ݐ௞.  

Ƹ௕ሾ݇ሿߤ ൌ ෍ ௜ݐ௕ሺߤ െ ௜ିଵሻሺͳݐ െ ௗሻ௞ି௜௞݌
௜ୀଵ  

ڄ ቀͳ െ ௞ݐఞሺ݌ െ ݇ ,௜ሻቁݐ ൌ ͳǡ ǥ ǡ ܰ. (3) 

In the time-invariant case, for which all inter-scan times 
are given by ȟݐ, the aggregate birth rate takes a simpler 
form. ߤƸ௕ሾ݇ሿ ൌ σ ሻ௞௜ୀଵݐ௕ሺȟߤ ሺͳ െ ௗሻ௞ି௜൫݁ିఒഖ୼௧൯௞ି௜݌

ߙ (4) , ൌ ሺͳ െ Ƹ௕ሾ݇ሿߤ ௗሻ݁ିఒഖ୼௧,   (5)݌ ൌ ሻݐ௕ሺȟߤ ൫ଵିఈೖ൯ଵିఈ .   (6) 

There are several limiting cases of interest, including 
those noted below. Perhaps the most useful is given by 
equation (12), as this captures the customary setting for 
many MTT applications. 

1. ȟݐ ا Ƹ௕ሾ݇ሿߤ :ఞିଵߣ ื ݐ௕ȟߣ ଵ௣೏ ሺͳ െ ሺͳ െ  ௗሻ௞ሻ. (7)݌

ௗ݌ .2 ൌ Ͳ: ߤƸ௕ሾ݇ሿ ൌ ఒ್ఒഖ ൫ͳ െ ݁ି௞ఒഖ୼௧൯.  (8) 

ௗ݌ .3 ൌ Ͳǡ ȟݐ ا Ƹ௕ሾ݇ሿߤ :ఞିଵߣ ื  (9)   .ݐ௕ȟߣ݇

ௗ݌ .4 ൌ ͳ: ߤƸ௕ሾ݇ሿ ൌ  ሻ.   (10)ݐ௕ሺȟߤ

5. ݇ ื λ (steady-state limit): ߤƸ௕ሾ݇ሿ ื ሻݐ௕ሺȟߤ ଵଵିఈ.   (11) 

6. ݇ ื λ and ȟݐ ا Ƹ௕ሾ݇ሿߤ :ఞିଵߣ ื ҧ௕ߤ ൌ ఒ್୼௧௣೏ .   (12) 

Likewise, the aggregate death probability ݌Ƹఞሾ݇ሿ accounts 

for the probability of target death at time ݐ௞ or subsequently 
and with no further detections. 

Ƹఞሾ݇ሿ݌ ൌ ෍ ቀͳ െ ௜ିଵݐఞሺ݌ െ ௞ିଵሻቁݐ ሺͳ െ ௗሻ௜ି௞ே݌
௜ୀ௞ ڄ  ௜ݐఞሺ݌ െ ݇ ,௜ିଵሻݐ ൌ ʹǡ ǥ ǡ ܰ. (13) 

Once more, time-invariant case takes a simpler form. 

Ƹఞሾ݇ሿ݌ ൌ σ ൫݁ିఒഖ୼௧൯௜ି௞ሺͳ െ ௗሻ௜ି௞ே௜ୀ௞݌ Ƹఞሾ݇ሿ݌ ሻ, (14)ݐఞሺȟ݌ ൌ ሻݐఞሺȟ݌ ଵିఈಿషೖశభଵିఈ .  (15) 

Here too there are limiting cases of interest, including the 
following. The case of interest given by equation (21) is of 
interest for many MTT settings. 

1. ȟݐ ا Ƹఞሾ݇ሿ݌ :ఞିଵߣ ื ݐఞȟߣ ଵିሺଵି௣೏ሻಿషೖశభ௣೏ .  (16) 

ௗ݌ .2 ൌ Ͳ: ݌Ƹఞሾ݇ሿ ൌ ͳ െ ቀͳ െ ሻቁேି௞ାଵݐఞሺȟ݌
. (17) 

ௗ݌ .3 ൌ Ͳǡ ȟݐ ا Ƹఞሾ݇ሿ݌ :ఞିଵߣ ื ሺܰ െ ݇ ൅ ͳሻߣఞȟ(18)  .ݐ 

ௗ݌ .4 ൌ ͳ: ݌Ƹఞሾ݇ሿ ൌ  ሻ.   (19)ݐఞሺȟ݌

5. ܰ ื λ (steady-state or infinite-horizon limit): ݌Ƹఞሾ݇ሿ ื ሻݐఞሺȟ݌ ଵଵିఈ.  (20) 

6. ܰ ื λ and ȟݐ ا Ƹఞሾ݇ሿ݌ :ఞିଵߣ ื ҧఞ݌ ൌ ఒഖ୼௧௣೏ .  (21) 

To our knowledge, the use of aggregate birth and death 
statistics has not been considered in the MTT community. 
Rather, only the current time interval is considered, 
consistent with equations (1-2). These differ noticeably from 
the aggregate statistics in settings where the detection 
probability is low.  

A first demonstration of the potential benefits of revised 
birth/death statistics in the context of MTT processing is 
described in [4] and illustrated in Figure 1. 

 

Figure 1. Enhanced MHT processing extracts short-duration targets from the 
data that classical MHT cannot find. 

The approach taken in [4] identifies the likeliest intervals 
of birth and deaths for each track hypothesis; an illustration 
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of the benefits of doing so is illustrated in Figure 1. This can 
be viewed as a first step towards the more powerful 
aggregated-statistics approach described in this paper.  

Interestingly, the use of an aggregated birth rate within 
the MTT solution does rely on the subtle assumption that the 
time of birth does not impact the likelihood function 
associated with the first sensor measurement. This is not true 
in general, but is true under the assumption of statistical 
stationarity. 

III. FURTHER CONSIDERATIONS  

In principle, MTT solutions must account for those 
targets that are never detected. In some cases e.g. high birth 
rate, short expected lifetime, and low detection probability, 
this may have a nontrivial impact on the expected number of 
targets identified by the MTT solution. There is a principled 
way for identifying the maximum a posteriori (MAP) set of 
ghost targets within the enhanced MHT paradigm. The 
reader will find details in [4]. 

As with the detected-target solution, aggregated statistics 
can improve the estimate of the number of ghost targets as 
well, at the cost of no precise birth-death structure as we 
obtain with the MAP solution. The death and birth statistics 
of ghost targets are given below. ݌෤ఞሺȟݐሻ ൌ ͳ െ ቀͳ െ ሻቁݐఞሺȟ݌ ሺͳ െ ሻݐ෤௕ሺȟߤ ௗሻ,  (22)݌ ൌ ሺଵି௣೏ሻఓ್ሺ୼௧ሻ௣෤ഖሺ୼௧ሻ .   (23) 

Limiting case: 

• ȟݐ ا ሻݐ෤௕ሺȟߤ :ఞିଵߣ ื ෤௕ߤ ൌ ሺଵି௣೏ሻఒ್୼௧௣೏ .  (24) 

Note: ߤ෤௕ ൌ ሺͳ െ  ҧ௕.   (25)ߤௗሻ݌

Aside from those targets that are never detected, it is 
worth noting that there are also unaccounted for targets 
resulting from the discretization of birth-death statistics. 
Specifically, targets that are born and die within the same 
discretization interval are not accounted for in the discretized 
birth-death statistics. Hence, there is a slight approximation 
introduced by time discretization. This may seem like an 
obvious point, but note that no approximation is introduced 
when, for instance, discretizing a (linear) continuous-time 
motion model via time integration. 

The discrepancy between continuous time and discrete 
time birth rates is noted below. Not surprisingly, the 
discrepancy is small for small discretization intervals. ߤ෤௔ ൌ ேݐ௕ሺߣ െ ଴ሻݐ െ σ ௜ݐ௕ሺߤ െ ௜ିଵሻே௜ୀଵݐ . (26) 

Time-invariant case: ߤ෤௔ ൌ ܰ൫ߣ௕ȟݐ െ  ሻ൯.  (27)ݐ௕ሺȟߤ

Limiting case: 

• ȟݐ ื Ͳ: 

෤௔ߤ ื ܰ ൮ߣ௕ȟݐ െ ఞߣ௕ߣ ቌͳ െ ൭ͳ െ ݐఞȟߣ ൅ ൫ߣఞȟݐ൯ଶʹ ൱ቍ൲ 

ൌ ேఒ್ఒഖ୼௧మଶ .  (28) 

 Note that, in the absence of filter innovation scores, 

measurement association hypotheses would rely on the 

following condition to be satisfied for a single-target 

hypothesis to exceed the probability of a two-target 

hypothesis. ߤ௕ሺȟݐሻ ଵଵିఈ ڄ ሻݐఞሺȟ݌ ଵଵିఈ ൑ ͳ െ  ሻ, (29)ݐఞሺȟ݌

Limiting cases: 

1. LHS upper bound for arbitrary ݌ௗ (equality for ݌ௗ ൌ Ͳ): ߤ௕ሺȟݐሻ ଵଵିఈ ڄ ሻݐఞሺȟ݌ ଵଵିఈ ൑ ఒ್ఒഖ.  (30) 

2. Necessary condition for arbitrary ݌ௗ and ȟߣ :ݐ௕ ൑  ఞ.    (31)ߣ

As a final consideration, it is helpful for some 
applications to consider a single observation time that differs 
from an otherwise regular sensor scan time with interval ȟݐ. 
For instance, we may have a passive emission at an arbitrary 
time that must be combined with active sensor data with 
regular observation times.  

In particular, for ȟݐ ا  the time since last ݐ ఞିଵ and withߣ

sensor scan, we have: ߤ௕ሺݐǡ ȟݐሻ ൌ ሺͳ െ ҧ௕ߤௗሻ݌ ൅  (32)  .ݐ௕ߣ

Simlilarly, for ȟݐ ا  the time until next ݐ ఞିଵ and withߣ

sensor scan, we have: ݌ఞሺݐǡ ȟݐሻ ൌ ݐఞߣ ൅ ሺͳ െ  ҧఞ.  (33)݌ௗሻ݌

The expressions given in equations (32-33) are closely 
related to the time-invariant case discussed previously. In 
particular, we have the following relations. ߤ௕ሺݐǡ ȟݐሻ ൑ ǡݐ௕ሺȟߤ ҧ௕,   (34)ߤ ȟݐሻ ൌ ǡݐఞሺ݌ ҧ௕.   (35)ߤ ȟݐሻ ൑ ǡݐఞሺȟ݌ ҧఞ,   (36)݌ ȟݐሻ ൌ  ҧఞ.   (37)݌

IV. MHT RECURSION WITH REDUNDANT 

MEASUREMENTS 

We proceed with a hybrid-state decomposition approach 
with the usual notation [2,4]. The key innovation is that we 
consider an arbitrary measurement cardinality model. ݌ሺݍ௞ȁܼ௞ିଵǡ ௞ିଵሻݍ ൌ ሺ߰௞ȁܼ௞ିଵǡ݌ ڄ ௞ିଵሻݍ ௞ȁܼ௞ିଵǡݍሺ݌ ௞ିଵǡݍ ߰௞ሻǤ (38) ݌ሺ߰௞ȁܼ௞ିଵǡ ௞ିଵሻݍ ൌ ቄቀ߬߯ቁ ఞఞ൫ͳ݌ െ  ఞ൯ఛିఞቅ݌
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ڄ ൝ሺ߬ െ ߯ሻǨς ݀௜Ǩ௜ ෑ ሺ݅ሻௗ೔௜݌ ൡ ڄ ቊȦ௡భ݁ିஃ݊ଵǨ ቋ 

ڄ ቊς ௘ష೛ሺ೔ሻഋ್௣ሺ௜ሻ್೔ఓ್್೔௕೔Ǩ௜ ቋ,   (39) 

௞ȁܼ௞ିଵǡݍሺ݌ ௞ିଵǡݍ ߰௞ሻ ൌ ଵ

۔ۖۖەۖۖ
ቀఛఞቁ൬ሺഓషഖሻǨςۓ ೏೔Ǩ೔ ൰൬ς ൫೏೔శ್೔శ೙೔൯Ǩ൫್೔శ೙೔൯Ǩ೔ ൰ڄቆ ೝǨς ൫೏೔శ್೔శ೙೔൯Ǩሺ೔Ǩሻ೏೔శ್೔೔ ቇ

ςڄ ൬௕೔ା௡೔௕೔ ൰೔ ۙۖۘۖ
ۖۗۖ, (40) 

ς ൬ܾ௜ ൅ ݊௜ܾ௜ ൰௜ ൌ ς ሺ௕೔ା௡೔ሻǨ௕೔Ǩ௡೔Ǩ௜ ,   (41) ݊ଵ ൅ σ ܾ݅௜௜ ൅ σ ݅݀௜௜ ൌ σ (42)   ,ݎ ݀௜௜ ൌ ߬ െ ߯.    (43) 

Notes: 

• The factors in (39) represent, respectively: the 

probability of ߯ deaths among ߬ tracks; the 

probability of measurement cardinalities according 

to ݀௜ for surviving tracks, using the multinomial 

distribution; the probability of ݊ଵ false alarms; and 

the probability of birth cardinalities according to ܾ௜, 
using Poisson sifting. 

• The denominator factors in (40) represent, 

respectively: the number of ways to select track 

terminations; the number of ways of selecting 

tracks for specific cardinality updates; the number 

of ways of assigning measurement clusters to 

tracks; the number of ways of assigning 

measurements to clusters (order does not matter); 

and the number of ways of selecting birth clusters. 

• The total number of returns is ݎ according to (42); 

the total number of update clusters is ߬ െ ߯ 

according to (43). 

• All products and summations are over ݅ ൌ Ͳǡ ǥ 

• Undetected births and terminal missed detections 

are accounted for via generalized birth and death 

statistics. Thus w.l.o.g. we have ܾ଴ ൌ Ͳ. 

• There are ݊ false alarms, and ݊ଵ ൌ ݊. 

• The measurement-cardinality distribution is ݌ሺڄሻ. 

V. MHT RECURSION WITH REDUNDANT 

MEASUREMENTS: THE POISSON CASE ݌ሺ݅ሻ ൌ ఒ೔௜Ǩ ݁ିఒ.    (44) 

Substitution of (44) into (39): ݌ሺ߰௞ȁܼ௞ିଵǡ ௞ିଵሻݍ ൌ ቄቀ߬߯ቁ ఞఞ൫ͳ݌ െ  ఞ൯ఛିఞቅ݌

ڄ ൝ሺ߬ െ ߯ሻǨς ݀௜Ǩ௜ ෑ ቆߣ௜ௗ೔݁ିఒௗ೔ሺ݅Ǩሻௗ೔ ቇ௜ ൡ ڄ ቊȦ௡భ݁ିஃ݊ଵǨ ቋ 

ڄ ቊ݁ିఓ್ ς ఒ೔್೔௘షഊ್೔ఓ್್೔ሺ௜Ǩሻ್೔௕೔Ǩ௜ ቋ,   (45) 

Reciprocal factors among (40-41) and (44) are noted in 
red; cancellations within (40-41) are noted in blue. 
Combining (40-41) and (44) according to (38) results in the 
following: ݌ሺݍ௞ȁܼ௞ିଵǡ ௞ିଵሻݍ ൌ ቊȦ௡భ݁ିஃ݁ିఓ್ݎǨ ቋ ڄ ఞఞ൫ͳ݌ െ ఞ൯ఛିఞ݌ ς ൫ߣ௜ௗ೔݁ିఒௗ೔൯௜ ς ൫ߣ௜௕೔݁ିఒ௕೔ߤ௕௕೔൯௜ Ǥ (46) 

Further manipulation and use of (42-43) yields the 
following: ݌ሺݍ௞ȁܼ௞ିଵǡ ௞ିଵሻݍ ൌ ቊȦ௥݁ିஃ݁ିఓ್ݎǨ ቋ 

ڄ ఞఞ݌ ς ቆఒ೔ஃ೔ ݁ିఒ൫ͳ െ ఞ൯ቇௗ೔௜݌ ς ቀఒ೔ஃ೔ ݁ିఒߤ௕ቁ௕೔௜ .  (47) 

Notes: 

• The generalized MHT recursion with Poisson-

distributed measurement cardinality is such that: (i) 

for track birth and update hypotheses, the 

denominator factorial in the Poisson distribution is 

absent due to hypothesis aggregation over 

indistinguishable ordering of the measurements; 

(ii) conditioned on all other assignments, a 

measurement is equally likely to be associated with 

any track, save for the impact of filter innovation 

scores. 

• Use of the generalized MHT recursion is 

potentially problematic due to the large number of 

track hypotheses. This can be addressed via two-

stage processing whereby redundant-measurement 

hypotheses are only considered in the second 

(track-fusion) stage. 

• We have ͳ െ ௗ݌ ൌ ݁ିఒ. Substitution into (47) 

yields a form that is similar to the classical MHT 

recursion based on the Bernoulli distribution for 

measurement cardinality. 

௞ȁܼ௞ିଵǡݍሺ݌  ௞ିଵሻ ൌݍ ቊȦ௥݁ିஃ݁ିఓ್ݎǨ ቋ ఞఞ݌ ቀሺͳ െ ௗሻ൫ͳ݌ െ ఞ൯ቁௗబ݌
 

ڄ ς ቆఒ೔ஃ೔ ݁ିఒ൫ͳ െ ఞ൯ቇௗ೔௜வ଴݌ ς ቀఒ೔ஃ೔ ݁ିఒߤ௕ቁ௕೔௜ Ǥ  (48) 

VI. MHT RECURSION WITH REDUNDANT 

MEASUREMENTS: THE GENERAL CASE 

The MHT recursion in the general case can still be 
expressed in factored form – enabling track-oriented MHT – 
and the expression is only slightly more complex than (47). 
It is obtained by combining (39-40) with many cancellations 
as in the Poisson case. The final form is given below. ݌ሺݍ௞ȁܼ௞ିଵǡ ௞ିଵሻݍ ൌ ቊȦ௥݁ିஃ݁ିఓ್ݎǨ ቋ 
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ڄ ఞఞ݌ ς ൬௣ሺ௜ሻ௜Ǩஃ೔ ൫ͳ െ ఞ൯൰ௗ೔௜݌ ς ቀ௣ሺ௜ሻ௜Ǩஃ೔ ௕ቁ௕೔௜ߤ .  (49) 

Notes: 

• Global hypothesis factorization is achieved. 

• The number of measurements in a cluster 

impacts explicitly the global hypothesis score. 

The benefit of the principled derivation is to 

establish the exact dependence, which would be 

difficult otherwise to infer. The explicit 

dependence on measurement-cluster cardinality 

vanishes in the Poisson case (47). 

VII. CONCLUSIONS  

This paper proposes the use of generalized birth-death 
statics for MTT, and a generalized TO-MHT that handles 
arbitrary measurement cardinalities. Special cases of interest 
include the Bernoulli case – the well-known approach that 
has been treated in the literature – and the Poisson case 
studied here. Use of the generalized MHT recursion in 
practical setting will likely rely on two-stage processing 
whereby redundant updates are considered only for track-
level data. 

It is interesting to compare the Poisson MHT recursion 
with the Bernoulli MHT recursion. In the Poisson recursion, 

we have a factor of ݁ିఒ in all track initiation, update, and 
missed detection hypotheses. This is analogous to what is 
done in the Bernoulli case only for missed detection 

hypotheses – indeed, recall that ͳ െ ௗ݌ ൌ ݁ିఒ. Also, in the 

Poisson recursion each measurement requires a factor  ߣ Ȧൗ . 

Thus, in single-measurement birth and update hypotheses, 

we have an overall factor of ି݁ߣఒ that plays the same role as ݌ௗ in the Bernoulli case (though they are not equal).  

Interestingly, since use of a redundant measurement 

incurs the same factor  ߣ Ȧൗ  regardless of how many other 

measurements are used in a given track hypothesis, there is 
no penalty associated with redundant updates in the Poisson 
case. 

In ongoing research, we are exploring the effectiveness 
of generalized MHT processing using the two innovations 
discussed in this paper – aggregate birth-death statistics and 
redundant measurement processing – in challenging and 
practical settings where multi-stage MHT continues to be the 
leading paradigm for high-performance MTT. 
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