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Abstract—Most target tracking algorithms work with data
at the plot or detection level; that is, after an initial signal
processing step of thresholding and centroiding that delivers
point “hits” for data association and filtering. The GFMT
(general frequency modulation tracker) and HPMHT (histogram
probabilistic multi-hypothesis tracker), on the other hand, work
directly with pixellated observation data, as on a focal plane
array (FPA), meaning that the signal processing step is integral
to the tracker. The HPMHT filled most of a statistical pit in the
GFMT, but a perceptible hole remains. We discuss this here: If
the problem can be modeled – and it can – then a solution that
derives from this model ought to be available.

I. INTRODUCTION

As opposed to large-target tracking (from the computer

vision community, see for example [12]) in which target shape

is an important clue, in small-target tracking algorithms the

target-originated observation is assumed to be a post-signal

processing “point”. However, consider the data shown in figure

1: observations from the target (which relative to a pixel is

actually a point) are both spread (or blurred, or smeared)

according to a point-spread function (PSF), here modeled as

a Gaussian-shaped filter with a standard deviation (σ) of two

pixels, but are also quantized (or binned or pixellated) such

that all optical energy falling within a pixel is simply totaled

and assigned to the bin’s center. A direct feed of focal-plane

array (FPA) data, even thresholded data from the FPA’s as

represented in figure 1, to MHT, JPDAF and even MLPDA [1]

would work suboptimally, due both to the loss of information

from coarse quantization and from the collapse of the usual

data association assumption that at most one measurement per

scan can arise from each target.

On the other hand, there are algorithms that work directly

with FPA data as in figure 1. The idea of estimating (holisti-

cally) based on observations that have been histogrammed is

discussed in [15]. This was extended and became a dynamic

target tracker (the GFMT) making use of PMHT ideas in [13],

[14]. This was rebranded the (HPMHT) in [19], [20] with

the important addition of a “data dependent prior”. The data

dependent prior is perhaps an artifact but a necessary one: a

weakness of the GFMT is that each histogram (or spectral)

“count” is treated as an observation, with the result that

the effect of the process (the target motion model) becomes

asymptotically too small. However, the data-dependent prior

is itself an ad-hoc fix, and while its proportionality behavior

as a function of the number of counts is certainly necessary,

its exact form is arbitrarily chosen.
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Fig. 1. Example of first (left plots) and last (right plots) scans of simulated
focal plane array (FPA) data for straight line targets indicated by red lines.
The upper row is moderate SNR and the lower is low-observable. This figure
is intended that the reader understand the input data for the algorithms.

II. MODELS

A. Target Model

We assume T FPA scans (or frames) of data, and M targets

that exist for all scans. The scans themselves are of dimension

I1 × I2 in terms of pixels and a1 × a2 in terms of coordinate

units. The mth target’s motion is assumed linear and perturbed

by independent Gaussian process noises [2]:

xm(t+ 1) = Fxm(t) + wm(t) (1)

in which

E{wm(k)wm(k)T } ≡ Q (2)

Although it is not necessary we may as well assume the

target’s motion to be kinematic [1], [5], meaning that xm(t)
comprises two dimensions each of position and velocity in

the FPA coordinates; we will assume that Hxm(t) selects the

two components of position. There is nothing in the GFMT,

HPMHT or this discussion that requires two dimensions,

invariant parameters or kinematic models; but to enlarge these

assumptions would be dilatory.
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B. Observation Model

The idea is that the FPA pixels measure optical energy; but

that underlying this optical energy are the photons that gave

rise to it. Let us assume that there are K photons – according

to physics K ought to be a very large number indeed, and

that is the point of this paper. Another necessary assumption

is that the PSF be Gaussian in shape – the parameter R

is a property of the optics, and it seems fair to assume

that it be known in this development1. Let us further define

probabilities {πm}Mm=0; in fact, πm will be the probability that

an arbitrarily-selected photon was in fact produced by target

m, with m = 0 referring to clutter.

What is observable at the FPA is the aggregate count for

each pixel. That is, the FPA observes

Z(t) = {Zi(t)}
I
i=1 (3)

in which we are using the economical notations i ≡ (i1, i2)
& I ≡ (I1, I2), and where

Zi(t) =
K
∑

k=1

I (Q [yk(t)] = i) (4)

in which the notation within the sum on the right-hand

side (RHS) of (4) (I and Q are respectively indicator and

quantization functions) means that a count is given to pixel

i = (i1, i2) at frame t when the kth photon’s location yk(t)
lies within that pixel.

τ
 2� τ

 2+1�

τ
 1�

τ
 1+1�

Fig. 2. Sketch of a pixel indicating thresholds. The subscripts “1” and “2”
refer to the dimension.

In (4) we have used yk(t), the actual location of the kth

photon as it impinges on the tth FPA frame. We have

yk(t) ∼

{

N (y;Hxm(t),R) uk(t) ∈ {1, . . . ,M}
1

a1a2
uk(t) = 0

(5)

where the latter is uniform and N (y;μ,R) denotes the Gaus-

sian pdf in variable y with mean vector μ and covariance

matrix R, and in which {uk(t)}
K
k=1 are drawn such that for

m = 0, 1, . . . ,M

Pr(uk(t) = m) = πm (6)

and are independent and identically distributed (iid). Clearly

both yk(t) and uk(t) represent hidden variables of the sort

1For tractable operation it is probably necessary that R be diagonal.

familiar to those who work with the expectation maximization

(EM) algorithm [10]. That is, we have

• uk(t) ∈ {0,M} denotes the provenance of the kth photon

at time t: it comes from one of the M targets or else

clutter (uk(t) = 0).

• yk(t) ∈ ℜ2 denotes the true location in the FPA of the

pth photon at time t. Given Q [yk(t)] it is restricted to

[τi1, τi1+1]× [τi2, τi2+1], with reference to figure 2.

Since we will need them, we write their posterior probabil-

ities in (8) and (9); the dependence on the EM iteration is

suppressed. In (7), (8) and (9), xm(t) denotes the last (that is,

(n−1)st EM iteration) estimate of the location of target m at

scan t; and the limit of integration y ∈ i implies integration

over the ith pixel.

III. THE GFMT

The GFMT [13], [14] uses the models of the previous

section, and applies EM [10] in the manner of the PMHT [4],

[18], [23]. At fundament, the EM algorithm seeks to maximize

Q(X) =

∫

log[p(Z,X,U, Y )]p(U, Y |Z) (10)

where this “Q” should not be confused with process noise co-

variance Q, and in which U,X, Y and Z denote the aggregated

corresponding lower-case variables. We have

Q(X) = log[p(X)] +

T
∑

t=1

K
∑

k=1

M
∑

m=0

Pt(m|Q [yk(t)]) (11)

×

∫

Y

pt(yk(t)|Q [yk(t)] ,m) log[πmp(yk(t)|xm(t))]

where Pt and pt are from (8) and (9) and use the previous EM

iteration’s X , and in which it is important to recall that photons

are being “counted” individually – we know Q [yk(t)] ∀k ∈
{1,K}. As in [23] we take the gradient with respect to X:

∇Q(X) = (12)

∇ log[p(X)] +
T
∑

t=1

K
∑

k=1

M
∑

m=1

Pt(m|Q [yk(t)])

×

∫

Y

pt(yk(t)|Q [yk(t)] ,m)HTR−1[yk(t)−Hxm(t)]

Then with

ȳi,m(t) ≡ E {yk(t)|Q [yk(t)] = i, uk(t) = m}

=

∫

Q[y]=i

ypt(y|i,m)dy (13)

we get

∇Q(X) = ∇ log[p(X)] +

T
∑

t=1

K
∑

k=1

M
∑

m=1

Pt(m|Q [yk(t)])

×HTR−1[ȳQ[yk(t)],m(t)−Hxm(t)] (14)
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Pt(i) ≡ Pr(Q[yk(t)]=i|xm(t)) =
(

π0

∫

y∈i

1
a1a2

dy

)

+
∑

M

l=1

(

πl

∫

y∈i
N(y;Hxl(t),R)dy

)

(7)

Pt(m|i) ≡ Pr(uk(t)=m|Q[yk(t)]=i,xm(t)) =

{

πm
Pt(i)

∫

y∈i
N(y;Hxm(t),R)dy m∈{1,M}

π0
Py(i)

∫

y∈i

1
a1a2

dy m=0
(8)

pt(y|i,m) ≡ p(yk(t)|uk(t)=m,Q[yk(t)]=i,xm(t)) = I(Q[y]=i)×

⎧

⎪

⎨

⎪

⎩

N(y;Hxm(t),R)
∫

y∈i
N(y;Hxm(t),R)dy

uk(t)=m∈{1,M}

1
a1a2

∫

y∈i

1
a1a2

dy

uk(t)=0

(9)

The summation over k eventually counts through the Z1(t)
photons that are in pixel i = 1, the Z2(t) photons that are in

pixel 2, etc. Hence we can write (14) as

∇Q(X) = ∇ log[p(X)] +
T
∑

t=1

I
∑

i=1

M
∑

m=1

Zi(t)Pt(m|i)

×HTR−1[ȳi,m(t)−Hxm(t)] (15)

or (it almost looks like a standard PMHT [4], [18], [23] now)

∇Q(X) = ∇ log[p(X)] (16)

+K
T
∑

t=1

M
∑

m=1

HT R̃−1
m (t)[ỹm(t)−Hxm(t)]

where

R̃m(t) ≡
R

∑I
i=1 Zi(t)Pt(m|i)

(17)

ỹm(t) ≡

∑I
i=1 Zi(t)Pt(m|i)ȳi,m(t)
∑I

i=1 Zi(t)Pt(m|i)
(18)

Note that i ∈ {1, I} is shorthand for “all pixels,” ȳm(t)
is from (13) and Pt(m|i) is from (8). As with the usual

PMHT explanation, ∇Q(X) = ∇Q̆(X) in which the latter

corresponds to a standard linear/Gaussian model having “syn-

thetic” measurements {ỹm(t)} with corresponding covariances

{R̃m(t)}, or

Q̆(X) = (19)

C −
1

2

M
∑

m=1

[

(xm(1)− x̄m(1))TP−1
0 (xm(1)− x̄m(1))+

T
∑

t=2

(xm(t)− Fxm(t− 1))TQ−1(xm(t)− Fxm(t− 1))

+
T
∑

t=1

(ỹm(t)−Hxm(t))T R̃−1
m (ỹm(t)−Hxm(t))

]

in which P0 is the covariance of xm(t) at time t = 1.

Accordingly, the EM iteration is via the Kalman smoother

using these synthetic quantities.

Taking the gradient with respect to the π’s and noting the

constraint that they add to unity we have for m = 0, 1, . . . ,M

πm = κ

T
∑

t=1

I
∑

i=1

Pt(m|i) (20)

where κ is chosen to make the sum unity. Note that while

the π’s in the usual PMHT implementation can be estimated,

there is usually little reason for it and there may be numerical

issues. However in the GFMT and HPMHT they are important

and in general must be estimated: they represent the strength

of the target.

Note also that in (20) the π’s are fixed with time, reflecting

(6-9). The modification is obvious. We also claim that the

extension to observations of dimension not equal to two (say,

one-dimensional “frequency bins” or three-dimensional vox-

els) is obvious. Some discussion of the multi-target situation,

not so obvious, is in Appendix A.

IV. THE HPMHT

Equation (17) suggests a concern: if the number of photons

K → ∞ then the synthetic measurement covariance R̃m(t) →
0, since the denominator is proportional to K. To see this,

suppose we were to normalize the FPA-level data such that

(4) becomes

Z̃i(t) =
1

K

K
∑

k=1

I (Q [yk(t)] = i) (21)

which sums to unity. Then (17) could be expressed as

R̃m(t) =
R

K
∑I

i=1 Z̃i(t)Pt(m|i)
(22)

which makes the issue obvious.

We will discuss what this physically means in the next

section; but operationally it means that the filtering becomes

trivial, the measurements ỹm(t) tells us exactly where the

target is at time t, and velocity can be inferred from their

differences. Although the GFMT made its first appearance in

[13], their simulations used finite values of K. The concern

actually was noted in [14], but that followed its being pointed

out in [19].

The histogram probabilistic multi-hypothesis tracker ([19],

see also, among others, [6], [20]) adopts a different philosophy.

Specifically, it is noted that the implied model (with hidden

variables averaged out) for the GFMT is

p(X|Z) ∝ p(X)

T
∏

t=1

K
∏

k=1

p(yk(t)|X) (23)
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then the effect of the “prior” p(X) in the GFMT becomes

swamped as in the large-K case by the observations. However,

if the prior is made “data-dependent” such that

Q → αQ/K (24)

in (19) then the effect is to replace p(X) by p(X)K : the

swamping of the prior is avoided by increasing its effect

proportionate to the number of photons per scan. The HPMHT

uses α = 1, and the resulting algorithm is essentially2 the

GFMT with K = 1 in (17).

V. THE PUZZLE

The GFMT’s disenfranchisement of its prior can be under-

stood in two ways.

• If K → ∞, then for all pixels the number of photons

diverges. The law of large numbers then renders the

relative photon count (the photon count divided by K)

deterministically equal to the expected count. From such

a noise-free FPA the exact target positions is easily

inferable with no error.

• The PMHT’s data association model [18] allows for

multiple measurements per target. Each photon is, in

fact, a measurement, indistinguishable as far as model

is concerned from a radar or sonar “hit” in the original

PMHT, except with slightly reduced precision due to

pixellation (i.e., quantization). If there are K → ∞
photons then this is a PMHT with an infinite number

of hits to work with.

From either perspective the amount of precision (in the sense

of information or inverse variance) in the measurements is

proportional to K; and that in the prior is fixed.

The HPMHT’s data-dependent prior is a smart solution to

the GFMT’s evanescent one. With reference to (19) and noting

that R̃m(t)−1 is proportional to K it would seem that there

really is no other choice: as K → ∞ either the prior is

evaporating, the data is ignored, or Q ∝ 1/K and both prior

and data are able to be involved in the filtering. The concern,

however, is that one could replace Q by Q/K, by Q/π, even

by 2000Q/K, and the same would be true. It would be much

more satisfying if there were some physical modeling that

could select the constant of proportionality.

The poser is that while the HPMHT is more appealing in its

algorithmic form, the GFMT is derived from a model that is

correct according to the physics3: photons from each point

target are perturbed by the PSF from the optics; the photons

are indeed captured and their powers aggregated in optical

2It must be mentioned that the HPMHT makes another significant leap,
albeit one orthogonal to the point of this paper. In the HPMHT the levels in the
unobserved pixels beyond the edge of the FPA are afforded “hidden-variable”
status in EM terms. The increase in algorithmic complexity is marginal, and
the importance of this clever mechanism on bias-removal for targets whose
PSF extends beyond the FPA should not be underestimated.

3Indeed, one could argue about photons versus particles, or whether it is
justifiable to attribute each photon to a target according to (5), but the authors
cannot think of a workable model that better describes the key ingredients to
an FPA observations process than the one that the GFMT uses.

pixels; and there are so many photons that setting K to ∞
seems venial.

In the following section we offer some insight.

VI. MODEL-DRIVEN ALGORITHMS

A. Estimate K

It is above stated that the physics specifies that K → ∞. In

“bright” situations this is probably true, but in low-observable

cases it may be a poor assumption: there may in fact be very

few photons available in any pixel; or else the model is not

well-matched to the FPA data. In such cases the match of

observed level Zi(t) to its predicted level KPi(t) may be poor

even after EM has done its optimization work. Actually, there

are imaging devices that can work with very few photons such

as the one presented in [16].

Hence an idea is to estimate K. It would be appealing to

add K to the maximization of (11); but it makes makes little

sense. According to the model K is known: from (3) we have

the number of photons in each pixel, and the sum of these

counts must be K. So even a poor match between {Zi(t)}
and {KPi(t)} just a matter of repeated peculiar dice rolls.

So if we are operating in an environment where each photon

or quantum can be counted, there is no reason to estimate

K. On the other hand, many applications give {Zi(t)} in

some other units – photons, volts, etc. And even though there

would seem to be a mismatch between model (3) and obser-

vations {Zi(t)} that are not countable, the algorithm (Kalman

smoother using (18) and (17)) remains quite applicable.

Let us define the normalized4 pixel values as

Z̄i(t) ≡
Zi(t)

∑I
i=1 Zi(t)

(25)

the match of which to {Pi(t)} improves with K. We propose

in this subsection iteratively to estimate K based on {Z̄i(T )}
and {Pi(t)}; then to reestimate {Pi(t)} using K from the

Kalman smoother that uses (18) and (17).

So the number of photons per pixel (KZ̄i in pixel i, where

it is assumed in the model that we have KZ̄i is an integer) is

multinomial, we can write

p({Z̄i(t)}
I
i=1) =

K!
∏I

i=1(KZ̄i)!

I
∏

i=1

(Pi(t))
KZ̄i (26)

or, with a logarithm and allowing for non-integer KZ̄i we

have

log
[

p({Z̄i(t)}
I
i=1)

]

= log [Γ(K + 1)] (27)

+
I

∑

i=1

(

KZ̄i log [Pi(t)] + log
[

Γ(KZ̄i + 1)
])

The answer is not explicit but it is a scalar maximization, so

it is not especially onerous.

4We are normalizing to unity sum as was done in [22]. Any normalization
will do, but one that is stochastic must have sum that depends on some
stochastic variable that is exogenous to the observations model we are using.
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In [22] it was suggested to model the Z̄i(t)’s as independent

and Gaussian: N (z;Pi(t), Pi(t)(1− Pi(t)/K). We have

K̂ =

T
∑

t=1

I
(

∑I
i=1

(Z̄i(t)−Pi(t))
2

Pi(t)

) (28)

We note that in fact the KZ̄i(t)’s are jointly multinomial, and

hence neither independent nor Gaussian, but the approximation

seems often to work acceptably and is quick. With a finite K
we can use the GFMT directly.

In either case (implicit maximization of (27) and explicit

via (28)) the maximization can be done assuming that K is

fixed for all t or may vary; the formulae are obvious.

B. Introduce Measurement Noise

Suppose (5) is replaced by

γm(t) ∼ N (γ;Hxm(t), Ř) m = 1, 2, . . . ,M (29)

yk(t) ∼

{

N (y; γm(t),R) uk(t) ∈ {1, . . . ,M}
1

a1a2
uk(t) = 0

We would then have (11) replaced by

Q(X,Γ) = log[p(X)] +

T
∑

t=1

M
∑

m=1

log[p(γm(t)|xm(t))]

+
T
∑

t=1

K
∑

k=1

M
∑

m=1

Pt(m|Q [yk(t)]) (30)

×

∫

Y

pt(yk(t)|Q [yk(t)] ,m) log[πmp(yk(t)|γm(t))]

The similarity of (30) to (11) is striking. It is obvious that the

prior on X and Γ (the first two terms on the RHS) becomes

irrelevant as K → ∞. We are eventually left with

Q̆(X) = (31)

C −
1

2

M
∑

m=1

[

(xm(1)− x̄m(1))TP−1
0 (xm(1)− x̄m(1))+

T
∑

t=2

(xm(t)− Fxm(t− 1))TQ−1(xm(t)− Fxm(t− 1))

+
T
∑

t=1

(γ̃m(t)−Hxm(t))T Ř−1(γ̃m(t)−Hxm(t))

]

in which

γ̃m(t) ≡

∑I
i=1 Zi(t)P̌t(m|i)ȳi,m(t)
∑I

i=1 Zi(t)P̌t(m|i)
(32)

γ̄i,m(t) ≡

∫

Q[y]=i

yp̌t(y|i,m)dy (33)

with P̌ and p̌ from (34) and (35), respectively. In fact the

same comments apply here as to the GFMT, as indicated in

Appendix A: in the multi-target situation there should be an

optimization over the list matching of {γn(t)}
M
n=1 to {xm(t)}.

It must be admitted that this is only marginally more

satisfying than the original GFMT: it is good that the prior

on X is now involved in the filtering, but it is unfortunate that

there is no sharing of information between that prior and the

refinement of FPA-level data.
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Fig. 3. An example of a pdf for non-uniform clutter, conditioned on the
photon being clutter.

C. Introduce Pixel Noise

The model of the GFMT and HPMHT, while adhering to

physics in terms of the large count of photons for targets

that are not excessively dim, does not match what is usually

observed on the FPA. The more common image is more like

what is in figure 1. It seems reasonable to model the difference

as pixel-level noise. An example is in [6], which uses a Ricean

model from [17].

Here we will modify (5) to

yk(t) ∼

{

N (y;Hxm(t),R) uk(t) ∈ {1, . . . ,M}
fc(y) uk(t) = 0

(36)

where, as suggested by figure 3, the pdf of a clutter photon

is not just a fixed level but is instead piecewise constant. We

write

fc(y) =

I1
∑

i1=1

I2
∑

i2=1

vi1,i2(t)I (Q [y] = (i1, i2))

(τi1+1 − τi1)(τi2+1 − τi2)
(37)

or using our single-index notation:

fc(y) =

I
∑

i=1

vi(t)I (Q [y] = i)

(τi+1 − τi)
(38)

We will specify that {vi(t)}
I
i=1 be a set of random variables

that are jointly distributed according to p(V ) and that sum to

unity. An example might be Dirichlet or Jeffreys [3], [11].

342



P̌t(m|i) ≡ Pr(uk(t)=m|Q[yk(t)]=i,γm(t)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

πm

∫

y∈i
N(y;γm(t),R)dy

)

(

π0

∫

y∈i

1
a1a2

dy

)

+
∑

M

l=1

(

πl

∫

y∈i
N(y;γl(t),R)dy

) m∈{1,M}

(

π0

∫

y∈i

1
a1a2

dy

)

(

π0

∫

y∈i

1
a1a2

dy

)

+

∑

M

l=1

(

πl

∫

y∈i
N(y;γl(t),R)dy

) m=0

(34)

p̌t(y|i,m) ≡ p(yk(t)|uk(t)=m,Q[yk(t)]=i,γm(t)) = I(Q[y]=i)×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

N(y;γm(t),R)
∫

y∈i
N(y;γm(t),R)dy

uk(t)=m∈{1,M}

1
a1a2

∫

y∈i

1
a1a2

dy

uk(t)=0

(35)

Pt(m|i) ≡ Pr(uk(t)=m|Q[yk(t)]=i,xm(t)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

πm

∫

y∈i
N(y;Hxm(t),R)dy

)

(π0vi(t))+
∑

M

l=1

(

πl

∫

y∈i
N(y;Hxl(t),R)dy

) m∈{1,M}

(π0vi(t))

(π0vi(t))+
∑

M

l=1

(

πl

∫

y∈i
N(y;Hxl(t),R)dy

) m=0

(40)

Now we have (10) replaced by

Q(X,V ) =

∫

log[p(Z,X,U, V, Y )]p(U, V, Y |Z) (39)

in which V is of course the aggregated vi’s. Note especially

that (6) does not change, since π0 refers to the prior probability

that a given photon is clutter: if it is, then the pixel to which

it is assigned is according to {vi(t)}
I
i=1 in scan t. None of

(12)-(19) changes, since these refer to gradients and updates

with respect to target positions. One equation that does change

is (8), which becomes (40).
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Fig. 4. Illustration of fit of clutter and target for two pixels, observations
Zi(t) = [0.4 0.6], and various values of target position µ. Here the point-
spread standard deviation is σ = 0.25

Another change is that while (12) refers to the gradient

with respect to target states, we need as well the gradient with

respect to the clutter probabilities. We could write (11) as

Q(X,V ) = log[p(X)] +
T
∑

t=1

K
∑

k=1

M
∑

1=0

Pt(m|Q [yk(t)]) (41)

×

∫

Y

pt(yk(t)|Q [yk(t)] ,m) log[πmp(yk(t)|xm(t))]

+ log[p(V )] +

T
∑

t=1

K
∑

k=1

Pt(0|Q [yk(t)]) log[π0vQ[yk(t)](t)]

From this we get the gradient with respect to V as

∇Q(X,V ) =
∂ log[p(V )]

∂vi(t)
+

Zi(t)Pt(0|i)

vi(t)
(42)

According to Appendix B, we have

vi(t) =
Zi(t)Pt(0|i)

∑I
j=1 Zj(t)Pt(0|j)

(43)

for every t. It is important to recognize that π0 must be fixed

(and not estimated) if this model is used: the proportion of

photons that come from the clutter must be known. If π0 is

estimated an attractive model fit to any FPA data is with π0 =
1 and vi(t) =

Zi(t)
∑

I

j=1
Zj(t)

; this is not useful. Note that (43) is

not the only choice of vi(t); some others, such as the common

Gaussian pixel noise assumption, are given in Appendix C.

Now, although (43) can be inserted to EM in (40), it does

not get around the problem of K → ∞ in (17): the prior
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Fig. 5. The manifold of allowable clutter values in the left pixel (#1) as a
function of the target position (µ) and the relative target strength (π1). Here
the pixel observations are Zi(t) = [0.5 0.5] and the point-spread standard
deviation is σ = 0.5.

remains effete. So let us write

p(X|Z) ∝

∫

p(Z|U, V, Y,X)p(U, V, Y )dUdV dY p(X)

= p(X)

∫

∏

t,k

[p(zk(t)|U, V, Y,X)]

× p(U, V, Y )dUdV dY (44)

Put this way it is clear why the data dominates the prior

p(X). What is perhaps less clear is that the “data” term (i.e.,

everything except p(X)) is constant over a manifold. Turning

to figure 4 we see a notional case of a single target in two

pixels: as the target is moved from left to right the clutter,

according to our pixel noise model, adjusts itself to make up

the difference between the photon counts in the target and

the observations. The case is made more strongly in figure 5,

where the manifold of allowable triples (μ, π1, v1(t)) is shown.

The point is that under this “pixel noise” model there is a

manifold of target locations whose likelihoods, represented as

the terms in (44) other than p(X), are the same. Within this

manifold of points the prior p(X) can have an influence.

VII. SUMMARY

The GFMT introduced a quantum observation model for

target tracking based on data that was “histogrammed,” as

might be the case for focal plane array, beamspace and/or

spectral measurements. It was discovered that a detailed model

in which the observations were considered as individual quanta

(as opposed to aggregated energy levels, for example), could,

when coupled with a healthy dose of the EM algorithm, result

in a quite simple integrated tracking algorithm that needed no

exogenous signal processing.

There was, however, a lacuna in the GFMT’s modeling –

a small but important gap that the HPMHT cleverly filled.

The fix, however, is ad-hoc, and indeed it is not clear whether

the approach is the best. Now, what is actually “best” would

require a model to underpin it. It is hoped that this paper

makes a contribution by suggesting possible models and using

the appropriate EM machinery to see what they evince.
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APPENDIX A

MULTI-TARGET GFMT

As indicated in section IV the converged GFMT simply

takes its measurements (ỹm(t)’s) as exact knowledge of a

target’s location. In the case of a single target the matter is

closed; but with multiple targets note that in (44) only p(X)
depends on which target is assigned to which measurement: in

the limit as K → ∞ the term
∏T

t=1

∏K
k=1 p(yk(t)|X) would

remain the same regardless of permutation of {xm(t)} with

respect to m. As such, the GFMT does not, in the multi-target

case, completely ignore the prior p(X): the best set of tracks

would be from solving

min
{n(t)}

{

p({xn(t)}|{ỹm(t)})
}

(45)

meaning a multi-list assignment of targets {xm(t)} to (noise-

free) measurements {ỹm(t)}. This is a small consolation; but

does demonstrate that even in the GFMT the prior is not

always completely irrelevant.

APPENDIX B

THE EFFECT OF PIXEL NOISE: DERIVATION OF (43)

Consider the Dirichlet distribution

p({vi(t)}) =
Γ(νI)

Γ(ν)I

I
∏

i=1

vi(t)
ν−1 (46)

over the finite hyperplane
∑I

i=1 vi(t) = 1, vi(t) ≥ 0, ∀i.
We see that (43) is exactly true for any K in the case of the

“canonical” Dirichlet case ν = 1, meaning the v’s are uniform

over their domain. It is also exactly true for the exponential

case that p(vi(t)) = βe−βvi(t) on the same finite hyperplane.

In fact, turning to (42), we see that in general the first term

(involving the prior on V ) does not depend on the number of

photons K unless such dependence is forced by the modeler.

As such, the gradient evaporates in the limit as K → ∞, and

the only remaining term is the Lagrange multiplier λ enforcing

that the that v’s sum to unity. Equation (43) follows.

APPENDIX C

THE EFFECT OF PIXEL NOISE: ALTERNATIVES TO (43)

Appendix B mentioned that one might “force” dependence

on the number of photons. Consider the case of (46) with

ν = ν0K: with large K this is a form of the Dirichlet that

strongly encourages small v’s. Solving (42) we get

vi(t) =
[Zi(t)Pt(0|i)− ν]

+

∑I
j=1 [Zj(t)Pt(0|j)− ν]

+
(47)

in the case K → ∞, and in which the notation [ξ]
+

= ξ if

ξ ≥ 0 and zero otherwise.

Consider also the case that p(V ) is such that vi(t) is Gaus-

sian with mean μ and variance σ2; and that
∑I

i=1 vi(t) = 1,

vi(t) ≥ 0, ∀i as discussed earlier. For this rather common

“Gaussian pixel noise” assumption we get

vi(t) =

⎡

⎣

μ+ λ

2
+

√

(

μ+ λ

2

)2

+ σ2Zi(t)Pt(0|i)

⎤



+

(48)

and λ is chosen to make the
∑I

i=1 vi(t) = 1.

It is not apparent that either (47) or (48) is a good model.

What perhaps should be stressed, however, is that neither

assumption is much different in spirit from (24) to amplify

the prior information.
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